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Abstract. In this contribution we develop a strategy for segmentation
of evolving biological structures in image sequences. Our approach is
based on combination of nonlinear tensor diffusion image smoothing and
subjective surface based image segmentation. Since the fine cell structure
would restrain the evolving segmentation function to achieve a shape of
meaningful biological structures, we have to smooth properly the im-
ages in the sequence. To that goal we apply the nonlinear tensor dif-
fusion which enhances the connectivity of bordering structure lines and
smoothes their inner parts. For the numerical implementations we use
semi-implicit diamond-cell finite volume methods both for filtering and
segmentation. We show application of the method in image segmentation
of early stages of zebrafish embryogenesis.

1 Introduction

The subjective surface based segmentation is an efficient tool for the extraction
of 2D or 3D image objects, cf. [10, 9, 1]. It is also the case when dealing with two-
photon laser scanning microscopy images in detecting and segmenting structures
at cellular and subcellular level, cf. [6, 8]. However, the use of such algorithms
when segmenting the supercellular structures is not straightforward. Using an
original (not filtered) image leads to entirely useless results due to the presence
of small cell structures. Then a useful tool is filtering by the nonlinear tensor
diffusion enhancing the coherence of structure boundaries and smoothing the
inner cell structures and noise. The model, cf. [11, 7, 4], has the following form

∂tu −∇ · (D∇u) = 0, in QT ≡ I × Ω, (1)

u(x, 0) = u0(x), in Ω, (2)

(D∇u) · n = 0, on I × ∂Ω, (3)

where u represents a greylevel 3D image intensity, u0 ∈ L2(Ω), I = [0, T ] denotes
a time interval, Ω is an image domain, D = D(u(x, t)) is a diffusion tensor and



n is the outer normal unit vector to ∂Ω. The model is useful when a strong
filtering is desirable in a preferred direction, e.g. along 2D edge surfaces in 3D
images and a low smoothing is expected in the perpendicular direction.

2 Design of the diffusion tensor

The matrix D depends on a smoothed intensity gradient, which is given as

∇ut̃ = (ux1
, ux2

, ux3
)T , where ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0) (4)

and Gt̃ is a Gaussian kernel. Provided µ = ||∇ut̃||
2 > 0 we choose a triplet of

vectors (v1, v2, v3) as follows

v1 ‖ ∇ut̃, v2 ⊥ ∇ut̃, v3 ⊥ ∇ut̃, v2 ⊥ v3 . (5)

The direction of vector v1 corresponds to the direction of the largest intensity
change. The other two vectors give a tangential plane to a level set of image
intensity which may represent a 2D surface edge in a 3D image, provided that
µ is large. It is called a coherence plane P , cf. [4, 7], and corresponds to an
eigenspace corresponding to the eigenvalue 0 of the outer product ∇ut̃ ⊗ ∇ut̃.
In order to improve the coherence, the diffusion tensor D must steer a filtering
process such that the diffusion is strong and increasing with the level of µ along
the coherence plane and is small in the perpendicular direction. We achieve it
choosing the eigenvalues of the diffusion tensor, which determine the diffusivities
in the directions v1, v2 and v3 as

κ1 = α, α ∈ (0, 1), α ≪ 1, (6)

κ2 =

{

α, if µ = 0,

α + (1 − α) exp
(

−C
µ

)

, C > 0 otherwise.

Further, we apply other convolution with a smoothing kernel ρ to get the diffu-
sion matrix D in the form

D = Gρ ∗ D0, where D0 =

{

B, if µ = 0,

PBP−1 otherwise,
B =





κ1 0 0
0 κ2 0
0 0 κ2



 (7)

and P represents a transition matrix from the basis (v1, v2, v3) to (e1, e2, e3).
The exponential function in (6) is used to ensure that κ2 does not exceed 1. The
process never stops owing to the positive parameter α. Even if µ tends to zero,
a small linear diffusion with a diffusivity α > 0 still remains there. C has the
role of a threshold parameter. If µ ≫ C then κ2 ≈ 1, and, conversely if µ ≪ C

then κ2 ≈ α.
After some manipulations we get that at any point where µ > 0, the matrix

D0 has the following form

1

µ





u2
x1

κ1 + (u2
x2

+ u2
x3

)κ2 ux1
ux2

(κ1 − κ2) ux1
ux3

(κ1 − κ2)
ux1

ux2
(κ1 − κ2) u2

x2
κ1 + (u2

x1
+ u2

x3
)κ2 ux2

ux3
(κ1 − κ2)

ux1
ux3

(κ1 − κ2) ux2
ux3

(κ1 − κ2) u2
x3

κ1 + (u2
x1

+ u2
x2

)κ2



(8)



in the standard basis (e1, e2, e3). Such choice of the matrix D0 was given in [4],
it is independ on a concrete choice of v2 and v3 and can be directly and fast
evaluated using the diamond-cell finite volume technique (see also next section).
Then the matrices are spatially averaged using the Gaussian smoothing with a
variance ρ to get the final matrix D elements. The diffusion tensor possesses the
smoothness, symmetry and positive definiteness properties, cf. [4].

3 The finite volume scheme for 3D nonlinear tensor

diffusion

Let the image u(x) be represented by a bounded mapping u : Ω → R and
given by n1 × n2 × n3 voxels (finite volumes) such that it looks like a mesh
with n1 rows, n2 columns and n3 layers. Let us consider an image domain Ω =
(0, n1h) × (0, n2h) × (0, n3h), with a voxel size h. We consider the diffusion
process in a time interval I = [0, T ]. Let the time discretization is given by
0 = t0 < t1 < ... < tNmax

= T with tn = tn−1 + k, where k is a length of a
discrete time step. We will look for an approximation of solution at time tn for
every n = 1, ..., Nmax.

We start the scheme derivation integrating the equation (1) over a finite vo-
lume K, then provide a semi-implicit time discretization and use the divergence
theorem to have

un
K − un−1

K

k
m(K) −

∑

σ∈EK∩Eint

∫

σ

(Dn−1∇un) · nK,σds = 0, (9)

where un
K , K ∈ Th, denotes the mean value of un on K and Th is a cubic finite

volume mesh. Further quantities and notations are given as follows: m(K) is the
3D measure of finite volume K with the boundary ∂K, σKL = K ∩L is a side of
the finite volume K, where L ∈ Th is a neighboring finite volume to K for which
holds that the volumes K and L share a 2D surface element with a nonzero area.
At several places we will replace σKL by σ only due to a notation simplification.
EK represents the set of sides such that ∂K =

⋃

σ∈EK
σ and E =

⋃

K∈Th
EK .

The set of boundary sides is denoted by Eext, that is Eext = {σ ∈ E , σ ⊂ ∂Ω}
and Eint = E \ Eext. Υ is the set of pairs of neighboring finite volumes defined by
Υ = {(K, L) ∈ T 2

h , K 6= L, m(K ∩ L) 6= 0} and nK,σ is the normal unit
vector to σ outward to K.

Our discrete approximation solution is defined as

uh,k(x, t) =

Nmax
∑

n=0

∑

K∈Th

un
Kχ{x ∈ K}χ{tn−1 < t ≤ tn}, (10)

where the function χ(A) is given by χ{A} =

{

1, if A is true,
0, elsewhere.

The finite

volume approximation at the n-th time step is given by un
h,k(x) =

∑

K∈Th

un
Kχ{x ∈



K} and initial values as u0
K = 1

m(K)

∫

K

u0(x)dx, K ∈ Th. We can define an

auxiliary unknown φn
σ(un

h,k) representing an approximation of the exact averaged

flux 1
m(σ)

∫

σ
(Dn−1∇un) · nK,σds for any K and σ ∈ EK in order to rewrite (9)

in the form

un
K − un−1

K

k
−

1

m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0,

where m(σ) is the measure of side σ.

φn
σ(un

h,k) is built with the help of a co-volume mesh, cf. e.g. [2, 3], for the
2D case. We create a co-volume χσ associated with σ around each finite volume
side by joining four vertices of this side and midpoints of the finite volumes
which are common to this side, cf. Fig. 1. The co-volume boundary consists

Fig. 1. The co-volumes associated with the side σ = σWE (left) and σ = σEW (right).

of triangles σ̄ ⊂ ∂χσ (their vertices are denoted by N1(σ̄), N2(σ̄) and N3(σ̄))
and nχσ ,σ̄ is the normal unit vector to σ̄ outward to χσ. First, we approxi-
mate the averaged gradient on χσ. Applying the divergence theorem we obtain

1
m(χσ)

∫

χσ

∇undx = 1
m(χσ)

∫

∂χσ

unnχσ ,σ̄ds which can be approximated as follows

pn
σ(u) = 1

m(χσ)

∑

σ̄∈∂χσ

1
3

(

un
N1(σ̄) + un

N2(σ̄) + un
N3(σ̄)

)

m(σ̄)nχσ ,σ̄. The values at xE

and xW are denoted as uE and uW . Further, we evaluate the values uTN , uTS ,
uBN , and uBS at the vertices xTN , xTS , xBN , and xBS , cf. Fig. 1, as the arith-
metic mean of uK , where K represents the finite volumes which are common to
the vertex. Since the mesh is uniform and squared, we can simplify our discrete

scheme applying the following relations: m(χσ) = h3

3 , m(σ̄) =
√

2
4 h2. After a

short calculation we can state

pn
σ(u) =

un
E − un

W

h
nK,σ +

un
TN + un

BN − un
TS − un

BS

2h
t1K,σ

+
un

TN + un
TS − un

BN − un
BS

2h
t2K,σ, (11)



where t1K,σ is a unit vector parallel to xTN−xTS such that (xTN−xTS)·t1K,σ > 0
and t2K,σ is a unit vector parallel to xTN −xBN such that (xTN −xBN )·t2K,σ > 0.

We replace the exact gradient ∇un by the discrete gradient pn
σ(u) to get the

numerical flux in the form

φn
σ(un

h,k) = (Dσpn
σ(u)) · nK,σ. (12)

Dσ = Dn−1
σ =





D̄σ
11 D̄σ

12 D̄σ
13

D̄σ
12 D̄σ

22 D̄σ
23

D̄σ
13 D̄σ

23 D̄σ
33



 denotes an approximation of the mean value

of the matrix D along σ which was evaluated at the previous time step using
un−1

h,k . The elements of matrix Dσ are C∞ functions due to the convolutions in
(4) and (7).
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Fig. 2. A finite volume K, its boundaries σi, i = E, W, N, S, T, B and the fluxes
outward to the finite volume K

Let us emphasize that in (12) we always consider the matrix Dσ written in
the basis (nK,σ, t1K,σ, t2K,σ), cf. [2, 3] for an analogy with the 2D model. In
practice it means that, cf. Fig. 2, the matrix D given in the standard basis on

a side σ by





Dσ
11 Dσ

12 Dσ
13

Dσ
12 Dσ

22 Dσ
23

Dσ
13 Dσ

23 Dσ
33



 is the same in the new basis on two sides σW and

σE . It has the form





Dσ
22 Dσ

12 Dσ
23

Dσ
12 Dσ

11 Dσ
13

Dσ
23 Dσ

13 Dσ
33



 in the new basis for two other sides σS

and σN and it becomes





Dσ
33 Dσ

23 Dσ
13

Dσ
23 Dσ

22 Dσ
12

Dσ
13 Dσ

12 Dσ
11



 for the last two sides σB and σT . Using

such matrix representations, the definition (12) can be written in the form

φn
σ(un

h,k) =











D̄σ
11 D̄σ

12 D̄σ
13

D̄σ
12 D̄σ

22 D̄σ
23

D̄σ
13 D̄σ

23 D̄σ
33











un

E
−un

W

h
un

TN
+un

BN
−un

TS
−un

BS

2h
un

TN
+un

TS
−un

BN
−un

BS

2h












·





1
0
0



 =



= D̄σ
11

un

E
−un

W

h
+ D̄σ

12
un

TN
+un

BN
−un

TS
−un

BS

2h
+ D̄σ

13
un

TN
+un

TS
−un

BN
−un

BS

2h
.

Finally, let us summarize our semi-implicit finite volume scheme:

un
K − un−1

K

k
−

1

m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0, (13)

where φn
σ(un

h,k) = D̄σ
11

un
E − un

W

h
+ D̄σ

12

un
TN + un

BN − un
TS − un

BS

2h

+ D̄σ
13

un
TN + un

TS − un
BN − un

BS

2h
. (14)

Due to the computation of the values uTN , uTS, uBN and uBS in (14) as the
arithmetic mean of neighboring voxel values, we end up with the 27 point finite
volume scheme.

4 Segmentation

Our segmentation approach is based on the subjective surface method [10] and
its finite volume implementation from [9]. The mathematical model has the
following form

∂tu =
√

ε2 + |∇u|2∇.

(

g(|∇Gσ ∗ I0|)
∇u

√

ε2 + |∇u|2

)

, in QT ≡ I × Ω,(15)

u(x, 0) = u0(x), in Ω, (16)

u = 0, on I × ∂Ω, (17)

where I0 is the image which is segmented and ε is the regularization parameter.
The solution u represents here the evolving segmentation function. The function
g = g(|∇Gσ ∗ I0|) has the role of the edge detector, which requires a suitable
choice of g in practice, e.g. g(s) = 1

1+Ks2 , K > 0.
In the subjective surface method we start the segmentation constructing

the initial segmentation function located in an approximate object center. The
segmentation function is driven by equation (15) and evolves to a numerical
steady state. Its shock profile gives the segmentation result and shape of the
object. To that goal, we choose a suitable isoline of the shock profile which
represents the boundary of the segmented object. This isoline is most naturally
taken as the average of maximal and minimal value of the final segmentation
function.

5 Numerical experiments

The goal of this section is to discuss our computational results and the influence
of nonlinear tensor diffusion filtering on the time evolving biological structure
segmentation. We perform our experiments on the 3D image sequences of cell



Fig. 3. 2D slices of a 3D zebrafish embryo image. Left: the original image. Right: the
filtered image after 50 time steps.

nuclei, cf. Fig. 3, and cell membranes, cf. Figs. 4-6. The images represent early
stages of the zebrafish embryogenesis and were created by the two-photon laser
scanning microscope. We apply the 3D numerical scheme to filter the images,
then the segmentation is performed on 2D image slices (512×512 pixels) in order
to firstly test the performance and capabilities of the method.

First experiment illustrates the behaviour of nonlinear tensor diffusion in
filtering of this type of images, cf. Fig. 3. One can observe that this type of
diffusion improves the connectivity of structure bordering lines while it smoothes
the structure interiors. One can compare the original image showing separate
nuclei but with observable structure borders with the filtered one, where the
structure border lines are connected.

Our next experiments are devoted to the segmentation of eye retina structure
in the several subsequent image slices. First, the initial segmentation function
is given by two cones which are inside the structure such that their partially
overlapping bases sufficiently cover the eye structure area. Then we evolved it
in the original as well as filtered images. Using the original image we obtained
the final state of segmentation function represented by a variety of different level
lines, cf. Fig. 4 (top, right). The question is, which isoline would represent the
most precisely the structure shape. The natural choice is a medium isoline which
is depicted in the original image Fig. 4 (top, left). One can clearly see the large
difference between the segmented and real structure shape due to the restraints
of evolving segmentation function caused by inner cell structures. In order to
compare our method with other filtering techniques we performed several tests.
The segmentation results obtained on the images filtered by the geodesic mean
curvature flow (GMCF) filtering, the mean curvature flow (MCF) filtering and
the Perona-Malik (PM) filtering are shown in Fig. 5. In Fig. 5 (right), we can see
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Fig. 4. The eye retina segmentation using the 2D original image (top) and image
filtered by 20 time steps of the nonlinear tensor diffusion (middle). Left: the averaged
isoline of the final state of segmentation function is superimposed to the original and
filtered image, respectively. Right: the graphs of the final state of segmentation function
is plotted after 2000 time steps using the original image and after 200 time steps using
the filtered image. At the bottom we display the original (left) and the filtered image
(right).



that after filtering the profiles of final segmentation functions are not well suited
for our purposes although the MCF results is rather close to the real one. They
are again given by several different isolines and medium one, cf. Fig. 5 (left),
represents the segmented structure only partially. This is a consequence of edge
preserving smoothing by GMCF and PM which can not remove inner cell struc-
tures. On the contrary, the final steady state of segmentation function evolving in
the image filtered by nonlinear tensor diffusion consists of isolines accumulated
along the real structure boundary, cf. Fig. 4 (middle, right). The formation of
correct shock profile was enabled due to the smoothing of cell structure barriers
and noise removal and the emphasizing of structure boundaries. Embedding the
medium isoline into the image, cf. Fig. 4 (middle, left) we achieved the precise
structure shape.

Then the segmentation procedure was successively applied in the image se-
quence part consisting of 11 images, cf. Fig. 6. We use the backward in time
strategy starting from the last image of the sequence segmented as explained
above. The initial segmentation function for other slices is taken as the final
result of the segmentation of the previous image. Fig. 6 shows the segmentation
results displayed on the original membrane images from last 150th image slice
(top), to the 145th slice (middle) up to the 140th slice of the processed image
sequence (bottom).

In experiments dealing with the nonlinear tensor anisotropic diffusion we used
the spatial step h = 0.01, time step k = 0.0001, C = 1, α = 0.001, t̃ = 10−5, ρ =
0.002, 20 time steps for the filtering of membranes images and t̃ = 10−10, ρ = 0.1,
50 time steps for the filtering of nuclei images. The arising linear systems were
solved by the Gauss-Seidel iterative method. For the segmentation experiments
we use the following parameters: ε = 10−4, the spatial step h = 0.01, time step
k = 0.01, δ = 10−6 for a stopping criterion and K = 100 (a constant of the
function g(s) = 1

1+Ks2 ), cf. [9]. The resulting linear systems were solved by the
SOR method.

6 Conclusions

In the article we concern with the technique for embryo structure segmenta-
tion in image sequences. Since a noise and cell structures restrain the correct
segmentation evolution, as the first step, we smooth the image sequence. We
choose the nonlinear tensor diffusion due to the fact that this filtering not only
smoothes image objects but emphasizes connections of their boundaries as well.
Then, the segmentation process starts using an artificial initial function centered
inside the biological structure of the first image in the sequence. The segmen-
tation result given by the subjective surface method obtained for this image is
used as the initial condition for the next image of processed sequence, etc. Our
experiments confirm the usefulness of the nonlinear tensor diffusion for this type
of segmentation.
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Fig. 5. The eye retina segmentation using the filtered image by 100 steps of the GMCF
filtering (top), 25 steps of the MCF filtering (middle) and 20 steps of the PM filtering
(bottom). Left: the averaged isoline of the final state of segmentation function is su-
perimposed to the filtered image. Right: the graphs of the final state of segmentation
function is plotted after 3000 segmentation steps using the GMCF filtering, after 500
segmentation steps using the MCF filtering and 5000 segmentation steps using the PM
filtering.



Fig. 6. The segmentation results for the image sequence which are superimposed to
the original slices.
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