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Abstract. In this article we design the semi-implicit finite volume scheme for coherence enhanc-
ing diffusion in image processing and prove its convergence to the weak solution of the problem. The
finite volume methods are natural tools for image processing applications since they use piecewise
constant representation of approximate solutions similarly to the structure of digital images. They
have been successfully applied in image processing, e.g., for solving the Perona-Malik equation or
curvature driven level set equations, where the nonlinearities are represented by a scalar function
dependent on solution gradient. Design of suitable finite volume schemes for tensor diffusion is a
nontrivial task, here we present first such scheme with convergence proof for the practical nonlinear
model used in coherence enhancing image smoothing. We provide basic information about this type
of nonlinear diffusion including a construction of its diffusion tensor, and we derive a semi-implicit
finite volume scheme for this nonlinear model with the help of co-volume mesh. This method is
well-known as diamond-cell method owing to the choice of co-volume as a diamond-shaped polygon.
Further, we prove a convergence of a discrete solution given by our scheme to the weak solution of the
problem. The proof is based on Kolmogorov’s compactness theorem and a bounding of a gradient in
tangential direction by using a gradient in normal direction. Finally computational results illustrated
in figures are discussed.

Key words. image processing, nonlinear tensor diffusion, numerical solution, semi-implicit
scheme, diamond-cell finite volume method, convergence.

1. Introduction. Nonlinear diffusion models are widely used nowadays in many
practical tasks of image processing. In this paper we deal with the numerical solution
of the model of tensor nonlinear anisotropic diffusion introduced by Weickert (see [23],
[24] and [22]) in the following form

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω,(1.1)

u(x, 0) = u0(x), in Ω,(1.2)

(D∇u) · n = 0, on I × ∂Ω,(1.3)

where D is a matrix depending on the eigenvalues and eigenvectors of the so-called
(regularized) structure tensor, u0 ∈ L2(Ω) and n is the outer normal unit vector to
∂Ω. Such model is useful in any situation, where strong smoothing is desirable in a
preferred direction and a low smoothing is expected in the perpendicular direction,
e.g. for images with interrupted coherence of structures. To that goal the matrix

J0(∇ut̃) = ∇ut̃ ⊗∇ut̃ = ∇ut̃∇ut̃
T ,(1.4)

where

ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0).(1.5)

is used. The matrix J0 is symmetric and positive semidefinite and its eigenvectors are
parallel and orthogonal to ∇ut̃, respectively. We can average J0 by applying another
convolution with Gaussian Gρ and define

Jρ(∇ut̃) = Gρ ∗ (∇ut̃ ⊗∇ut̃), (ρ > 0).(1.6)
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In computer vision the matrix Jρ =

(

a b

b c

)

is known as a structure tensor or

interest operator or second moment matrix (see [9]). It is again symmetric and positive
semidefinite and its eigenvalues are given by

µ1,2 =
1

2

(

a + c ±
√

(a − c)2 + 4b2
)

, µ1 ≥ µ2.(1.7)

Since the eigenvalues integrate the variation of the grey values within a neighbourhood
of size O(ρ), they describe the average contrast in the eigendirections v and w.

With the help of the eigenvalues of Jρ we can obtain useful information on the
coherence. The expression (µ1 − µ2)

2 is large for anisotropic structures and tends to
zero for isotropic structures, constant areas are characterized by µ1 = µ2 = 0, straight
edges by µ1 ≫ µ2 = 0 and corners by µ1 ≥ µ2 ≫ 0.

The corresponding orthogonal set of eigenvectors (v, w) to eigenvalues (µ1, µ2) is
given by

v = (v1, v2), w = (w1, w2),

v1 = 2b, v2 = c − a +
√

(a − c)2 + 4b2,(1.8)

w ⊥ v, w1 = −v2, w2 = v1.

The orientation of the eigenvector w, which corresponds to the smaller eigenvalue µ2

is called coherence orientation. This orientation has the lowest fluctuations.
One can use the above mentioned structure tensor information into a construction

of specific nonlinear diffusion filter [23, 24, 22]. The idea of the tensor nonlinear
diffusion filtering is as follows. We get a processed version u(x, t) of an original image
u0(x) with a scale parameter t ≥ 0 as the solution of mathematical model (1.1)-(1.3),
where matrix D depends on solution u, satisfies smoothness, symmetry and uniform
positive definiteness properties, and steers a filtering process such that diffusion is
strong along the coherence direction w and increases with the coherence (µ1 − µ2)

2.
To that goal D must possess the same eigenvectors v and w as the structure tensor
Jρ(∇ut̃) and we choose the eigenvalues of D as

κ1 = α, α ∈ (0, 1), α ≪ 1,(1.9)

κ2 =

{

α, if µ1 = µ2,

α + (1 − α) exp
(

−C
(µ1−µ2)2

)

, C > 0 else.

The matrix D then has following form

D = ABA−1,(1.10)

where A =

(

v1 −v2

v2 v1

)

and B =

(

κ1 0
0 κ2

)

. The exponential function is used in

(1.9) because it ensures that the smoothness of the structure tensor carries over to the
diffusion tensor and that κ2 does not exceed 1. The positive parameter α guarantees
that the process never stops. Even if (µ1−µ2)

2 tends to zero so the structure becomes
isotropic, there still remains some small linear diffusion with diffusivity α > 0. Such
α is a regularization parameter, which keeps the diffusion tensor uniformly positive
definite. C has a role of a threshold parameter. If (µ1 − µ2)

2 ≫ C then κ2 ≈ 1, and,
in opposite if (µ1−µ2)

2 ≪ C then κ2 ≈ α. Due to the convolutions in (1.5) and (1.6),
the elements of matrix D are C∞ functions. Such model is a nontrivial extension of
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Fig. 2.1. A detail of finite volume mesh - a finite volume K, its boundaries σi, i = 1, 2, 3, 4
and the fluxes outward to a finite volume K.

the regularized Perona-Malik equation [17, 1, 15] and, as well as further PDEs em-
ploying tensor diffusion, it is used in many practical image processing applications,
see e.g. [23, 24, 22, 6, 13, 19, 18]. In section 5 of this paper we also illustrate its useful-
ness by smoothing and segmenting the cell membrane images obtained by a confocal
microscope. We show that after application of the nonlinear tensor anisotropic dif-
fusion using our numerical scheme the coherent structures are attenuated. If such
improved edge information is used in the so-called subjective surface segmentation
method [20, 16, 2] the cell boundaries are correctly segmented.

There are only few purely finite volume methods designed and studied from nu-
merical analysis point of view for solving tensor diffusion problems, see e.g. [3, 4]
devoted to discretization of the elliptic operators. On the other hand, finite volume
schemes for nonlinear parabolic problems as arising in image analysis are natural
since they use piecewise constant representation of approximate solutions similarly
to the structure of digital images. Finite and complementary volume schemes have
been used successively in image processing for solving the Perona-Malik equation and
its generalizations (see e.g. [15, 11, 12, 10, 7, 21]) and for solving the generalized
curvature driven level set equations (see e.g. [8, 16, 2]) where the nonlinearities are
represented by a scalar function dependent on solution gradient. Here we present the
first finite volume scheme with convergence proof for the highly nonlinear anisotropic
tensor diffusion model arising in coherence enhancing image smoothing.

The next section is devoted to derivation of our numerical scheme, in section
3 we study existence and uniqueness of discrete solutions, section 4 contains our
convergence proof and finally, in section 5, we discuss numerical experiments.

2. Finite volume scheme for nonlinear tensor anisotropic diffusion. The
aim of this section is to derive our computational method. Let the image be repre-
sented by n1 × n2 pixels (finite volumes) such that it looks like a mesh with n1 rows
and n2 columns. Let Ω = (0, n1h)×(0, n2h), h is a pixel size and let the image u(x) be
given by a bounded mapping u : Ω → R. The filtering process is considered in a time
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interval I = [0, T ]. Let 0 = t0 ≤ t1 ≤ · · · ≤ tNmax
= T denote the time discretization

with tn = tn−1 + k, where k is a length of discrete time step. In our scheme we will
look for un an approximation of solution at time tn, for every n = 1, ..., Nmax. As
usual in finite volume methods, we integrate equation (1.1) over finite volume K, then
provide a semi-implicit time discretization and use a divergence theorem to get

un
K − un−1

K

k
m(K) −

∑

σ∈EK∩Eint

∫

σ

(Dn−1∇un) · nK,σds = 0,(2.1)

where un
K , K ∈ Th, represents the mean value of un on K. Th is an admissible finite

volume mesh (see [4]) and further quantities and notations are described as follows:
m(K) is the measure of the finite volume K with boundary ∂K, σKL = K ∩L = K|L
is an edge of the finite volume K, where L ∈ Th is an adjacent finite volume to K such
that m(K ∩ L) 6= 0. Due to simplifying notation, we use σ instead of σKL at several
places if no confusion can appear. EK is set of edges such that ∂K =

⋃

σ∈EK
σ and

E =
⋃

K∈Th
EK . The set of boundary edges is denoted by Eext, that is Eext = E ∩ ∂Ω

and let Eint = E \ Eext. Υ is the set of pairs of adjacent finite volumes, defined by
Υ = {(K, L) ∈ T 2

h , K 6= L, m(K|L) 6= 0} and nK,σ is the normal unit vector to
σ outward to K.

Let us define our discrete numerical solution by

uh,k(x, t) =

Nmax
∑

n=0

∑

K∈Th

un
Kχ{x ∈ K}χ{tn−1 < t ≤ tn},(2.2)

where the function χ(A) is defined as

χ{A} =

{

1, if A is true,
0, elsewhere.

(2.3)

The extension of the function (2.2) outside Ω is given first by its periodic mirror
reflection in Ωt̃, where t̃ is the width of the smoothing kernel,

Ωt̃ = Ω ∪ Bt̃(x), x ∈ ∂Ω,(2.4)

Bt̃(x) is a ball centered at x with radius t̃, and then we extend this periodic mirror
reflection by 0 outside Ωt̃ and denote it by ũh,k.

In our scheme we will start computation by defining initial values

u0
K =

1

m(K)

∫

K

u0(x)dx, K ∈ Th(2.5)

and let un
h,k(x) =

∑

K∈Th

un
Kχ{x ∈ K} denote a finite volume approximation at the

n-th time step. In order to get the scheme we write (2.1) in the form
un

K−u
n−1
K

k
−

1
m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0, where m(σ) is the measure of edge σ and φn
σ(un

h,k)

denotes an approximation of the exact averaged flux 1
m(σ)

∫

σ
(Dn−1∇un) · nK,σds for

any K and σ ∈ EK .
We construct φn

σ(un
h,k) with the help of a co-volume mesh (see e.g. [3]). The

co-volume χσ associated to σ is constructed around each edge by joining endpoints of
this edge and midpoints of finite volumes which are common to this edge, see Fig.2.2.
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Fig. 2.2. A detail of a mesh. The co-volumes associated to edges σ = σKL (left) and σ = σLK

(right).

We denote the endpoints of an edge σ̄ ⊂ ∂χσ by N1(σ̄) and N2(σ̄) and let nχσ ,σ̄ be
the normal unit vector to σ̄ outward to χσ. In order to approximate diffusion flux,
using divergence theorem, we first derive an approximation of the averaged gradient
on χσ, namely 1

m(χσ)

∫

χσ

∇undx = 1
m(χσ)

∫

∂χσ

unnχσ ,σ̄ds and then we approximate it

by pn
σ(u) = 1

m(χσ)

∑

σ̄∈∂χσ

1
2

(

un
N1(σ̄) + un

N2(σ̄)

)

m(σ̄)nχσ ,σ̄. Let the values at xE and xW

be taken as uE and uW , and let the values uS and uN at the vertices xN and xS

be computed as the arithmetic mean of uK , where K are finite volumes which are
common to this vertex.

Since our mesh is uniform and squared, we can use the following relations:

m(χσ) = h2

2 , m(σ̄) =
√

2
2 h and after a short calculation we are ready to write

pn
σ(u) =

un
E − un

W

h
nK,σ +

un
N − un

S

h
tK,σ,(2.6)

where tK,σ is a unit vector parallel to σ such that (xN − xS) · tK,σ > 0. Although
such un

N , un
W , un

E and un
S correspond to particular edge σ, and so we should denote

them by un
Nσ

, un
Wσ

, un
Eσ

and un
Sσ

in (2.6), we will use the above simplified notations.
Replacing the exact gradient ∇un by the numerical gradient pn

σ(u) in approximation
of φn

σ(un
h,k) we get the numerical flux in the form

φn
σ(un

h,k) = (Dσpn
σ(u)) · nK,σ,(2.7)

where Dσ = Dn−1
σ =

(

λ̄σ β̄σ

β̄σ ν̄σ

)

is an approximation of the mean value of matrix D

along σ evaluated at the previous time step. To that goal we take un−1
h,k for constructing

the structure and diffusion tensor and evaluate them at xKL, where xKL is a point of
σKL = K|L intersecting the segment xKxL. From implementation point of view, the
structure and then diffusion tensor evaluation can be done in two ways. Either we can



6

replace gradients of u appearing in structure tensor by their numerical approximation
pn

σ(u) and then smooth them by weighted average (convolution), or we can evaluate
∇Gt̃ ∗ un−1

h,k using weights given by ∇Gt̃ applied to discrete piecewise constant values

of un−1
h,k as convolution realization. In the latter way we do not introduce additional

approximation into the scheme, and, in the part devoted to convergence analysis we
use the latter approach, although both are realizable computationally.

It is important to note that in (2.7) we always consider the matrix Dσ written
in the basis (nK,σ, tK,σ), cf. [3]. Although it may look artificial, it will simplify
further considerations. In practice it means that, cf. Fig. 2.1, if the matrix D is

given in standard basis on edge σ by

(

λσ βσ

βσ νσ

)

then Dσ =

(

λσ βσ

βσ νσ

)

, i.e.

λ̄σ = λσ, β̄σ = βσ, ν̄σ = νσ for the two edges σ = σ2 and σ3. On the other hand,

Dσ =

(

νσ −βσ

−βσ λσ

)

, i.e. λ̄σ = νσ, β̄σ = −βσ, ν̄σ = λσ for other two edges σ = σ1

and σ4. Using such matrix representation the definition (2.7) can be written in this
compact form

φn
σ(un

h,k) =

[

(

λ̄σ β̄σ

β̄σ ν̄σ

)

(

un
E−un

W

h
un

N−un
S

h

)]

·
(

1
0

)

= λ̄σ

un
E − un

W

h
+ β̄σ

un
N − un

S

h
,(2.8)

since in the basis (nK,σ, tK,σ) the formula (2.6) can be written for each edge as

pn
σ(u) =

(

un
E−un

W

h
un

N−un
S

h

)

(2.9)

and nK,σ is equal to

(

1
0

)

in the basis (nK,σ, tK,σ) for each edge σ. Because of the

convolutions in (1.5) and (1.6), the elements of matrix Dσ are C∞ functions.
Finally, let us summarize our semi-implicit finite volume scheme:

un
K − un−1

K

k
− 1

m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0,(2.10)

where

φn
σ(un

h,k) = λ̄σ

un
E − un

W

h
+ β̄σ

un
N − un

S

h
.(2.11)

3. Existence and uniqueness of the solution to discrete scheme. In order
to fulfill main goal of this section, to prove existence and uniqueness of un

K , K ∈ Th,
we estimate the expressions un

N −un
S by means of un

E−un
W for all edges σ. To that goal

we use mainly results of [3] in our situation. Let us note that, due to simplification
of notation, we do not use upper index n in the sequel and at some places we relate
uE and uW to particular edge σ using uEσ

, uWσ
, etc. In the sequel we denote by Ci

constants which may depend on the properties of diffusion tensor.

Definition 3.1. Let Pσ be the set of all edges δ perpendicular to σ (see Fig. 3.1
for two illustrative situations when σ = σWE and σ = σEW ), which have common
vertex with σ and fulfill the following conditions: xEδ

− xWδ
> 0 if xNσ

− xSσ
> 0

and xEδ
− xWδ

< 0 if xNσ
− xSσ

< 0. Let us note that xWσ
= x1

Wδ
= x3

Eδ
, for

σ = σWE , xEσ
= x2

Wδ
= x4

Eδ
, for σ = σWE , xWσ

= x2
Eδ

= x4
Wδ

, for σ = σEW and
xEσ

= x1
Eδ

= x3
Wδ

, for σ = σEW .
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Fig. 3.1. Left: an edge σWE and edges δ1, δ2, δ3, δ4 ∈ PσWE . Right: an edge σEW and edges
δ1, δ2, δ3, δ4 ∈ PσEW .

Using definitions given in the previous section we can write

uN − uS =
1

4

[

u1
E − u1

W ) + (u3
E − u3

W ) + (u2
E − u2

W ) + (u4
E − u4

W )
]

,(3.1)

where u1
E = uEδ1

and u1
W = uWδ1

correspond to edge δ1 and similarly u2
E , u2

W ,

u3
E , u3

W , u4
E and u4

W correspond to edges δ2, δ3 and δ4. Applying the inequality
(a + b)2 ≤ 2a2 + 2b2 we have

(uNσ
− uSσ

)2 ≤
∑

δ∈Pσ∩Eint

1

4
(uEδ

− uWδ
)2.(3.2)

Multiplying (3.2) by
(

β̄σ

λ̄σ

)2
λ̄σ

h2 and summing for all σ ∈ Eint (by σ we mean σWE) we

obtain

∑

σ∈Eint

(

β̄σ

λ̄σ

)2(
uNσ

− uSσ

h

)2

λ̄σ ≤
∑

σ∈Eint

(

β̄σ

λ̄σ

)2
∑

δ∈Pσ∩Eint

1

4

(

uEδ
− uWδ

h

)2

λ̄σ.(3.3)

Then we swap the two sums on the right hand side of (3.3) to get

∑

σ∈Eint

(

β̄σ

λ̄σ

)2(
uNσ

− uSσ

h

)2

λ̄σ ≤
∑

δ∈Eint

γδ

(

uEδ
− uWδ

h

)2

λ̄δ(3.4)

where

γδ =
∑

σ∈Pδ∩Eint

1

4

(

β̄σ

λ̄σ

)2
λ̄σ

λ̄δ

.(3.5)

Let us consider the matrix

(

λ̄σ⊥ β̄σ⊥

β̄σ⊥ ν̄σ⊥

)

, which is the matrix D written in the basis

(tK,σ,−nK,σ) on edge σ. Due to smoothness of D we get

λ̄σ = ν̄σ⊥ = ν̄δ(1 + O(h)) = λ̄δ⊥(1 + O(h)), δ ∈ Pσ,(3.6)
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β̄σ = −β̄σ⊥ = −β̄δ(1 + O(h)) = β̄δ⊥(1 + O(h)), δ ∈ Pσ,(3.7)

ν̄σ = λ̄σ⊥ = λ̄δ(1 + O(h)) = ν̄δ⊥(1 + O(h)), δ ∈ Pσ.(3.8)

Applying (3.6)-(3.8) in (3.5) and using 1
1−Ch

≤ 1 + (C + 2C2h)h for h sufficiently

small (h ≤ 1
2C

) we have

γδ ≤
∑

σ∈Pδ∩Eint

1

4

(

β̄δ⊥

λ̄δ⊥

)2
λ̄δ⊥

λ̄δ

(1 + O(h)) =

(

β̄δ⊥

λ̄δ⊥

)2
λ̄δ⊥

λ̄δ

(1 + O(h)) .

Using the positive definiteness of the diffusion tensor written in a standard basis as
(

λδ βδ

βδ νδ

)

we obtain for its determinant

λδνδ − β2
δ > 0.(3.9)

Now, we have two possibilities for γδ. Let δ be an arbitrary edge in the mesh parallel

to σ3 (see Fig. 2.1). Then γδ ≤
(

−βδ

νδ

)2
νδ

λδ
(1 + O(h)) = (βδ)2

λδνδ
(1 + O(h)) < 1 for h

sufficiently small due to (3.9). Similarly, if δ is any edge oriented perpendicularly to

σ3 we have γδ ≤
(

βδ

λδ

)2
λδ

νδ
(1 + O(h)) = (βδ)2

λδνδ
(1 + O(h)) < 1 for h sufficiently small.

Thus, due to the fact that λσ ≥ C > 0 and νσ ≥ C > 0, we obtain 0 ≤ γδ < 1 for h

sufficiently small. Since this condition is fulfilled for each edge δ we can rewrite (3.4)
as

∑

σ∈Eint

(

β̄σ

λ̄σ

)2(
uN − uS

h

)2

λ̄σ ≤ γ
∑

σ∈Eint

(

uE − uW

h

)2

λ̄σ,(3.10)

where 0 ≤ γ < 1, γ = max
σ∈E

γσ.

Let us now introduce the space of piecewise constant functions associated to our
mesh and discrete H1 norm for this space. This discrete norm will be used to obtain
some estimates on the approximate solution given by the finite volume scheme.

Definition 3.2. Let Ω be an open bounded polygonal subset of R2. Let Th be
an admissible finite volume mesh (see [4]). We define P0(Th) as the set of functions
from Ω to R which are constant over each finite volume K of the mesh Th.

Definition 3.3. Let Ω be an open bounded polygonal subset of R2. For u ∈
P0(Th) we define

|un
h,k|1,Th

=





∑

(K,L)∈Υ

(uL − uK)2

dK,L

m(σ)





1
2

,(3.11)

where dK,L is the Euclidean distance between xK and xL.
Remark that (3.11) can be rewritten for our uniform mesh into the following form

|un
h,k|1,Th

=

(

2
∑

σ∈Eint

(

uE − uW

h

)2

m(χσ)

)
1
2

,(3.12)

where σ = σWE . Let us define a discrete operator Lh by

Lh(un
h,k) = un

Km(K) − k
∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ).
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Then solution un
h,k ∈ P0(Th) of our scheme at time tn is given by

Lh(un
h,k) = fh,k(un−1

h,k ),(3.13)

where fh,k(un−1
h,k ) = un−1

K m(K), K ∈ Th, and un−1
K is value of the piecewise constant

function un−1
h,k in K. This equality is a linear system of N equations with N unknowns

un
K , K ∈ Th, N = card(Th).

Multiplying Lh(uh,k) by un
K , summing over K and splitting into a part A and B

leads to

∑

K∈Th

Lh(un
h,k)un

K = A + B,(3.14)

with

A =
∑

K∈Th

(un
K)2m(K) = ||un

h,k||2L2(Ω)(3.15)

and

B = k
∑

K∈Th

un
K

∑

σ∈EK∩Eint

− φn
σ(un

h,k)m(σ).

The above expression can be written in the following form

B = k
∑

W∈Th

un
W

∑

σ∈EW ∩Eint

−φn
σ(un

h,k)m(σ)

=
k

2

∑

σ∈Eint

φn
σ(un

h,k)
uE − uW

h
2m(χσ) = Q(un

h,k)(3.16)

owing to property φn
σ(un

h,k) = φn
σW E

(un
h,k) = −φn

σEW
(un

h,k). Since φn
σ(un

h,k) = 0 for
σ ∈ Eext we can extend the sum in (3.16) and write

Q(un
h,k) =

k

2

∑

σ∈E
(Dσp⋆

σ) · pσ2m(χσ) = k(Dhp⋆
h, ph)L2(Ω).

where p⋆
σ = uE−uW

h
nW,σ for σ = σWE is the normal component of the gradient

and Dh, ph, p⋆
h are piecewise constant functions with values extended from σ to χσ.

Further, we use the following inequality

(Dhp⋆
h, ph)L2(Ω) ≥ (Dhp⋆

h, p⋆
h)L2(Ω) − |(Dhp⋆

h, ph − p⋆
h)L2(Ω)|.(3.17)

It is clear that (Dhp⋆
h, p⋆

h)L2(Ω) =
∑

σ∈E
λ̄σ

(

uE−uW

h

)2
m(χσ), due to fact that

uE − uW = 0 for σ ∈ Eext thanks to reflexion of uh,k in Ωt̃ (see page 4). Applying
Young’s inequality in the second term on the right hand side of (3.17) leads to

|(Dhp⋆
h, ph − p⋆

h)L2(Ω)| =

∣

∣

∣

∣

∣

∑

σ∈E
β̄σ

uE − uW

h

uN − uS

h
m(χσ)

∣

∣

∣

∣

∣

≤
∑

σ∈Eint

1

2

[

(

uE − uW

h

)2

+

(

β̄σ

λ̄σ

)2(
uN − uS

h

)2
]

λ̄σm(χσ),(3.18)
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since φn
σ(un

h,k) = 0 for σ ∈ Eext. Using inequalities (3.10) we get

|(Dhp⋆
h, ph − p⋆

h)L2(Ω)| ≤
1 + γ

2

∑

σ∈Eint

λ̄σ

(

uE − uW

h

)2

m(χσ) =

=
1 + γ

2
(Dhp⋆

h, p⋆
h)L2(Ω).(3.19)

Using (3.12), it in turn implies

Q(un
h,k) ≥

(

1 − 1 + γ

2

)

k(Dp⋆
h, p⋆

h)L2(Ω) ≥ λ̄min
1 − γ

2

k

2
|un

h,k|21,Th
,(3.20)

where λ̄min = inf
σ∈E

λ̄σ ≥ C > 0. Applying (3.15), (3.16) and (3.20) in (3.14) we get for

h sufficiently small and any un
h,k ∈ P0(Th) that

∑

K∈Th

Lh(un
h,k)un

K ≥ α
(

|un
h,k|21,Th

+ ||un
h,k||2L2(Ω)

)

with α = min (λ̄min(1 − γ)k
4 , 1).

Theorem 3.4. For h sufficiently small, there exists unique solution un
h,k given

by the scheme (2.10)-(2.11) at any discrete time step tn.

Proof. Assume that uK , K ∈ Th satisfy the linear system (3.13) and let the right
hand side of (3.13) be equal to 0. Then

α
(

|un
h,k|21,Th

+ ||un
h,k||2L2(Ω)

)

≤
∑

K∈Th

Lh(un
h,k)un

K =
∑

K∈Th

fh,k(un−1
h,k )un

K = 0.(3.21)

Due to relation (3.21) and strict positivity of α we know that un
K = 0, ∀K ∈ Th.

It means that kernel of the linear transformation represented by the matrix of the
system (3.13) contains only 0̄ vector, which implies that the matrix is regular. And
thus it implies that there exists unique solution for any right hand side.

4. Convergence of the scheme to the weak solution.

Definition 4.1. Weak solution of the problem (1.1)-(1.3) is a function u ∈
L2(0, T ; H1(Ω)) which satisfies the identity

T
∫

0

∫

Ω

u
∂ϕ

∂t
(x, t) dxdt +

∫

Ω

u0 (x)ϕ (x, 0) dx −
T
∫

0

∫

Ω

(D∇u) · ∇ϕdxdt = 0, ∀ϕ ∈ Ψ(4.1)

where Ψ =
{

ϕ ∈ C2,1
(

Ω × [0, T ]
)

, (D∇ϕ) · −→n = 0 on ∂Ω × (0, T ) , ϕ (., T ) = 0
}

.

remark 1. Existence and uniqueness of the weak solution and extremum prin-
ciple for the model (1.1)-(1.3) are given in [24]. The proofs are based on theory built
in [1].

In the proof of convergence we will use strategy based on application of the
Kolmogorov’s compactness criterion in L2 which gives relative compactness of the
approximate solutions given by the scheme refining the space and time discretization
step. Using relative compactness we can choose convergent subsequence which in the
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limit gives the weak solution. In order to use Kolmogorov’s compactness criterion we
shall prove following four lemmata.

Lemma 4.2. (Uniform boundedness) There exists a positive constant C such
that

‖uh,k‖L2(QT ) ≤ C.(4.2)

Lemma 4.3. (Time translate estimate) For any s ∈ (0, T ) there exists a
positive constant C such that

∫

Ω×(0,T−s)

(uh,k (x, t + s) − uh,k (x, t))
2
dxdt ≤ Cs.(4.3)

Lemma 4.4. (Space translate estimate I) There exists a positive constant C

such that
∫

Ωξ×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))2 dxdt ≤ C |ξ| (|ξ| + 2h)(4.4)

for any vector ξ ∈ Rd, where Ωξ = {x ∈ Ω, [x, x + ξ] ∈ Ω}.
Lemma 4.5. (Space translate estimate II) There exists a positive constant

C such that
∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))2 dxdt ≤ C |ξ| ,(4.5)

for any vector ξ ∈ Rd.

To prove (4.2)-(4.5) we will use following a-priori estimates.

Lemma 4.6. The scheme (2.10)-(2.11) leads to the following estimates. For h

sufficiently small, there exists a positive constant C which does not depend on h, k

such that

max
0≤n≤Nmax

∑

K∈Th

(un
K)

2
m(K) ≤ C,(4.6)

Nmax
∑

n=1

k
∑

(K,L)∈Υ

(un
K − un

L)
2

dK,L

m (σ) ≤ C,(4.7)

Nmax
∑

n=1

∑

K∈Th

(

un
K − un−1

K

)2
m (K) ≤ C.(4.8)

Proof. We multiply (2.10) by un
K , sum it over K ∈ Th, over n = 1, ..., m < Nmax,

and use the property (a − b)a = 1
2a2 − 1

2b2 + 1
2 (a − b)2 to obtain

1

2

∑

K∈Th

(um
K)2m(K) +

1

2

m
∑

n=1

∑

K∈Th

(un
K − un−1

K )2m(K)

−
m
∑

n=1

k
∑

K∈Th

un
K

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) =
1

2

∑

K∈Th

(u0
K)2m(K).(4.9)



12

Then using (3.16) and (3.20) we have

1

2

∑

K∈Th

(um
K)2m(K) +

1

2

m
∑

n=1

∑

K∈Th

(un
K − un−1

K )2m(K)

+ᾱ

m
∑

n=1

k|un
h,k|21,Th

≤ 1

2

∑

K∈Th

(u0
K)2m(K)(4.10)

with positive constant ᾱ = λ̄min
1−γ

4 . Since u0 ∈ L2(Ω), the right hand side is bounded
by a positive constant C. Using the first term of (4.10) we get a-priori estimate (4.6)
and from the second term of (4.10) we get a-priori estimate (4.8). From the strict
positiveness of ᾱ in the third term of (4.10) and from definition (3.11) we obtain
a-priori estimate (4.7).

Proof. (of Lemma 4.2) It follows from the first L2(Ω) - a priori estimate (4.6).

Proof. (of Lemma 4.3) First, for fixed s ∈ (0, T ), we define function

f(t) =

∫

Ω

(uh,k (x, t + s) − uh,k (x, t))
2
dx.

Using the fact that uh,k is a piecewise constant function, we get

f(t) =
∑

K∈Th

(

u
nt+s

K − unt

K

)2
m (K) ,(4.11)

with nt = ⌈ t
k
⌉ and nt+s = ⌈ t+s

k
⌉, where ⌈·⌉ means the upper integer part of positive

real number. We rearrange (4.11) to obtain

f(t) =
∑

K∈Th

(

u
nt+s

K − unt

K

)

∑

t≤(n+1)k<t+s

(

un
K − un−1

K

)

m (K) .(4.12)

Using the scheme (2.10)-(2.11) in (4.12) (replacing K by W ) we get

f(t) =
∑

t≤(n+1)k<t+s

k
∑

W∈Th

(

(

u
nt+s

W − unt

W

)

∑

σ∈EW ∩Eint

λ̄σ(un
E−un

W )+β̄σ(un
N−un

S)

)

,(4.13)

and due to conservativity of numerical fluxes (antisymmetry of term λ̄σ(un
E − un

W ) +
β̄σ(un

N − un
S)) we have

f(t) =
∑

t≤(n+1)k<t+s

k

2

∑

σ∈Eint

(

u
nt+s

W − unt

W − u
nt+s

E + unt

E

)

(

λ̄σ(un
E − un

W ) + β̄σ(un
N − un

S)
)

.(4.14)

Using Young‘s inequality leads to the relation

f(t) ≤
∑

t≤(n+1)k<t+s

k

4

∑

σ∈Eint

λ̄σ(u
nt+s

W − unt

W − u
nt+s

E + unt

E )2 +

+
∑

t≤(n+1)k<t+s

k

4

∑

σ∈Eint

λ̄σ

(

(un
E − un

W ) +
β̄σ

λ̄σ

(un
N − un

S)

)2

(4.15)
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where the right hand side can be further estimated and we get

f(t) ≤ f1(t) + f2(t) + f3(t) + f4(t),(4.16)

f1(t) =
∑

t≤(n+1)k<t+s

k

2

∑

σ∈Eint

λ̄σ (unt

E − unt

W )
2
,(4.17)

f2(t) =
∑

t≤(n+1)k<t+s

k

2

∑

σ∈Eint

λ̄σ

(

u
nt+s

E − u
nt+s

W

)2
,(4.18)

f3(t) =
∑

t≤(n+1)k<t+s

k

2

∑

σ∈Eint

λ̄σ(un
E − un

W )2,(4.19)

f4(t) =
∑

t≤(n+1)k<t+s

k

2

∑

σ∈Eint

λ̄σ

(

β̄σ

λ̄σ

)2

(un
N − un

S)2.(4.20)

Next we integrate (4.16) in time interval (0, T − s), and replacing
∑

σ∈Eint

by
∑

(K,L)∈Υ

(the edge σ ∈ EK is an intersection of K and its adjacent finite volume L) we get an
estimate of the first integral term

T−s
∫

0

f1(t)dt =

T−s
∫

0

k

2

∑

(K,L)∈Υ

λ̄σ (unt

L − unt

K )2
∑

n∈N

χ{t≤(n+1)k<t+s}dt .(4.21)

We substitute the integral over (0, T − s) by the sum of time step intervals and use
the property χ{t≤(n+1)k<t+s} = χ{(n+1)k−s<t≤(n+1)k} to obtain

T−s
∫

0

f1(t)dt ≤
Nmax−1
∑

nt=0

k

2

∑

(K,L)∈Υ

λ̄σ (unt

L − unt

K )
2

(nt+1)k
∫

ntk

∑

n∈N0

χ{(n+1)k−s<t≤(n+1)k}dt.(4.22)

Since

(nt+1)k
∫

ntk

∑

n∈N0

χ{(n+1)k−s<t≤(n+1)k}dt = s, and m(σ) = dK,L for our uniform

mesh, the relation (4.22) leads to

T−s
∫

0

f1(t)dt ≤ s

Nmax
∑

nt=0

k

2

∑

(K,L)∈Υ

m(σ)

dK,L

λ̄σ (unt

L − unt

K )2 .(4.23)

Next step is to prove the following relation

0 < C1 ≤ λ̄σ ≤ C2 < ∞, for all σ ∈ E .(4.24)

Let K be any fixed finite volume. Since at any time step the matrix Dσ =

(

λ̄σ β̄σ

β̄σ ν̄σ

)

is uniformly (strictly) positive definite, λ̄σ ≥ C3 > 0 and ν̄σ ≥ C4 > 0 for all σ. The
structure tensor evaluated numerically at point xKL is given by

Jρ

(

∇un−1
h,k t̃

)

(xKL) = Gρ ∗
(

A B

B C

)

,(4.25)
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where

A =

((

∂Gt̃

∂x
∗ ũn−1

h,k

)

(xKL)

)2

, C =

((

∂Gt̃

∂y
∗ ũn−1

h,k

)

(xKL)

)2

,(4.26)

B =

(

∂Gt̃

∂x
∗ ũn−1

h,k

)

(xKL)

(

∂Gt̃

∂y
∗ ũn−1

h,k

)

(xKL).(4.27)

Using Young’s inequality, a-priori estimate (4.6) and definition of extension ũn
h,k (see

(2.4)) we subsequently get for i = 1, 2 (x1 = x, x2 = y)
∣

∣

∣

∣

(

∂

∂xi

Gt̃ ∗ ũn
h,k

)

(xKL)

∣

∣

∣

∣

≤
∫

Rd

∣

∣

∣

∣

∂

∂xi

Gt̃(xKL − ξ)ũn
h,k(ξ)

∣

∣

∣

∣

dξ ≤

≤ 1

2

∫

Rd

∣

∣

∣

∣

∂

∂xi

Gt̃(xKL − ξ)

∣

∣

∣

∣

2

dξ +
1

2

∫

Rd

|ũn
h,k(ξ)|2dξ ≤ Ct̃ +(4.28)

+C5

∫

Ωt̃

|ũn
h,k(ξ)|2dξ ≤ Ct̃ + C5

∑

K∈Th

(un
K)2 m(K) ≤ C6.

Inspecting relations (1.6)-(1.10) we may observe that if the elements of matrix Jρ

are finite then also the elements of matrix Dσ are finite which give (4.24). Applying

(4.24) and (4.7) in (4.23) we get

T−s
∫

0

f1(t)dt ≤ Cs. Using similar approach as in [15]

and relation (3.10) all further integrals can be estimated in the same way which end
the proof.

Proof. (of Lemma 4.4) Let us define ξK,L =
ξ

|ξ| .nK,σ for all (K, L) ∈ Υ and let

for all x ∈ Ωξ

E (x, K, L) =

{

1 if [x, x + ξ] intersects σ = σKL, K and L; and ξK,L > 0
0 otherwise.

For any t ∈ (0, T ) there exists n ∈ N which satisfies (n − 1)k < t ≤ nk. Then for
almost all x ∈ Ωξ we can see that

uh,k (x + ξ, t) − uh,k (x, t) = un
K(x+ξ) − un

K(x) =
∑

(K,L)∈Υ

E (x, K, L) (un
L − un

K) ,

where K(x) denotes the volume K ∈ Th, where x ∈ K. Using these notations we get
the proof in a similar lines as in [15] - proof of Lemma 3.2.

Proof. (of Lemma 4.5) In this proof, for simplicity, let us consider that Ωt̃ = Ω,
i.e., we extend uh,k outside Ω by 0. The results which are obtained bellow can be
straightforwardly adjusted to situation with reflexion to Ωt̃, the derivation is just
technically more complicated, for details we refer to [10]. Let us define the set

Eext = {̟, such that there exists K ∈ Th, ̟ ⊂ ∂K ∩ ∂Ω}

and let u̟ := uK where K ∈ Th, ̟ ⊂ ∂K ∩ ∂Ω. Since now for x ∈ Ω − Ωξ the point
x + ξ can be outside Ω we see that

uh,k (x + ξ, t) − uh,k (x, t) =
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∑

(K,L)∈Υ

E (x, K, L) (un
L − un

K) −
∑

̟∈Eext

χ ([x, x + ξ] ∩ ̟)un
̟.(4.29)

Using the Cauchy-Schwarz and Young inequalities we obtain

(uh,k (x + ξ, t) − uh,k (x, t))2 ≤

≤ 2





∑

(K,L)∈Υ

E (x, p, q) ξK,LdK,L









∑

(K,L)∈Υ

E (x, K, L)
(un

L − un
K)2

ξK,LdK,L



(4.30)

+ 2
∑

̟∈Eext

χ ([x, x + ξ] ∩ ̟) (un
̟)

2
,

∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))
2
dxdt ≤

(2h + |ξ|) |ξ|C + 2

Nmax
∑

n=0

k

∫

Ω

∑

̟∈Eext

χ ([x, x + ξ] ∩ ̟) (un
̟)

2
dxdt,(4.31)

which can be written as
∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))
2
dxdt ≤

(2h + |ξ|) |ξ|C + 2 |ξ|
Nmax
∑

n=0

k
∑

̟∈Eext

(un
̟)

2
m (̟) .(4.32)

For the last term in 4.32 we use the trace inequality given in [4].
Lemma 4.7. Let Ω be an open bounded polygonal connected subset of Rd. Let

γ (uh,k) be defined by γ (uh,k) = u̟ a.e. for the (d − 1)−Lebesgue measure on ̟ ∈
Eext. Then there exists positive C depending only on Ω, such that

∥

∥γ
(

un
h,k

)∥

∥

L2(∂Ω)
≤ C

(

∣

∣un
h,k

∣

∣

1,Th
+
∥

∥un
h,k

∥

∥

L2(Ω)

)

.

Using the trace operator γ (uh,k) = u̟ we can write

∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))
2
dxdt ≤

(2h + |ξ|) |ξ|C + 2 |ξ|
Nmax
∑

n=0

k
∥

∥γ
(

un
h,k

)∥

∥

2

L2(∂Ω)
(4.33)

and applying the trace inequality implies that
∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))
2
dxdt ≤

≤ (2h + |ξ|) |ξ|C + 4C |ξ|
Nmax
∑

n=0

k
(

∣

∣un
h,k

∣

∣

2

1,Th
+
∥

∥un
h,k

∥

∥

2

L2(Ω)

)

.(4.34)
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Then using a-priori estimates (4.6) and (4.7) ends the proof.
Lemmas 4.2, 4.5, 4.3 guarantee that sequence uh,k is relatively compact in L2(QT )

which imply following convergence result.

Lemma 4.8. There exists u ∈ L2(QT ) such that uh,k → u in L2(QT ) as h, k → 0
in the sense of subsequences.

For the sake of simplicity, we denote the subsequence converging to u again by
uh,k, and we are going to prove that its limit u is the weak solution of (1.1)-(1.3) in
the sense of Definition 4.1.

To that goal, let ϕ ∈ Ψ be given and multiply the scheme (2.10) by ϕ (xK , tn).
Then we sum it over all K ∈ Th and for n = 1, ..., Nmax to get

Nmax
∑

n=1

k
∑

K∈Th

(

un
K − un−1

K

)

k
ϕ (xK , tn−1)m (K) =

Nmax
∑

n=1

k
∑

K∈Th

ϕ (xK , tn−1)
∑

σ∈EK∩Eint

φn
σKL

(un
h,k)m(σ).(4.35)

In order to have a structure similar to the weak solution identity (4.1), we rearrange
(4.35) using a discrete integration by parts and gathering the sums over K ∈ Th and
σ ∈ EK ∩ Eint, and we get

Nmax
∑

n=1

k
∑

K∈Th

un
K

ϕ (xK , tn) − ϕ (xK , tn−1)

k
m (K) +

∑

K∈Th

u0
Kϕ (xK , 0)m (K)

−1

2

Nmax
∑

n=1

k
∑

σ∈Eint

φn
σ(un

h,k)m(σ) (ϕ (xL, tn−1) − ϕ (xK , tn−1)) = 0.(4.36)

In the same way as in [15] we can prove that

Nmax
∑

n=1

k
∑

K∈Th

un
K

ϕ (xK , tn) − ϕ (xK , tn−1)

k
m (K) →

T
∫

0

∫

Ω

u
∂ϕ

∂t
(x, t) dxdt ,(4.37)

∑

K∈Th

u0
Kϕ (xK , 0)m (K) →

∫

Ω

u0 (x) ϕ (x, 0) dx(4.38)

as h, k → 0 for all ϕ ∈ Ψ. The main point in proving convergence of the scheme is to
get that

1

2

Nmax
∑

n=1

k
∑

σ∈Eint

φn
σ(un

h,k)m(σ) (ϕ (xL, tn−1) − ϕ (xK , tn−1)) →

→
T
∫

0

∫

Ω

−∇ · (D∇ϕ)udxdt.(4.39)

as h, k → 0 for all ϕ ∈ Ψ. Using then the space translate estimate (4.4) we know (see
e.g. [4] or [14]) that the limit function u is in the space L2((0, T ), H1), so we can use
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Green’s theorem and applying the boundary conditions we have

T
∫

0

∫

Ω

−∇ · (D∇ϕ) udxdt =

T
∫

0

∫

Ω

(D∇ϕ) · ∇udxdt.

Proving (4.39) thus leads to overall convergence of the scheme to the weak solution
in the sense of (4.1). To deal with (4.39) we rewrite it and then split into the sum of
five terms

1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

φn
σ(un

h,k)m(σ) (ϕ (xE , tn−1) − ϕ (xW , tn−1)) +

+

T
∫

0

∫

Ω

∇ · (D∇ϕ(x, t)) u(x, t)dxdt =

5
∑

i=1

Ti,(4.40)

where

T1 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

[

(Dσpσ(u)) · nW,σ(ϕn−1
E − ϕn−1

W ) − (un
E − un

W )(Dσpσ(ϕn−1)) · nW,σ

]

m(σ),

T2 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )m(σ)
[

(Dσpσ(ϕn−1)) · nW,σ − (Dσ∇ϕ(xWE , tn−1)) · nW,σ

]

,

T3 =
1

2

Nmax
∑

n=1

∑

(W,E)∈Υ

(un
E − un

W )



m(σ)k(Dσ∇ϕ(xWE , tn−1)) · nW,σ −
tn
∫

tn−1

∫

σ

(Dσ∇ϕ(s, t)) · nW,σdsdt



 ,

T4 =
1

2

Nmax
∑

n=1

∑

(W,E)∈Υ

(un
E − un

W )

tn
∫

tn−1

∫

σ

((Dσ − D)∇ϕ(s, t)) · nW,σdsdt,

T5 =

T
∫

0

∫

Ω

∇ · (D∇ϕ(x, t)) (u(x, t) − uh,k(x, t))dxdt,

where ϕn−1
W = ϕ(xW , tn−1), ϕn−1

E = ϕ(xE , tn−1) and ϕn−1 = ϕ(x, tn−1). Since

1

2

Nmax
∑

n=1

∑

(W,E)∈Υ

(un
E − un

W )

tn
∫

tn−1

∫

σ

(D∇ϕ(s, t)) · nW,σdsdt

= −
Nmax
∑

n=1

∑

W∈Th

un
W

tn
∫

tn−1

∑

σ∈EW

∫

σ

(D∇ϕ(s, t)) · nW,σdsdt

= −
Nmax
∑

n=1

∑

W∈Th

un
W

tn
∫

tn−1

∫

W

∇ · (D∇ϕ(x, t))dxdt = −
T
∫

0

∫

Ω

∇ · (D∇ϕ(x, t))uh,k(x, t)dxdt

one can see correspondence of terms in T4 and T5.
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First, let us deal with T1 and rewrite it using (2.7)-(2.8) into the form

T1 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

(

[λ̄σ(un
E − un

W ) + β̄σ(un
N − un

S)](ϕn−1
E − ϕn−1

W )

− (un
E − un

W )[λ̄σ(ϕn−1
E − ϕn−1

W ) + β̄σ(ϕn−1
N − ϕn−1

S )]
)

,

which can be easily simplified to

T1 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

[

β̄σ(un
N − un

S)(ϕn−1
E − ϕn−1

W ) − β̄σ(un
E − un

W )(ϕn−1
N − ϕn−1

S )
]

.(4.41)

Applying (3.1) for u and similarly for ϕ we get

T1 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

4
∑

i=1

[

β̄σ

4
(ϕEσ

− ϕWσ
)(uEδi

− uWδi
)

− β̄σ

4
(uEσ

− uWσ
)(ϕEδi

− ϕWδi
)(1 + O(h))

]

,(4.42)

where we omit time indexes due to simplification; for graphical explanation of nota-
tions see Fig. 3.1 and Fig. 4.1. For each term with positive sign in (4.42) one can

t

t

t

t

t

t

t

t

t

xEδ

B

xNσWE

xSσW E

A
δ

σWE

t t t t

t

t t t t

t t

t t

t

t

xEδ

B

xSσEW

xNσEW

A
δ

σEW

t

t

t

t

t

t

t

t

t

Fig. 4.1. Left: the edge σ = σWE and one δ ∈ Pσ. Right: the same edge δ and one corre-
sponding σ = σEW ∈ Pδ. The thickest lines represent one particular couple Tσδ in (4.42), which
vanishes up to O(h) term. A = xWσWE

= xEσEW
= xWδ

, B = xEσWE
= xWσEW

.

find a corresponding term in the group of terms with negative signs (β̄σ corresponds
to some β̄δ). We denote these couples by Tσδ. E.g., for σ = σWE and δ as plotted in
Fig. 4.1 left we can write the couple as follows

TσWEδ =
β̄σW E

4
(ϕn−1

EσWE
− ϕn−1

WσW E
)(un

Eδ
− un

Wδ
) −
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β̄δ

4
(ϕn−1

EσEW
− ϕn−1

WσEW
)(un

Eδ
− un

Wδ
)(1 + O(h)) =

β̄σW E

4
(ϕn−1

EσWE
− ϕn−1

WσW E
)(un

Eδ
− un

Wδ
) − β̄δ

4
(ϕn−1

WσW E
− ϕn−1

EσW E
)(un

Eδ
− un

Wδ
)(1 + O(h))

because β̄σW E
= β̄σEW

, ϕn−1
EσWE

= ϕn−1
WσEW

and ϕn−1
WσW E

= ϕn−1
EσEW

, see Fig. 4.1 right.

Using previous expression for every σ = σWE yields

Tσδ =

[

β̄σ

4
+

(

− β̄σ

4
(1 + O(h))

)]

(ϕn−1
Eσ

− ϕn−1
Wσ

)(un
Eδ

− un
Wδ

)

=
β̄σ

4
O(h)(ϕn−1

Eσ
− ϕn−1

Wσ
)(un

Eδ
− un

Wδ
).(4.43)

Then T1 can be estimated as follows

|T1| ≤ C1h

∣

∣

∣

∣

∣

Nmax
∑

n=1

k
∑

σ∈Eint

∑

δ∈Pσ∩Eint

(ϕn−1
Eσ

− ϕn−1
Wσ

)(un
Eδ

− un
Wδ

)

∣

∣

∣

∣

∣

with positive constant C1 due to fact that β̄σ for each edge of mesh is finite (see page
14). By the Cauchy-Schwarz inequality we have

|T1| ≤ C2h

(

Nmax
∑

n=1

k
∑

σ∈Eint

∑

δ∈Pσ∩Eint

(ϕn−1
Eσ

− ϕn−1
Wσ

)2

)

1
2

(

Nmax
∑

n=1

k
∑

σ∈Eint

∑

δ∈Pσ∩Eint

(un
Eδ

− un
Wδ

)2

)

1
2

.(4.44)

It comes from regularity of ϕ that there exists a positive constant C3 such that
(ϕn−1

Eσ
− ϕn−1

Wσ
)2 ≤ C3h

2. Thanks to geometrical arguments, we know that

∑

σ∈Eint

dWEm(σ) ≤ C4|Ω|(4.45)

which straightforwardly gives for our uniform square mesh
∑

σ∈Eint

h2 ≤ C4|Ω|. The

above mentioned facts lead to
(

Nmax
∑

n=1

k
∑

σ∈Eint

∑

δ∈Pσ∩Eint

(ϕn−1
Eσ

− ϕn−1
Wσ

)2

)

≤ C5T |Ω|,

which together with a priori estimate (4.7) gives that |T1| ≤ C6h, which implies

|T1| → 0 as h, k → 0.(4.46)

Term T2 can be written as T2 =
1

2

Nmax
∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )m(σ)T2WE where

T2WE = λ̄σ

ϕn−1
E − ϕn−1

W

h
+ β̄σ

ϕn−1
N − ϕn−1

S

h
− λ̄σ

(

ϕn−1
WE

)

x
− β̄σ

(

ϕn−1
WE

)

y
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and

(

(ϕn−1
WE )x

(ϕn−1
WE )y

)

= ∇ϕ(xWE , tn−1) in the basis (nW,σ, tW,σ). Since ϕ ∈ C2,1
(

Ω × [0, T ]
)

,

there exist positive constants C7 and C8 such that

∣

∣

∣

∣

ϕn−1
E − ϕn−1

W

h
−
(

ϕn−1
WE

)

x

∣

∣

∣

∣

≤ C7h,

∣

∣

∣

∣

ϕn−1
N − ϕn−1

S

h
−
(

ϕn−1
WE

)

y

∣

∣

∣

∣

≤ C8h.

From there and the property that elements of Dσ are finite (see page 14) we have
|T2WE | ≤ C9h with a positive constant C9, which implies

|T2| ≤ C10h

∣

∣

∣

∣

∣

∣

Nmax
∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )m(σ)

∣

∣

∣

∣

∣

∣

.(4.47)

Then we multiply the right hand side of (4.47) by
√

dWE√
dWE

and apply Cauchy-Schwarz

inequality to obtain

|T2| ≤ C10h





Nmax
∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )2
m(σ)

dWE





1
2




Nmax
∑

n=1

k
∑

(W,E)∈Υ

m(σ)dWE





1
2

.

A-priori estimate (4.7) together with (4.45) gives |T2| ≤ C10(C11C4|Ω|T )
1
2 h and finally

|T2| → 0 as h, k → 0.(4.48)

We consider the third term in the form T3 =
1

2

Nmax
∑

n=1

∑

(W,E)∈Υ

(un
E − un

W )T3WE ,

where

T3WE = m(σ)k(Dσ∇ϕ(xWE , tn−1)) · nW,σ −
tn
∫

tn−1

∫

σ

(Dσ∇ϕ(s, t)) · nW,σdsdt.

Due to smoothness of ϕ, the mean value theorem and finiteness of Dσ we have

|T3| ≤ C12(h + k)

∣

∣

∣

∣

∣

∣

Nmax
∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )m(σ)

∣

∣

∣

∣

∣

∣

and similarly as above using (4.7)

and (4.45) we get

|T3| → 0 as h, k → 0.(4.49)

The basic ingredients of the proof of convergence |T4| → 0 as h, k → 0 are given
by the properties of functions λ, β, ν as Lipschitz functions of the partial derivatives
of solution (smoothed by spatial convolutions) and from the convergence of uh,k to u

in L2(QT ). Term T4 is written in detailed way as follows

T4 =
1

2

Nmax
∑

n=1

∑

(W,E)∈Υ

(un
E − un

W )

tn
∫

tn−1

∫

σ

Tσ dsdt(4.50)
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where

Tσ = (Dσ(uh,k)(xKL, tn−1) − D(u)(s, t))∇ϕ(s, t) · nW,σ, s ∈ σ, t ∈ (tn−1, tn).

Let us note that in the previous definition the construction of Dσ and D, respectively,
is the same (the index σ is used only because the tensor Dσ is evaluated using numer-
ical solution on edge σ, such notation was introduced and used in previous sections),
but the arguments are different. In the first case it is the numerical solution uh,k,
which is used in evaluation of diffusion tensor at point xKL ∈ σ and at time tn−1.
In the second case the argument is given by the limit function u and the tensor is
evaluated at any point s ∈ σ and t ∈ (tn−1, tn). So, we can write

Tσ =
(

λ̄(uh,k)(xKL, tn−1)−λ̄(u)(s, t)
)

ϕ̄x +
(

β̄(uh,k)(xKL, tn−1)−β̄(u)(s, t)
)

ϕ̄y,

(4.51)

where ϕ̄x and ϕ̄y are elements of ∇ϕ(s, t) in the basis (nK,σ, tK,σ). I.e.

(

ϕ̄x

ϕ̄y

)

is equal to

(

ϕx

ϕy

)

on σ3,

(

−ϕx

−ϕy

)

on σ2,

(

ϕy

−ϕx

)

on σ1 and

(

−ϕy

ϕx

)

on σ4,

cf. Fig. 2.1. In order to get bounds of the term Tσ. we use properties of functions λ,
β, ν, because λ̄ and β̄ may be equal to one of them depending on the local basic in
which both matrices Dσ and D are written. From the diffusion tensor construction it
follows that we can write it in the following form

Tσ =
(

λ̄(an−1
h,k , bn−1

h,k , cn−1
h,k ) − λ̄(a, b, c)

)

ϕ̄x +
(

β̄(an−1
h,k , bn−1

h,k , cn−1
h,k ) − β̄(a, b, c)

)

ϕ̄y,

(4.52)
where λ̄ and β̄ is equal to one of the functions λ, β, ν depending on three arguments
as follows

λ(a, b, c) =
κ1v

2
1 + κ2v

2
2

v2
1 + v2

2

=

=







α, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),

α + (1 − α)

(

1
2 + c−a

2
√

4b2+(a−c)2

)

e
− 1

4b2+(a−c)2 , else.

β(a, b, c) =
v1v2(κ1 − κ2)

v2
1 + v2

2

=

=

{

0, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),
(α−1)b√

4b2+(a−c)2
e
− 1

4b2+(a−c)2 , else.

ν(a, b, c) =
κ2v

2
1 + κ1v

2
2

v2
1 + v2

2

=

=







α, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),

α + (1 − α)

(

1
2 − c−a

2
√

4b2+(a−c)2

)

e
− 1

4b2+(a−c)2 , else.

If we denote by F = 4b2 + (a− c)2 the values of λ, β, ν for F = 0 are defined as limit
values as F → 0 and thus the functions are continuous. In (4.52) we have

a =

(

Gρ ∗
(

∂Gt̃

∂x
∗ u

)2
)

(s, t),
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b =

(

Gρ ∗
[(

∂Gt̃

∂x
∗ u

)(

∂Gt̃

∂y
∗ u

)])

(s, t),

c =

(

Gρ ∗
(

∂Gt̃

∂y
∗ u

)2
)

(s, t),

an−1
h,k =

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(xKL, tn−1),

bn−1
h,k =

(

Gρ ∗
[(

∂Gt̃

∂x
∗ uh,k

)(

∂Gt̃

∂y
∗ uh,k

)])

(xKL, tn−1),

cn−1
h,k =

(

Gρ ∗
(

∂Gt̃

∂y
∗ uh,k

)2
)

(xKL, tn−1) .

First of all, from such form of λ, β, ν one can simply see that they are uniformly
bounded. We can write

λ(a, b, c) =
κ1v

2
1 + κ2v

2
2

v2
1 + v2

2

= α + (1 − α)

(

1

2
+

c − a

2
√

F

)

e−
1
F .

Since |a − c| ≤
√

4b2 + (a − c)2 =
√

F and α ∈ (0, 1), we get

|λ| ≤ α + (1 − α)

(

1

2
+

√
F

2
√

F

)

e−
1
F ≤ 1.

Similarly it is for β and ν.
From the structure of λ, β, ν we can see that their partial derivatives, with respect

to a, b, c of any order will contain the term e−
1
F and some rational polynomial which

can be estimated by the powers of F and which together give uniform bounds on
derivatives. In the convergence proof it will be sufficient to have Lipschitz continuity
of λ, β, ν, so we show that their first partial derivatives are uniformly bounded. First
we have

∂λ

∂a
= (1 − α)(a − c)

e−
1
F

F 2
+ (α − 1)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

.

Since |α| < 1, |1 − α| < 1 and |a − c| ≤ F
1
2 we have

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ |a − c|e
− 1

F

F 2
+ ((4b2 + (a − c)2)2 + (a − c)2 + 4b2)

e−
1
F

F
5
2

≤ Fe−
1
F

F
5
2

+
(F 2 + F )e−

1
F

F
5
2

=
F + 2

F
3
2

e−
1
F

= h1(F ) ≤ max
F≥0

h1(F ) = h1(FM ),

where FM = 2(
√

2 − 1), so

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.53)
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Then we have

∂λ

∂b
= (1 − α)

4be−
1
F

F 2
+ (1 − α)2b(a − c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

.

Since 2|b| ≤
√

4b2 + (a − c)2 = F
1
2 we have

∣

∣

∣

∣

∂λ

∂b

∣

∣

∣

∣

≤ 2F
1
2 e−

1
F

F 2
+

F
1
2 F

1
2 (F + 2)e−

1
F

F
5
2

=
(F + 4)e−

1
F

F
3
2

= h2(F ) ≤ max
F≥0

h2(F ) = h2(FM ),

where FM =
√

33 − 5, so
∣

∣

∣

∣

∂λ

∂b

∣

∣

∣

∣

≤ C2 ≤ 2 .(4.54)

Since

∂λ

∂c
= (α − 1)(a − c)

e−
1
F

F 2
+ (1 − α)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

= −∂λ

∂a

we get
∣

∣

∣

∣

∂λ

∂c

∣

∣

∣

∣

=

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.55)

For the function ν we get

∂ν

∂a
= (1 − α)(a − c)

e−
1
F

F 2
+ (1 − α)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

so we get the same estimate as in (4.53) and (4.55) also for
∣

∣

∣

∣

∂ν

∂a

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.56)

Then

∂ν

∂b
= (1 − α)

4be−
1
F

F 2
+ (α − 1)2b(a− c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

,

so we get in the same way as in (4.54) the estimate for
∣

∣

∣

∣

∂ν

∂b

∣

∣

∣

∣

≤ C2 ≤ 2 .(4.57)

Since ∂ν
∂c

= −∂ν
∂a

we have again

∣

∣

∣

∣

∂ν

∂c

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.58)

For the function β we have

∂β

∂a
= (1 − α)b(a − c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

,
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thus

∣

∣

∣

∣

∂β

∂a

∣

∣

∣

∣

≤ F
1
2 F

1
2 (F + 2)e−

1
F

F
5
2

=
(F + 2)e−

1
F

F
3
2

≤ max
F≥0

h1(F ) = h1(FM )

and therefore
∣

∣

∣

∣

∂β

∂a

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.59)

We also have

∂β

∂b
= (α − 1)(8b2 + 4b2(a − c)2 + (a − c)4)

e−
1
F

F
5
2

,

so

∣

∣

∣

∣

∂β

∂b

∣

∣

∣

∣

≤ (2(4b2 + (a − c)2) + (4b2 + (a − c)2)2)
e−

1
F

F
5
2

=
2F + F 2

F
5
2

e−
1
F

=
F + 2

F
3
2

e−
1
F ≤ max

F≥0
h1(F ) = h1(FM )

and from it
∣

∣

∣

∣

∂β

∂b

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.60)

Using ∂β
∂c

= −∂β
∂a

we have the estimate

∣

∣

∣

∣

∂β

∂c

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(4.61)

Just as an illustration we also show boundedness of ∂2λ
∂a2 (all other second partial

derivatives can be treated similarly):

∂2λ

∂a2
= (1 − α)(16b4 − 8b2(a − c)2 − 3(a − c)4 + 2(a − c)2)

e−
1
F

F 4

+ (1 − α)(96b6(a − c) + 6b2(a − c)5 + 3(a − c)5 − 2(a − c)3

+ 48b4(a − c)3 − 48b4(a − c))
e−

1
F

F
9
2

Applying |a − c|2 ≤ F , |a − c| ≤ F
1
2 , 4|b|2 ≤ F and 2|b| ≤ F

1
2 we get

∣

∣

∣

∣

∂2λ

∂a2

∣

∣

∣

∣

≤ ((4b2 + (a − c)2)2 + 3(a − c)4 + 2(a − c)2)
e−

1
F

F 4

+

(

3

2
(4b2)3|a − c| + 6b2|a − c|5 + 3|a − c|5 + 2|a − c|3

+ 48b4|a − c|3 + 48b4|a − c|
) e−

1
F

F
9
2

≤ F 2 + 3F 2 + 2F

F 4
e−

1
F +
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+
3
2F 3F

1
2 + 3

2FF
5
2 + 3F

5
2 + 2F

3
2 + 3F 2F

3
2 + 3F 2F

1
2

F
9
2

e−
1
F

=
4F + 2

F 3
e−

1
F +

3
2F 2 + 3

2F 2 + 3F + 2 + 3F 2 + 3F

F 3
e−

1
F

=
6F 2 + 10F + 4

F 3
e−

1
F ≤ max

F≥0
h3(F ) = h3(FM ) ≤ C ≤ 12,

where FM =
√

13−1
6 .

The term Tσ in (4.52) contains differences of either λ, β or ν evaluated in different
arguments. Using their Lipschitz continuity those differences can be estimated by the
differences of arguments. We will do it only for λ, all other situations are treated
similarly. So we have

|λ(an−1
h,k , bn−1

h,k , cn−1
h,k )−λ(a, b, c)| ≤ Lλ

√

(an−1
h,k −a)2+(bn−1

h,k −b)2+(cn−1
h,k −c)2

≤ Lλ(|an−1
h,k −a|+|bn−1

h,k −b|+|cn−1
h,k −c|),(4.62)

where Lλ is Lipschitz constant of function λ. Since all terms in the absolute values
on the right hand side of (4.62) can be estimated similarly, we do it in details just for
the first one |an−1

h,k − a| (a slight difference is only when treating |bn−1
h,k − b|, we will

mention it later in the text). We can use the following splitting and get

|an−1
h,k − a| ≤

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(xKL, tn−1) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, tn−1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, tn−1) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, t) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ u

)2
)

(s, t)

∣

∣

∣

∣

∣

= A1 + A2 + A3.

Then subsequently

A1 ≤

∣

∣

∣

∣

∣

∣

∣

∫

RN

Gρ(xKL − ξ)





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ−

−
∫

RN

Gρ(s − ξ)





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ

∣

∣

∣

∣

∣

∣

∣

≤

≤
∫

RN

|Gρ(xKL − ξ) − Gρ(s − ξ)|





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ ≤ Ch,

because of the fact that |xKL − s| ≤ h, C∞ smoothness of Gρ and because





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

≤ C

∫

RN

(

∂Gt̃

∂x
(ξ − η)

)2

dη

∫

Ω

u2
h,k(η, tn−1)dη ≤

≤ C||uh,k(tn−1)||L2(Ω) ≤ C
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holds for any ξ ∈ RN , using Cauchy-Schwartz inequality, C∞ smoothness of Gt̃,
extension by 0 of uh,k outside a neighbourhood of Ω, and due to a-priori estimate
(4.6).

For the second part we have

A2 =

∫

RN

Gρ(s − ξ)











∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

−





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, t)dη





2





dξ =

∫

RN

Gρ(s − ξ)B1dξ,

and, for the term B1, using the relation |p2 − q2| = |p + q||p − q|, we get for any
ξ ∈ RN , t ∈ (tn−1, tn) that

|B1| =

∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, tn−1) + uh,k(η, t))dη

∣

∣

∣

∣

∣

∣

.

.

∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, tn−1) − uh,k(η, t))dη

∣

∣

∣

∣

∣

∣

≤

≤ C
(

||uh,k(η, tn−1)||L2(Ω) + ||uh,k(η, tn)||L2(Ω)

)

||uh,k(t − k) − uh,k(t)||L2(Ω) ≤
≤ C||uh,k(t − k) − uh,k(t)||L2(Ω),(4.63)

where Cauchy-Schwartz inequality, a-priori estimate (4.6) and piecewise constant in
time definition of uh,k was used. Then also

|A2| ≤ C||uh,k(t − k) − uh,k(t)||L2(Ω)

because
∫

RN Gρ(s − ξ)dξ = 1 for any s.
For the third term we have

A3 =

∣

∣

∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∫
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Gρ(s − ξ)B2dξ

∣

∣

∣

∣

∣

∣

and again due to a-priori estimate (4.6) and Cauchy-Schwartz inequality we get

|B2| =

∣
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∣

∣

∣

∣

∫
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∂x
(ξ − η)(uh,k(η, t) + u(η, t))dη
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∂Gt̃

∂x
(ξ − η)(uh,k(η, t) − u(η, t))dη

∣

∣

∣

∣

∣

∣

≤ C||uh,k(t) − u(t)||L2(Ω) + C||u(t)||L2(Ω)||uh,k(t) − u(t)||L2(Ω).
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Let us note that for |bn−1
h,k −b| we can use the same approach as above, but in the terms

which would correspond to A2 and A3, we would use |p1q1 − p2q2| ≤ |p1(q1 − q2)| +
|(p1 − p2)q2| in order to get the same estimates as above. For the term |cn−1

h,k − c| we
can use completely same approach as above. Putting together all previous estimates
and because of smoothness of ϕx and ϕy we have that

|T4| ≤ C

Nmax
∑

n=1

∑

(W,E)∈Υ

|un
E − un

W |
tn
∫

tn−1

∫

σ

(h + ||uh,k(t − k) − uh,k(t)||L2(Ω)

+||uh,k(t) − u(t)||L2(Ω) + ||u(t)||L2(Ω)||u(t) − uh,k(t)||L2(Ω))dsdt.

The most important observation now is that, the terms inside the double integral
do not depend on s. So it will be sufficient to use several times Cauchy-Schwarz
inequality and the same trick as in treating the term T2 to get convergence of T4 to
0. First term is simple and is estimated exactly as T2, i.e.

C

Nmax
∑

n=1

∑

(W,E)∈Υ

|un
E − un

W |
tn
∫

tn−1

∫

σ

h dsdt ≤ Ch

Nmax
∑

n=1

k
∑

(W,E)∈Υ

|un
E − un

W |m(σ)
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Nmax
∑

n=1

√
k





∑

(W,E)∈Υ

(un
E − un

W )2

dKL

m(σ)





1
2 √

k





∑

(W,E)∈Υ

m(σ)dKL





1
2

≤ C|Ω| 12 h
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∑

n=1

k
∑

(W,E)∈Υ

(un
E − un

W )2

dKL

m(σ)





1
2 (Nmax

∑

n=1

k

)

1
2

≤ C|Ω| 12 T
1
2 h

due to a-priori estimate (4.7). For the second term we have

C

Nmax
∑

n=1

tn
∫

tn−1

∑

(W,E)∈Υ

|un
E − un

W |m(σ)||uh,k(t − k) − uh,k(t)||L2(Ω)dt

≤ C|Ω| 12
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∑

n=1

tn
∫
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∑

(W,E)∈Υ

(un
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W )2

dKL

m(σ)





1
2

||uh,k(t − k) − uh,k(t)||L2(Ω)dt

≤ C|Ω| 12
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∑
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tn
∫

tn−1

∑
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(un
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dKL

m(σ)dt
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1
2
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k
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(W,E)∈Υ

(un
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dKL
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∑

n=1

tn
∫

tn−1

||uh,k(t − k) − uh,k(t)||2L2(Ω)dt





1
2

≤ C|Ω| 12




T
∫

0

∫

Ω

(uh,k(x, t − k) − uh,k(x, t))2dxdt





1
2

≤ C|Ω| 12 k
1
2 ,

because of (4.7) and the time translate estimate (4.3). The third term is treated
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similarly, and we get

C

Nmax
∑

n=1

∑

(W,E)∈Υ

|un
E − un

W |
tn
∫

tn−1

∫

σ

||uh,k(t) − u(t)||L2(Ω)dsdt

≤ C|Ω| 12




T
∫

0

∫

Ω

(uh,k(x, t) − u(x, t))2dxdt





1
2

≤ C|Ω| 12 ||uh,k − u||L2(QT ).

For the fourth term we get similarly as above, just using once more Cauchy-Schwartz
inequality, that

C

Nmax
∑

n=1

∑

(W,E)∈Υ

|un
E − un

W |
tn
∫

tn−1

∫

σ

||u(t)||L2(Ω)||u(t) − uh,k(t)||L2(Ω)dsdt

≤ C|Ω| 12




T
∫

0

||u(t)||L2(Ω) ||uh,k(t) − u(t)||L2(Ω)dt





1
2

≤ C|Ω| 12




T
∫

0

∫

Ω

u2dxdt





1
4




T
∫

0

∫

Ω

(uh,k(x, t) − u(x, t))2dxdt





1
4

≤ C|Ω| 12 ||uh,k − u||
1
2

L2(QT )

because u ∈ L2(QT ) and thus its norm is bounded by a constant. So finally we have

|T4| ≤ Ch + Ck
1
2 + C||uh,k − u||L2(QT ) + C||uh,k − u||

1
2

L2(QT )

which means that

|T4| → 0 as h, k → 0.(4.64)

The last term is given by T5 =

T
∫

0

∫

Ω

∇· (D∇ϕ(x, t)) (u(x, t)− uh,k(x, t))dxdt. We

use the property that D ∈ C∞(R2×2, R2×2) (see [24], page 115) to state that
∇ · (D∇ϕ(x, t)) ∈ L2(QT ). Then using strong convergence of uh,k to u one can see
that

|T5| → 0 as h, k → 0.(4.65)

Now, we can state following convergence result.

Theorem 4.9. The sequence uh,k converges strongly in L2(QT ) to the unique
weak solution u of (1.1)-(1.3) as h, k → 0.

Proof. The result comes from (4.46), (4.48), (4.49), (4.64) and (4.65) and the fact
that the limit u of uh,k is in space L2(0, T ; H1(Ω)). Due to uniqueness of the weak
solution, which can be found in [24] not only subsequence but also the sequence uh,k

itself converges to u.



29

-0.4

-0.2

0

0.2

0.4
-0.4

-0.2

0

0.2

0.4

0.095

0.1

0.105

0.11

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4
-0.4

-0.2

0

0.2

0.4

0.095

0.1

0.105

-0.4

-0.2

0

0.2

0.4

Fig. 5.1. The cell segmentation and edge detection for the original image and the image filtered
by 4 diffusion steps. Top row: the original image (100 × 100 pixels detail) with the isolines of
the final state of the segmentation function (left), the graph of the final state of the segmentation
function (middle), the edge detection for the original image (right). Bottom row: the filtered image
with the isolines of the final state of the segmentation function (left), the graph of the final state of
the segmentation function (middle), the edge detection for the filtered image (right).

5. Numerical experiments. In this section we present results of several com-
putational examples using real 2D images coming from multiphoton laser scanning
microscopy. They represent the membranes and nuclei of cells in the early stages
of zebrafish embryogenesis. Especially the images of membranes are well suited for
processing by this type of diffusion which is documented by comparing the edge detec-
tion and cell segmentation results before and after filtering in Figures 5.1-5.4. In the
experiments we use the spatial step h = 0.01, time step k = 0.0001, C = 1, α = 0.001,
t̃ = 0.00001, ρ = 0.002. The arising linear systems are solved using Gauss-Seidel itera-
tions. The satisfactory results were obtained after few filtering steps, so the denoising
method is really fast. In the presented experiments we do not observe any stability
problems which is a usual drawback of explicit schemes, cf. [25].

The nonlinear tensor anisotropic diffusion smoothes out the noise and improves
significantly the connectivity of the coherent structures. Although the filtered image
seems to be more blurred compared to the original one, cf. Fig. 5.1 left top and bottom,
the enhancement of the structure connectivity and improvement of the quality of edge
detection, cf. cf. Fig. 5.1 right top and bottom, enable us to get much more precise
results of segmentation algorithms based on image intensity gradient information like
the subjective surface method [20, 16, 2]. In the subjective surface method, the initial
segmentation function in the form of peak centered in approximate centroid of the
segmented object is created. Then the initial function is evolved by nonlinear PDE,
it forms a shock profile during the evolution and the segmented object is detected
as an isoline of the final (numerically steady) state of the segmentation function,
for details we refer to [20, 16]. Since many spurious noisy structures can be seen
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Fig. 5.2. The results of subjective surface cell segmentation when using unfiltered and filtered
images, respectively.

Fig. 5.3. The image of the cell membranes (200× 200 pixels, left), its edge detection (middle),
and the edge detection for the image filtered by 2 diffusion steps where the strong improvement of
structure coherence can be seen (right).

in the original image, which is expressed in highly noisy edge detection result, the
segmentation algorithm can hardly find the correct cell boundary using the noisy
data. It is difficult to chose proper isoline when several shocks are formed in the
irregular steady state which is created due to a noise in the image, cf. Fig. 5.1 left and
middle top. On the other hand, using few steps of the nonlinear tensor anisotropic
diffusion, all level lines are accumulated along the cell boundary (just one shock is
created in the final state of segmentation function), cf. Fig. 5.1 left and middle bottom,
and the cell can be segmented precisely. Now, it is easy to choose isoline for the cell
boundary representation, we take the average of minimal and maximal values of the
final segmentation function, and, in Fig. 5.2 we show the segmentation results for
several cells visualizing it both for unfiltered and filtered images. We use the same
parameters of the subjective surface segmentation method in both cases and one can
see much more precise segmentation results after filtering.

In figures 5.3-5.4 we show two other real images, originals (on the left) and edge
detection results for originals (middle) and after few steps of filtering (on the right).
Again, one can clearly see coherence enhancement and edge detection improvement.

In the last experiment we test experimental order of convergence (EOC) of our
method. In the theoretical part we prove its convergence, the rigorous error estimates
will be an objective of a further study, cf. [7]. Here, we consider function u(x, y, t) =
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Fig. 5.4. The image of the cell membranes and nuclei (240×240 pixels, left), its edge detection
(middle), and the edge detection for the image filtered by 5 diffusion steps.

Table 5.1

Error in L2(I, L2(Ω))-norm and EOC comparing numerical and exact solution.

n h k error EOC
10 0.2 0.04 1.809572 · 10−4

20 0.1 0.01 0.3835138 · 10−4 2.2383
40 0.05 0.0025 0.09159927 · 10−4 2.06587
80 0.025 0.000625 0.02238713 · 10−4 2.03267
160 0.0125 0.00015625 0.00495121 · 10−4 2.17682

t cos(πx) cos(πy) which fulfills the boundary conditions in the domain Ω = [−1, 1]2

and in time interval I = [0, 1]. Putting this function into the model equation (1.1),
without convolutions, because we do not need to smooth neither the function nor
the structure tensor, we get the nonzero right hand side and we modify the scheme
accordingly. We take C = 1 and α = 0.001 so the diffusion matrix D has eigenvalues
between α and 1 and the process is strongly anisotropic. Then we take subsequently
refined grids with M = n2 finite volumes, n = 10, 20, 40, 80, 160, the time step k = h2

and we measure errors in L2(I, L2(Ω))-norm, which is natural for testing the schemes
for solving parabolic problems. In Table 5.1 we report the errors for different grid
sizes and we observe that EOC of our numerical scheme is equal to 2.
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[10] Krivá, Z.: Explicit finite volume scheme for the Perona-Malik equation, Computational Meth-
ods in Applied Mathematics, Vol. 5, No. 2, 170–200, 2005.
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