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SEMI-IMPLICIT FINITE VOLUME SCHEMES FOR
SOLVING TENSOR DIFFUSION IN IMAGE PROCESSING

Olga Drblikova "

This report deals with diamond cell finite volume scheme for tensor diffusion in image processing. First, we provide some
basic information about this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit
finite volume scheme for this non-linear model. Further, the proof of existence and uniqueness of a solution at each discrete
time step is given. The main idea of this proof is a bounding of a gradient in tangential direction by a gradient in normal
direction. Finally, we discuss computational results illustrated in figures.
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1 INTRODUCTION

Effort to gain processed image more quickly and not
in a way computationally expensive leads to inventions
of new diffusion models and also to their improvements.
One of them was introduced by Weickert (see, e.g. [7]) in
the following form

%_V(DVU/)ZO7 anTEIXQ, (1)
u(z,0) = uo(z), in Q, (2)
(DVu,n) =0, on I x 09, 3)

where D is a matrix depending on the eigenvalues and
on the eigenvectors of the so-called (regularized) structure
tensor J = Vu(Vu)? (for details see next section). This
modification is useful in any situation, where is desirable
strong smoothing in one direction and low smoothing
in the perpendicular direction. Owing to this property,
tensor anisotropic diffusion has applied mainly for images
with interrupted coherence of structures.

We derive our numerical scheme for this diffusion
model by finite volume method. We choose this modern
discretization technique since it is well suited for a numer-
ical solution of conservation laws. It has been successfully
applied in image processing, e.g. for solving the Perona-
Malik equation [6] or curvature driven level set equation

[5]-
2 DERIVATION OF THE DIFFUSION TENSOR

2.1 Analysing coherent structures

In order to enhance a coherence of structures, we need
a reliable tool for analysing coherent structures.

A very simple structure descriptor is given e.g. by the
properties of Vuz, where

ug(z,t) = (Ggx u(, 1)) (2) (t>0). (4)

We can use e.g. absolute value of Vu; for detecting edges
in some images (see [1]) but for images with line struc-
tures this descriptor is unuseful. One way of gaining the
structure descriptor invariant under sign changes is to re-
place Vu; by its tensor product. Then we again average
it by applying other convolution with Gaussian G,

J(Vup) = Gy % (Vu;Vu])  (p20).  (5)

In computer vision community the matrix

a b
J, =
is well-known as structure tensor. This matrix J, is sym-
metric and positive semidefinite and its eigenvalues are

/_Lm:%((a+c:t\/m)) s > p2. (6)

The eigenvalues describe the average contrast in the
eigendirections v and w.

The corresponding orthonormal set of eigenvectors
(v,w) to eigenvalues (u1,pu2) is given by

v = (v1,v2), w = (w1, ws),
v =2b, we=c—a++/(a—c)?+4b2, (7
wlv, w =-ve, wy=uv1.

The orientation of the eigenvector w, which corresponds
to the smaller eigenvalue ps, is called coherence orienta-
tion. This orientation has the lowest fluctuations.

2.2 Coherence-enhancing anisotropic diffusion

Since we have a tool for analysing coherence, we draw
our goals to enhance image coherence. One of possibilities
of doing it, can be done by embedding the structure tensor
analysis into a non-linear diffusion filter.
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Fig. 1. A detail of a mesh — a finite volume K, its boundaries o; ,
1 =1,2,3,4 and covolume Xx,5 corresponding to 3.

For enhancing coherence, the diffusion tensor D must
steer a filtering process such that diffusion is strong
mainly along the coherence direction w and it increases
with the coherence (u; — p2)?. To obtain it, we require
that D must possess the same eigenvectors v and w as
the structure tensor J,(Vu;) and we choose the eigenval-
ues of D as

k1 = Q, 046(0,1),OL<<1,

a, if p = po,
F2=9 4 +(1—a)exp (ﬁ), C > 0 otherwise.

The diffusion tensor D has a form

D:ABA1=<2 f) 8)

where A= (vl _U2> and B = <'€1 0 >
(%) U1 0 Ko

Due to the convolutions in (4) and (5), the elements
of matrix D are C! functions.

3 FINITE VOLUME SCHEME
FOR TENSOR ANISOTROPIC
DIFFUSION IN IMAGE PROCESSING

The aim of this section is to prove existence of unique
discrete solution for the model (1)—(3) which satisfies to
semi-implicit finite volume scheme obtained with the help
of co-volume mesh. Let us consider a rectangular image
domain Q = (0,n1) % (0,n2) and let an image u(z) be
represented by a bounded mapping u: Q@ — R. Our image
is represented by n; X ne pixels (finite volumes) such
that it looks as mesh with n; rows and ns columns.
We consider it in a scaling(time) interval I = [0,T].
Let 0 =t <t <+ < tn,., = T denote the time
discretization with ¢, = t,_1 + k, where k is the time
(scale) step. For n =0,..., Npax we will look for u™ an
approximation of solution at time ¢, .

We integrate equation (1) over finite volume K, pro-
vide a semi-implicit in time discretization and use a di-
vergence theorem to get

n n—1
Ug —Ug
k m(K) — Z

o€k 4

D" 'Vu"-nk ,ds =0, (9)

where u7, K € T, represents the mean value of u™ on
K, m(K) is the measure of the finite volume K with

boundary 0K, oxr = KNL = K|L is an edge of the
finite volume K, where L € 7T, is an adjacent finite
volume to K such that m(K N L) # 0. Let us note that
due to simpler notation, we will write in the sequel o
instead of ok . £k is a subset of £ such that 0K =
Useer @5 € = Uker, €k, where Tj, is admissible finite
volume mesh (see [4]). T is the set of pairs of adjacent
finite volumes, defined by ¥ = {(K,L) € T2, K #
L, m(K|L) # 0}. We will denote D?~' as mean value of
D" ' =D(u" ") ono,thatis Dy ' = o [ D"z,
where m(c) is the measure of edge o, and ng, is the
normal unit vector to o outward to K. Let us define the
discrete solution by

Nmax

upk(z,t) =Z Zu?(x{m € K}ix{tr—1<t<t,}, (10)

n=0 KeT

where the function x(A) is defined as

1, if A is
X{4} = 0

The extension of the function (10) outside  is given by
its periodic mirror reflection to 7, where £ is the width
of the smoothing kernel and

true,

elsewhere.

O =QUBi(z), z€00. (11)
Bi(z) is a ball centered at  with radius . We extend
this periodic mirror reflection by 0 outside €}; and denote
it by @p,- In order to get an approximation of equation
(9) we write it in the form

u —ut 1
k m(K)

Y dr(up p)m(o) =0,

o€k

(12)

where ¢} (up, ;) denotes an approximation of the ex-
act flux ﬁfa Dr=lyyn -

Yker, ik x{z € K}

One possibility of constructing ¢ (uj ;) is obtained
with the help of co-volume mesh. The specific name
(diamond-cell) of this method (see [2]) is due to the
choice of co-volume as a diamond-shaped polygon. The
co-volume Y, associated to o is constructed around each
edge by joining all four co-volume vertices (i.e. endpoints
of this edge and midpoints of finite volumes which are
common to this edge) (see Fig. 1). We denote the end-
points of an edge & C dx, by Ni(6) and N»(G) and
n, s is the normal unit vector to & outward to x,. In
order to have an approximation of the diffusion flux, we
first derive, using divergence theorem, an approximation
of the averaged gradient on o

ng,ds and up,.(z) =

1 1
— [ Vu'dz = —/ u"n,, sds
m(XU) Xo m(XO’) OXo
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and then we denote it by

1
m(Xo)

1 _
Z 5 (u%l(a,) + u%2(6))m(0')nxa,5- .
TEIXo

b, =

The value at the centres zg and zw are ug and uw
while the values at the vertices zny and zg are com-
puted as the arithmetic mean of values on finite volumes
which are common to this vertex (for general non-uniform
meshes see [2]).

Since our mesh is uniform squared, for simplification,
we can use the following relations: m(x,) = "2—2, m(d) =

‘/75 h and after a short calculation we are ready to write

u'h — ul uy — ul

P = =g, + Stk (13)
h h

where tg, is a unit vector parallel to o such that
(zn — x5) - tx,s > 0. Although such u}, u}y,, u% and
u% correspond to particular edge o, we should denote
them by uy, , ujy_, uf and ug_, but we use those sim-
pler notations. Replacing the exact gradient Vu™ by the
numerical gradient p} we get the numerical flux in the
form

3 n 1 n— '3 70
¢a(uh,k) = m(o) /,D 1pa-nK,(,ds=D,,pa-nK’¢,, (14)
where D, = o [ D" ds = (%Z 5;) in the basis

(nk s, tr,s). It means, if D = (2 5) then D,, =
X Bo\ . < - _
Dos = (,8 6 ),1.e. Ao = Aoy Bo = Bo, Vo = V. On
o o
the other hand, D,, = D,, = (_;" _§”> e Ay =
(o8 o

Vg, Ba = _Bua Ve = )\a; where )\a = ﬁfd)\n_lds
and B, and v, correspondingly. Definition (14) can be

also written in this form

since (13) in the basis (nk,,tx,,) can be for each edge

written as
up—uly
n o_ D
by = Uy —Ug
D

and ng,, in the basis (nk,,,tx,) is equal to (1 0)"
for all edges.

In order to prove of existence and uniqueness of u},
K € T, we estimate the expressions uf;, — u% by means
of u't —ufy, for all edges o in the following form

5 (B Y (ot ), <03 (HES I,
7 P

o€EEint [4S]

(16)

11

where

(Bs)?
Ao Vo

for h sufficiently small (for details see [3]).

Let us now introduce the space of piecewise constant
functions associated to our mesh and discrete H' norm
for this space. This discrete norm will be used to obtain
some estimates on the approximate solution given by a
finite volume scheme.

0<7y<1, y=maxy, 7% = (1+0(h)) (18)

Definition 1. Let  be an open bounded polygonal
subset of R%. We define Py(7,) as the set of functions
from Q to R which are constant over each finite volume
of the mesh.

Definition 2. Let Q be an open bounded polygonal
subset of R?. For u € Py(T) we define

2 1
n ur —u 2
wiahn = (2 U ) )
(K,L)EY K,L

where dg 1 is the Euclidean distance between zx and
Xy .

Note that (19) can be rewritten for our uniform mesh
into the following form

1

n _ ug — uw 2 2

wi gl = (23 (FF55) mix)) " (20)
o€&

We can define discrete operator for (1)—(3) by

Lo(up ) = ufem(K) =k Y ¢p(uh p)m(o),  (21)
€K
such that uj , is the solution in Po(7s) of

Ln(up ) = far(upzt) (22)

where fh,k(u;‘;cl) = u% 'm(K) and v% ! is a value of
the piecewise constant function uﬁjcl in K. This equality
is a linear system of N equations with N unknowns,
namely u%, K € Ty, where N = card(X). Multiplying
Lp(up,k) by ul, summing over K and splitting into a
part A and B leads to

> Lu(upp)uk = A+ B, (23)
KeTn
with
A=Y (ug)’m(K) = |luh ill72(e) - (24)
KeTh
B=k Y uk > —¢p(up)m(o). (25)
KeTh oEEK
Then we bound 3_ o7 Ln(uj, ;)ufk as follows
Z Lp(up )ug > a(|ug,k|i7’h + ||ug,k||i2(9)) (26)

KeTs

with & = min (Amin(1 —7)%,1), where Amin = 1r€1fg As >

C > 0 (for details of derivation of this inequality see [3]).
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Fig. 2. Cell membranes. The image size is 100 X 100 pixels. a

) an original image, b) an image after 1000 steps with time step k£ = 0.0001,

c¢) an edge detection for an original image, d) an edge detection for an image after 1000 steps.

Theorem 3. For h sufficiently small, there exists a
unique solution up given by scheme (12) with (15).

Proof . Assume that up, satisfies the linear system
(22) and let f = 0. Using (26) and (22) we get

o < D Lalup)uk

KeT,

= > fuk=0.

KeTy,

+ |luf il 72(0)

(27)

Due to relation (27), we know that uw% = 0, VK €
Trn. It means that kernel of the linear transformation
represented by the matrix of the system (22) contains
only 0 vector, which implies that the matrix is regular.
And thus it implies that there exists a unique solution for
any right hand side.

4 NUMERICAL EXPERIMENTS

In this section we present some results of image filter-
ing. We illustrate behaviour of the tensor diffusion, using
our scheme (12) with the numerical flux given by (15), in
two examples.

We have chosen the parameters of our scheme in the
following way C' =1 and a = 0.001. In our implemen-
tation k£ = 0.0001 and h = 1/nl, where nl x n2 is the
number of pixels. The arising sparse linear systems are
solved by Gauss-Seidel iterative method. For numerical
implementation we use programming language C.

The images used for our numerical experiments were
obtained by multiphoton laser scanning microscopy. They
are chosen from series of images which show a processes
of animal embryogenesis. The experiments documented
in Figs. 2 and 3 were performed on the greyscale images
of size 100 x 100 pixels (Fig. 2) and 240 x 240 pixels
(Fig. 3).

As a demonstration we present Figs. 2, 3. In Fig. 2,
cell membranes of the head of a 24 hours embryo are
depicted while Fig. 3 illustrates cells with nuclei of the
head of a 3 hours embryo. Both Figs. 2 and 3 consist of
four sub-figures. For each of these figures, at the top (left)
we show cells visualized using the original noisy data, at
the top (right) the result of smoothing after 1000 (Fig. 2)
and 300 discrete time steps (Fig. 3), at the bottom (left)
an edge detection corresponds to the original image and
at the bottom (right) an edge detection corresponds to
the filtered image.
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c)

13

d)

Fig. 3. Cells with nuclei. The image size is 240 x 240 pixels. a) an original image, b) an image after 300 steps with time step k& = 0.0001,
c) an edge detection for an original image, d) an edge detection for an image after 300 steps.

In these figures an effect of smoothing and emphasizing
line structures can be observed. One can compare edge
detections of the original (Figs. 2, 3 ¢) and filtered images
(Figs. 2, 3d). Even if filtered images (Figs. 2, 3b) are
more blurred compared with original images (Figs. 2, 3 a),
we can see that line structures (boundaries of membranes
and nuclei) (Figs. 2, 3d) are clearly detected compared
with the original images (Figs. 2, 3¢).

It shows that application of our numerical scheme gives
suitably preprocessed images, e.g. for subsequent segmen-
tation.
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