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Abstract. We suggest an efficient method for automatic detection of
the intercellular skeleton in microscope images of early embryogenesis.
The method is based on the solution of two advective PDEs. First, we
solve numerically the time relaxed eikonal equation in order to obtain the
signed distance function to a given set – a set of points representing cell
centers or a set of closed curves representing segmented inner borders of
cells. The second step is a segmentation process driven by the advective
version of subjective surface equation where the velocity field is given
by the gradient of the computed distance function. The first equation
is discretized by Rouy-Tourin scheme and we suggest a fixing strategy
that significantly improves the speed of the computation. The second
equation is solved using a classical upwind strategy. We present several
test examples and we show a practical application - the intercellular
skeleton extracted from a 2D image of a zebrafish embryo.

1 Introduction

The measure of the cell contact surface (intercellular skeleton) is an important
quantitative characteristic of a living organism, especially during its embryonic
development [6]. Together with other characteristics, e.g. the volume of the em-
bryo, the global and local density of cells, the density of cell divisions etc., it
provides an insight into the process of the evolution of the organism and allows
to detect abnormalities or to compare individuals evolving in different condi-
tions. The intercellular skeleton can be extracted from the miscroscope images
of the evolving embryo. Fig. 1 shows an example of suitable image data. These
images display significant cell structures (cell nuclei and cell membranes) of a
zebrafish embryo at an early stage of its development and they were obtained
by a two-photon confocal microscope.



The main goal of our paper is to introduce an efficient and easily imple-
mentable method for detecting the intercellular skeleton. Our technique is based
on numerical solution of a pair of advective partial differential equations. The
first step is the solution of the time relaxed eikonal equation with a special
Dirichlet type condition. The solution of such an equation is the distance func-
tion to a given set. This can be a set of points representing cell centers or a set
of closed curves representing inner borders of cells obtained by segmentation.
In case we deal with the curves, we construct the signed distance function with
negative values in the interior part. We discretize the problem using the explicit
Rouy-Tourin scheme and we suggest to extend the original scheme by a fixing
technique. The idea of fixing is based on the fact that the Rouy-Tourin scheme
applied to the time relaxed eikonal equation produces in every point monotoni-
cally increasing values approaching the value of the distance function. At some
moment, the value will reach some steady state and the point can be excluded
from the calculations. This strategy provides a significant improvement of the
efficiency of the method and it brings a natural stopping criterion for the com-
putation. We compare the performance of our algorithm with the computation
of the exact distance function and we provide some examples of situations when
the numerical solution can be obtained faster. The second step of our procedure
is the segmentation using the advective version of the subjective surface equa-
tion. For each cell, we construct an initial segmentation function. Afterwards,
all level sets of this function are evolving according to the velocity field given
by the gradient of the computed signed distance function. By taking one of the
level sets of the final form of the evolving function, we obtain the part of the
required intercellular skeleton corresponding to one particular cell. The complete
skeleton is constructed as the union of the results corresponding to individual
cells. Using the distance function corresponding to cell centers, we get a Voronoi
type cell skeleton that is already a good approximation of the real one as the cell
formations are naturally similar to Voronoi tiling. A very realistic skeleton lo-
calization can be obtained if we consider the distance function to the segmented
inner boundaries of the cells, assuming that we have a good quality cell segmen-
tation. For pratical purposes, it is even sufficient to perform only a few time
steps of the Rouy-Tourin scheme and use a rough estimate of the distance func-
tion in order to obtain a correctly oriented velocity field for the segmentation.
This makes the method very efficient without loss of the quality of the resulting
skeleton. The advective subjective surface equation is discretized by an explicit
upwind approach.

The paper is organized as follows. In Sec. 2, we describe the mathematical
models for the two substeps of the procedure. Sec. 3 presents the numerical
schemes and it explains the idea of the fixing algorithm intended to reduce the
CPU time needed to compute the numerical solution of the eikonal euqation. In
Sec. 4, we provide a series of numerical experiments as well as an example of a
skeleton extracted from a 2D microscope image of a zebrafish embryo.

Let us note that we present a method for solving two-dimensional problems,
but the extension to three dimensions is rather straightforward.



Fig. 1. 2D slices of 3D image of a zebrafish embryo. Left, the cell nuclei. Right, the
cell membranes.

2 Mathematical models

The first equation involved in our skeleton extraction strategy is the eikonal
equation with time relaxation

dt + |∇d| = 1 (1)

solved in the domain Ω× [0, TD] where Ω is the image domain and coupled with
a Dirichlet type condition

d(x, t) = 0, x ∈ Ω0 ⊂ Ω. (2)

By the problem formulated in this way the solution d approaches, as time is
evolving, the distance function to the set Ω0. In our case, as we have already
mentioned, Ω0 can be a set of points corresponding to approximate cell centers
or a set of closed curves representing the segmented inner boundaries of the
cells. The signed distance function can be constructed straightforwardly. The
result of the cell shape segmentation is a level set function. Choosing one of the
level sets to represent the inner boundary of the cell, we are able to recognize
the inner and outer parts of the cell [1, 2] and assign the corresponding sign to
the distance function. The distance function corresponding to a set of points is
always positive.

In the second step, we use the computed signed distance function in the
advective part of the subjective surface model [4, 2] and we solve the equation

ut + ∇g · ∇u = 0 (3)

where (x, t) ∈ Ω × [0, TS] and g(x) = dp(x, TD) according to [8] or g(x) =
−1/(1 + Kdp(x, TD)) with K > 0, p > 0 as in [4, 2]. The unknown function u is
initialized by a piecewise constant profile localized around the approximate cell
center. Then it is evolved by (3). The intercellular borders are represented by a



chosen level set of the function u(x, TS). Due to the properties of the function
d (see Fig. 3 and 6), the border lines of the neighboring cells correspond to the
ridges of the distance function and are attached to each other and thus form the
intercellular skeleton.

3 Numerical schemes

3.1 Time relaxation method with fixing for computing the distance

function

In order to solve the equation (1) with the condition (2) numerically, we use
an explicit time discretization with time step τD. Afterwards, the equation is
discretized in space by the Rouy-Tourin scheme [3], cf. also [5, 7]. As it is natural
for image processing applications, the space grid elements correspond to the
pixels of the image. Let us consider a rectangular space domain with dimensions
Lx × Ly. The space grid is then uniform and consist of square elements Vij ,
i = 1 . . . nx, j = 1 . . . ny, nx = Lx/hD, ny = Ly/hD where hD is the length
of the side of the pixel. For each volume Vij , let dij represent the approximate
value of the solution d in the center of Vij in time step n. Let us define Mpq

ij ,
p, q ∈ {−1, 0, 1}, |p| + |q| = 1 as

Mpq
ij =

(

min
(

dn
i+p,j+q − dn

ij , 0
))2

The Rouy-Tourin scheme for problem (1) then reads as follows

dn+1
ij = dn

ij + τD −
τD

hD

√

max
(

M−1,0
ij , M1,0

ij

)

+ max
(

M0,−1
ij , M0,1

ij

)

(4)

This scheme is stable for τD ≤ hD/2 and we take advantage of the fact, that
it produces monotonically increasing updates that are gradually approaching a
steady state. This property allows us to implement (4) in a computationally
efficient way. Let us consider the index set Fn that contains the indices (i, j) of
the volumes where the steady state has been already reached, i.e. there exists
such n0 ∈ N , n0 ≤ n, that dn0

ij = dn0−1
ij . The set F0 is given as follows. At the

beginning, we compute exact distances to the set Ω0 (which is a set of points
corresponding to cell centers or a set of curves representing the inner boundaries
of cells) in a local (one pixel) neighborhood. Then F0 consists of the indices of
all volumes with these exact values including the set Ω0. Then the method is
given by Algorithm 1.

3.2 Advective subjective surface method for detecting the

intercellular skeleton

Now we discretize equation (3). Again, we consider explicit time discretization
with time step τS and the space grid elements are indentified with the pixels
of the image. The space discretization is based on the upwind principle. If the



Algorithm 1 Fixing method for distance function

• if (i, j) ∈ Fn then continue
• else

• dn+1

ij = dn
ij + τD − τD

hD

√

max
(

M
−1,0

ij , M
1,0

ij

)

+ max
(

M
0,−1

ij , M
0,1

ij

)

• if dn+1

ij = dn
ij then Fn+1 = Fn ∪ {(i, j)}

lentgh of the side of the pixel is denoted by hS and we define the central differ-
ences Dx

ijg = (gi+1,j − gi−1,j)/(2hS), Dy
ijg = (gi,j+1 − gi,j−1)/(2hS), we get the

following approximation of (3)

un+1
ij = un

ij −
τS

hS

(

max
(

Dx
ijg, 0

)

(uij − ui−1,j) + min
(

Dx
ijg, 0

)

(ui+1,j − uij)

+ max
(

Dy
ijg, 0

)

(uij − ui,j−1) + min
(

Dy
ijg, 0

)

(ui,j+1 − uij)
)

(5)

As the initial condition we take a shock-like profile localized around the cell
center. Due to the properties of the signed distance function computed by the
method described in Sec. 3.1, we can see that the advective velocity ∇g drives
all level lines of the initial segmentation function to the ridges of the distance
function, cf. Fig. 6. These ridges represent the intercellular skeleton.

4 Numerical experiments

4.1 Computation of the signed distance function

Now let us present some computational results obtained by Algorithm 1. We
inspected the experimental order of convergence of the suggested method, the
CPU time needed for the computation and the effect of the fixing strategy. The
results were also compared with the distance function computed analytically.

First, let us make a note about the stopping criteria for the methods. If
the fixing technique is not applied, the computation is stopped either when
||dn+1 − dn||L1(Ω) ≤ ε1 << 1 or when a prescribed number of time steps is
performed. If we use the fixing strategy, we stop when (i, j) ∈ Fn for all i =
1 . . . nx, j = 1 . . . ny, i.e. when all values are already fixed. In practice, the
condition dn+1

ij = dn
ij is replaced by |dn+1

ij − dn
ij | ≤ ε2 << 1. If we want to

compare the two methods, we first run the computation with fixing until all
points are fixed and then the method with no fixing is prescribed to stop at
exactly the same time.

Now let us assume that the error of the numerical method in L2(Ω)-norm
is of the form E(h) = Chα, where h is the space discretization step. Obtaining
experimentally E(h) and E(h/2) (see e.g. Table 1, column 4), we can express
α = log2 (E(h)/(E(h/2)), which is called the experimental order or convergence
(EOC).

In the first experiment, we computed the distance function to seven given
points situated in a square domain Ω = [−1, 1] × [−1, 1] and we measured the



L2(Ω) error with respect to the exact distance function and the EOC. The results
and some details of the computations are displayed in Table 1, 2 and 3.

Table 1 shows the comparison of the method with fixing with the original
scheme without any fixing. The value in the seven points was set to 0, and
the values in a one pixel neighborhood of the points were set to the values
of the exact solution. In the stopping criterion for the fixing method, we set
ε2 = 10−5. Fig. 2 displays the distance function computed by the fizing method
using nx = ny = 320. Comparing the results in the table, we can see the effect
of the fixing strategy on the CPU time as well as on the L2 error and EOC. We
can observe that in this case the computation is approximately two times faster
and also we get smaller error when we fix the solution by our algorithm. The
fact that the L2 error apparently depends on the value of ε2 led us to perform
the experiment presented in Table 2. We were looking for the optimal choice of
ε2, i.e. the value that would provide the smallest L2 error. We can see that this
value is different for different discretization parameters. Finally, in Table 3, we
present the EOC for a slightly different implementation of the fixing method.
In this case, the solution was initialized with the exact values not only in a one
pixel neighborhood, but in a neighborhood whose size was independent of the
space step. Again, we were looking for the optimal value of ε2. We can observe
that the EOC is approximately equal to 1.

nx τD time steps L2(Ω)-error CPU EOC L2(Ω)-error CPU EOC

fixing fixing fixing

40 0.025 52 3.447525e-2 0.01 3.440187e-2 0.0
80 0.0125 90 2.373985e-2 0.05 0.53825 2.359906e-2 0.03 0.54376

160 0.00625 163 1.533921e-2 0.4 0.63009 1.508116e-2 0.21 0.64598
320 0.003125 305 9.498908e-3 3.1 0.69139 9.016883e-3 1.73 0.74205
640 0.0015625 583 5.704456e-3 23.18 0.73567 4.844598e-3 13.08 0.89625

Table 1. Comparison of results of computational tests for the method without fixing
and the method with fixing. Computation of the distance function to seven given points.

nx τD time steps L2(Ω) - error ε2 CPU EOC

40 0.025 37 1.976552e-2 3.4e-3 0.0
80 0.0125 73 1.373675e-2 1.3e-3 1.02 0.52494

160 0.00625 145 9.133363e-3 4.0e-4 0.19 0.58882
320 0.003125 287 5.857149e-3 1.3e-4 1.62 0.64095
640 0.0015625 569 3.645805e-3 4.0e-5 12.77 0.68396

1280 0.00078125 1132 2.164545e-3 1.1e-5 100.09 0.75217
Table 2. Results of computational tests for the fixing method. Computation of the
distance function to seven given points with determination of optimal ε2.

The next experiment is similar. Instead of seven points, we computed the
distance function to four polygons. Table 4 and Fig. 3 show the results.

Summarizing the results presented in Table 1, 2 and 3, we can determine the
experimental complexity of our algorithm. By careful checking of the CPU times



nx τD time steps L2(Ω) - error ε2 CPU EOC

40 0.025 35 2.648673e-2 6.2e-3 0.0
80 0.0125 71 1.352430e-2 1.5e-3 0.02 0.96972

160 0.00625 140 6.928000e-3 3.5e-4 0.19 0.96504
320 0.003125 276 3.598868e-3 9.0e-5 1.58 0.94490
640 0.0015625 545 1.795268e-3 2.2e-5 12.29 1.00033

Table 3. Experimental order of convergence for the fixing method with exact values
prescribed in a fixed neighborhood of seven given points and with determination of
optimal ε2.
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Fig. 2. Distance function to seven given points computed by the fast fixing method.
Left, the contours of the function. Right, the 3D plot.

needed for the computations, we can see that the complexity is not higher than
O(N3/2), where N is the number of unknowns.

The next two tests were realized in order to compare the fixing method
with computation of the exact distance function. Again, we used ε2 = 10−5 for
the fixing mehotd. In the first case, a certain number of points was randomly
generated in a given 2D domain. After, the distance function to this set of
points was computed both numerically by our fixing algorithm and analytically
by finding the nearest point to every pixel. The CPU time was measured for
different numbers of points and plotted in graphs presented in Fig. 4. We can
observe that the computational cost of the analytical computation is increasing
with increasing number of points while the cost of the numerical computation is
decreasing. For a certain number of points, depending on the size of the image
domain, the numerical method becomes more efficient. We can see that in all
cases displayed in the figure, this number is at most 1% of the number of image
pixels so it is practically meaningful.

Another experiment was performed in order to test the numerical method
on data qualitatively similar to segmented cell structures. The result of the cell
segmentation is a level set function and the inner borders of the cells are repre-



nx τD time steps L2(Ω) - error CPU EOC L2(Ω) - error CPU EOC

fixing fixing fixing

40 0.025 36 1.122800e-2 0.01 1.121228e-2 0.01
80 0.0125 61 8.266972e-3 0.03 0.44167 8.231755e-3 0.01 0.44581

160 0.00625 108 5.606750e-3 0.26 0.56020 5.539007e-3 0.11 0.57157
320 0.003125 203 3.599271e-3 2.04 0.63946 3.475747e-3 0.96 0.67230
640 0.0015625 390 2.228162e-3 15.46 0.69185 2.041495e-3 7.24 0.76770

Table 4. Comparison of computational tests for the method without fixing and the
method with fixing. Computation of the distance function to four polygons.
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Fig. 3. Distance function to four polygons computed by the RMF. Left, the contours
of the function with the shapes indicated. Right, the 3D plot.

sented by a chosen isoline of this function. For our test purposes, we used images
with isolines in form of either randomly placed circles or randomly placed rect-
angles of a random size (see fig. 5). The maximum image intensity (255) was in
the centers of these shapes and then it gradually decreased to 0 with increas-
ing distance from the center. In order to compute the distance function to a
certain level set numerically, the location of the level set was detected and the
solution was initialized by exact values in its one pixel neighborhood. After, the
fixing method was applied. For the exact computation, we used a simple pro-
cedure that constructs set of points corresponding to the chosen isoline, finding
its crossections with the pixel structure. Then, the nearest of these points was
found for each pixel. The CPU time for such a procedure is documented in Ta-
ble 5, column 5. By construction, the points of the isoline are sorted by their
coordinates and therefore the computation of the exact distance function can be
significantly optimized – we do not have to go through the whole list of points
but the nearest point to a pixel can be always found in a certain neighborhood
of the nearest point to the previous pixel. The CPU times for this optimized
approach are listed in Table 5, column 6. According to Table 5, we can ob-
serve that in all cases considered here, the numerical solution was faster than
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Fig. 4. Comparison of the fixing method (solid line) with computation of exact solution
(dashed line)–plot of CPU time depending on the number of randomly distributed
points. Left, image domain with 256 × 256 pixels. Middle, 512 × 512 pixels. Right,
1024 × 1024 pixels.

the optimized analytical computation. We considered isoline for value I = 128,
hD = 1.0, τD = 0.5, ε2 = 10−5 and the dimensions of the image domain were
512 × 512 pixels.

Fig. 5. Isolines (I = 128) of test level set functions simulating cell structures.

In the last experiment, we computed numerically the distance function to a
set of segmented cells of a zebrafish embryo. In fig. 6, we show the computed
distance function as well as the vector field given by the gradient of this function.
We used hD = 1.0, τD = 0.5 and ε2 = 10−5.

4.2 Extraction of the intercellular skeleton

In the first experiment, we computed the skeleton using the distance function
corresponding to approximate cell centers. The result is a Voronoi type skeleton.
As we can see in Fig. 7, this skeleton represents a very good approximation
of the cell structure in the sense that it can provide reliable estimate of some



type of level set time steps L2(Ω) - rel. error CPU num. CPU exact CPU exact opt.

256 rectangles 52 3.509519e-2 0.91 35.56 2.87
1024 rectangles 33 5.813329e-2 0.63 75.82 2.88

256 circles 54 2.441320e-2 0.91 34.55 3.00
1024 circles 34 4.153412e-2 0.64 68.41 3.07

Table 5. Comparison of the numerical and analytical computation of the distance
function to the cell-like structures.

quantities, like the area of the cell contact surface. It can be used in the cases
when no or bad quality membrane images are provided and therefore the correct
membrane segmentation is not possible.

If we have a good quality segmentation of the inner boundaries of the cells,
we can detect the intercellular skeleton more precisely using the signed distance
function to the segmented objects. An example is shown in Fig. 8. In both
experiments, we set hD = 1.0, τD = 0.5, ε2 = 10−5, hS = 1.0, τS = 0.1. The
automatic segmentation of inner cell borders displayed in Fig. 8 was obtained
by the generalized subjective surface method [2] applied to a microscope image
of zebrafish cell membranes, similar to Fig. 1.

Remark 1. In practice, the main determining factor of the quality of the detected
skeleton is the correct orientation of the vector field generated by the gradient of
the distance function. As it follows from the character of the problem and also
from the numerical procedure, the correct orientation of the vector field can be
already obtained as soon as the values in all image pixels are nontrivially updated
by the numerical scheme (4), i.e. before they are definitely fixed. This allows a
significant reduction of the computational time without loss of the quality of
the final result. In Fig. 9 left, the result obtained after 10 steps of the numerical
computation of the distance function is shown. At this moment, the values were
nontrivially updated in a sufficiently large neighborhood of the segmented cells.
We can construct the vector field for equation (3) and find the corresponding
intercellular skeleton (Fig. 9 right). Comparing Fig. 8 and 9 we can see that the
skeleton found in this way is of the same quality as in the case of complete fixing
of the values in the whole domain. Let us note that the complete fixing would
require 123 time steps.
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Fig. 6. Signed distance function to segmented cells. Top left, segmentation of inner
boundaries of cells. Top right, contour plot of the signed distance function. Bottom
left, detail of the 3D plot of this distance function. Bottom right, detail of the vector
field given by ∇g, g(x) = d(x), with recognizable position of the intercellular skeleton.



Fig. 7. Voronoi type skeleton. On the left, the approximate cell centers. On the right,
the corresponding Voronoi type skeleton.

Fig. 8. Real skeleton detection. On the left, the cell segmentation. On the right, the
corresponding intercellular skeleton.
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Fig. 9. Left, the result after 10 steps of computation of the distance function. Right,
the skeleton obtained using the corresponding vector field.


