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ABSTRACTIN this paper, an efficient finite volume method for image sgation is introduced.
The method is based on surface evolution governed by a eanl?DE, the generalized subjec-
tive surfaces equation. Our numerical method is based om-igepticit time discretization and
finite volume space approximation. We show examples of iseggeentation - particularly, we
deal with images of early embryogenesis of zebrafish oldaiyea confocal microscope. We
mention how the segmentation can be useful for analysieditibryo images and reconstruc-
tion of the embryo evolution.
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1. Introduction

Embryogenesis, the process of embryo evolution, is nowadag of the main
topics for biomedical research. Even from the very begignthe process is quite
complex as it contains cell divisions, movement and defdionadifferentiation and
interactions. Modern technical equipment allows us to ngkemages of embryos
in short time intervals and thus to observe the process dfigen and possibly track
each particular cell in time. In this paper we process lomgtsequences of 3D images
of a zebrafish (Danio Rerio) embryo obtained by a confocat@sitope.

Obtaining the images by microscope is the first step of theare. Next, in order
to obtain some useful information, various image procegstéchniques have to be
applied. The image segmentation is necessary to extragattieular cell from the



image and analyze its size and shape. It can be also used datitgtive analysis
of the embryo — counting the number of cells in the image, rd@teng the volume
of the embryo and the density of cells in the organism. Hnalle can use it for
finding correspondences between cells in subsequent taps ahd for detecting some
significant cell behavior, for example mitosis (divisiolr) spite of quickly developing
technical equipment, it is still hard to obtain images sléafor embryo analysis.
The images usually suffer from some noise, the borders tf ngght be unclear or
corrupted, and there can be some artifacts in the image, hIsmecessary to analyze
a large quantity of images and each one of them can contaisémals of cells. All
this makes strong demands on the segmentation method: b tesfast, stable and
precise, able to detect objects with incomplete bordersgedate in noisy images.

The main goal of this paper is to introduce an efficient metioo@D image seg-
mentation. The method is obtained by generalizing the stibbgsurfaces method
[SAR 00], which was previously proved to work very well formdrivial images
and practical applications [COR 06, FMP 07, SAR 00]. The g&limtion lies in
considering the classical model equation in a convectiffosion form and then us-
ing different weights for the convection and the diffusienns. We will show that
it speeds up the segmentation process. Our numerical methzded on the semi-
implicit time discretization of nonlinear diffusion [HAN3] and the flux based finite
volume technique for the space approximation [FRM 07]. Asithage intensity can
be seen as a piecewise constant function (constant for exelt) )it appears to be the
natural choice. Study of the experimental order of convetrgealso shows that the
method converges to true solution of the segmentation Enuat

2. The generalized subjective surface method

The subjective surfaces method is based on surface evolutibthe beginning,
we take a function (called segmentation function) and wé ktolve so that its iso-
surfaces are taking the shape of the segmented object. Dhdien is driven by the
image intensity function, more precisely by the positioedfes in the image. Ideally,
the process ends up with a function whose isosurfaces al thashape of the object
that we want to extract.

The so-called geodesic mean curvature flow equation wagdinted to image
segmentation in [CAS 97, KIC 96]
Vu
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There, the authors followed one particular level set.db segment the object in
the image. Changing the view from one level set approach tmmie mobust graph
evolution, and using Evans-Spruck type regularizatidfy| ~ /&2 + |Vu|?, we
obtain the classical subjective surface equation [SAR 00]
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whereu(x, t) is the segmentation function. By we denote>,, Iy, i.e. convolution
of Iy(x) — the intensity of the original image — with the heat kerneheTunction
g(s) is called the edge detector function. According to [CAS 97CKI6, SAR
00] we useg(s) = 1/(1 + Ks?), whereK is a positive constant. We can see that
the edge detector function gives small values for largeigras in the (convolved)
image. It also has an important property thad¥ g points towards the edges in the
image. Generally, we can also ugg) = f(1/(1 + Ks?)) which can, for a suitably
chosen functiorf, speed up the process and improve the quality of the resuksme
cases, additional smoothing gfs) by convolution can be useful as well. Of course,
modification has to be chosen so that the above mentionedriamigroperties of
edge detector are preserved.

Similarly to [ZAN 07], we can generalize [2] by introducingw coefficients
Weon @Ndwy; s that represent weights for the convection and the diffutgoms in its
advection-diffusion form, cf. [1]. The new model reads:

Ot = Weon Vg.Vu + wyirg\/ €2 + [Vul|? V. [3]

Vu
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Introducing new parameters in the equation, the model besanore flexible. Having
the possibility to control separately the convective arftligive processes, we have
the potential to improve the efficiency of the method. We sdhe problem in the
domain(} x [0, 7] and use the following boundary and initial conditions:

u(x,t) =0, x €090, u(x,0) = ug(x). [4]

3. Numerical approximation
3.1. Semi-implicit time discretization

First, we discretize [3] in time. For this purpose, we useisemplicit time dis-
cretization that leads to the following equationfo= 1... N, 7 =T /N:

u® — unfl n
— WeonVg.Vu" 1 = wairg\/ €2 + |Vur—12V.

T Ve T Ve 1P

Applying this technique makes the method unconditionaépke for the diffusion
part, and the time step is limited only by the CFL conditiolated to convection.

. 5]

3.2. Finite volume space discretization
In order to discretize [5] in space, we use the finite volumatsgy. We identify

the finite volume mesH;, with the voxels of 3D image and denote each finite volume
by Vijk,i=1...N1,j=1...Na,k =1...N3. ForeachV;; € 7, let V;;;, denote
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the neighbors index shift, i.e., the set of @il ¢, ), such thap, ¢,r € {-1,0,1},
Ip| + |g| + |r| = 1. Letm(V;;) denote the volume df;;;. The line connecting the
center ofl/;;;, and the center of its neighb® ., j+q¢,5+r, (P, ¢,7) € Nyji is denoted
by o7 and its lengthn (a7} ). Our finite volume grid being regular rectangular, let
hi, hg, hs represent the size of finite volumesip, x2, 3 direction, respectively. The
planar sides of finite volum®;;; are denoted by} ;" with aream(e}};’) and normal
vk - Letal be the point where the ling]}” crosses the side;. Integrating [5]
over every f|n|te volumé&’;,, we get

n_ ,n—1
/ YU gk / Weon Vg.Vu" tdx = [6]
Vijk T Vijk
Vu”
Wi 2 +|Vur—12V.——dx = 0.
/ dif9 | | g2 + |Vun—1)2

Vijk

Asu™, u"~! are piecewise constant, we can rewrite the first term on th®:LH

n—1
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In order to approximate other terms, we have to perform ségéeps. First, the term
|[Vu™~1, resp. |V1,|, occurs in the integrals and we will need to approximate the
average modulus of these terms in bdth and on voxel sides(’;. Let us use the
following definitions forp, ¢, r € N;ji:

. 10 —1,0 01 0,—1
VPl (P(uyp g — wige) /o, (uiye —uii )/ he, (uiy, —uin ™)/ hs)
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1
0
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These formulas can be understood as an approximation ofrtitkegt in the point
i, abarycenter o). Now we define

zgk’
pgrin—1 _ Al _
Qijk \/52+ |quru”k 2 Qijk = e+~ Z |VPary l]k
77k
andgjr = g(g ZN |VP9" I,.:5k]). Moreover, let us denote = —weo,Vg. AS

suggested in [FRM 07] the convective term can be writterhgnéquivalent form
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v.Vu"~! = V.(vu""1) —u"~1V.v and therefore, considering ! constant inl/; ;
we get

vt = E feetiara) S [ oo, @
ijk Cijk Niji © “igk

Let us define

par _ par 9i+p,i+q.k+r — Jijk
Vijk = m(eijk) (‘wcon PaTy ’

m(gijk

where we consider the approximation'ef;.v;;". We will d|st|ngwsh between the
outflow and inflow boundaries by defining two sets of indié&s;’ = {(p,q,7) €
Nijk UZI]: > 0}, Njk = {(p,q,7) € Niji, v} p‘” < 0}. If we use the upwind
principle for approximating the first integral on the RHS &)}, [we obtain

n—l,\,}:nlpqr E: o E:pqr
/V v.Vu ~ uz]k Uuk + u1+p Jj+q,k+r z]k z]k Uuk

ijk out in
ka N77k uk

1 —1 v — 1\ .pqr
D gk — Ui J0E [9]
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The diffusion part can be discretized in a very similar wag &8n write

n

\Y
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Waif Gijk Qjjy E m(eijk) qu,-;n_lm(apqr) . [10]
|pl+lql+|r|=1 ijk ijk

Finally, putting together [7], [9], [10] and boundary cotidins, we obtain a linear
system with unknowns, . We solve it by the successive over relaxation (SOR)
method. Since we start the iterative process using thetrizeuh the previous time
step, the SOR method is sufficiently fast.

3.3. Experimental order of convergence of the numerical scheme

In order to experimentally verify the convergence of thehlméd{ we compute the
experimental order of convergence (EOC) for a test caseceSio analytical so-
lution is known for this highly nonlinear problem, we put fifion a(x, y, 2,t) =
teos(mx)cos(my)cos(wz), fulfilling [4], into the equation. Then we get a problem
with a given right hand side and modify our scheme accorging the edge indica-
tor we take functiony(z,y, z) = cos?(rx)cos? (my)cos?(mz), the model parameters
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Weon = Lawair = 1,6 = 107%,Q = [-0.5,0.5]3, T = 0.1, and we consider relation
T = h? which is standard when testing EOC for problems with theudifin term. Ta-
ble 3.3 shows the values of errordn((0,T"), L2(£2)) norm for subsequently refined
grids. We can see that the method converges with an ordeetilygn 1.

h T L2((0,T), L2(Q)) — error | EOC
0.1 0.01 0.013657
0.05 0.0025 0.007088 0.94619
0.025 0.000625 0.003103 1.19171
0.0125 | 0.00015625 0.001256 1.30482
0.00625| 0.0000390625 0.000495 1.34333

Table 1. Experimental order of convergence for a test case
4. Segmentation results
Now we will illustrate how the method can be used in biomeldipplications. We

deal with a time sequence (700 time steps) of 3D images offishrembryo. The
dimensions of each image a2 x 512 x 74 voxels. There are two types of images:

cell nuclei and cell membranes.

e ®
OQ@QC)@

Figure 1. Segmentation of cell nuclei. On the left, the initial formsegmentation functions.
On the right, the results of segmentation

First we segment the nuclei images, each nucleus indiMidu®@ initialize the
segmentation function, we consider that the nuclei havpeshaimilar to a sphere
or ellipsoid, so we use function that has all isosurfacestidal and of the shape
of an ellipsoid. The centers of the ellipsoids are given kg ¢istimated centers of
cell nuclei given by the method introduced in [FMP 07]. Thdiraf the ellipsoids
are chosen by estimating the size of the cell, based on niegshe distance from its
nearest neighbor. The model parameters are chosen assoflosy = G, * m
K = 1000, p = 0.1, weon = 10.0, wa;y = 2.0. Time stepr = 0.1 and space step
h = 1.0. The results can be seen in Figure 1. In all figures in thid@ectve display
a planar cut of the embryo (x-y plane) or its clip. We show isteceu = 127 of the
initial and final segmentation function. Let us note thatnsegtation of one nucleus
took about 5 seconds in average, and it appears to be aboumd$ faster than the
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Figure 2. Segmentation of cell membranes. On the left, the initiah®of segmentation
functions. On the right, the results of segmentation

Figure 3. Detection of mitoses. On the left, we can see the initial foofrsegmentation
functions. On the right, the results of segmentation intisahat the two centers (nuclei)
belong to one cell.

segmentation by the classical subjective surfaces met@@R 06, SAR 00] or by
the segmentation using explicit finite difference schenzesN 07].

As for the segmentation of membrane images, the initial fofrsegmentation
function is of "Voronoi’ type. We start from an ellipsoid sdted in the cell center as
in the case of nuclei, but when some point inside the ellghbeiongs to an ellipsoid
of another cell, the function there is set to zero. The edgectler g(s) = Hﬁ
K = 1000, weon, = 10.0, wqir = 0.2, 7 = 0.1 andh = 1.0. We can see an example
in Figure 2. Again, the method appeared to be faster thanléissical method or the
explicit finite difference scheme.

The membrane segmentation has an interesting applicatibnan be used for
mitosis detection. Possible mitosis can be detected asatisih when there are two
nuclei in one cell. When membrane segmentation gives appeigly the same result
when started from two different centers, this means thattbeenters (nuclei) belong
to the same cell and the cell can be marked as a candidatetfwsispisee Figure 3.
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Figure 4. Segmentation of whole embryo

Finally, using the membrane image, we can segment the whidey®, see Figure
4. Then we can determine the volume of the embryo and thetgerfsiells in it, and
consequently the time evolution of these quantities, whihan impact in biology.
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