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ABSTRACT.In this paper, an efficient finite volume method for image segmentation is introduced.
The method is based on surface evolution governed by a nonlinear PDE, the generalized subjec-
tive surfaces equation. Our numerical method is based on semi-implicit time discretization and
finite volume space approximation. We show examples of imagesegmentation - particularly, we
deal with images of early embryogenesis of zebrafish obtained by a confocal microscope. We
mention how the segmentation can be useful for analysis of the embryo images and reconstruc-
tion of the embryo evolution.
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1. Introduction

Embryogenesis, the process of embryo evolution, is nowadays one of the main
topics for biomedical research. Even from the very beginning, the process is quite
complex as it contains cell divisions, movement and deformation, differentiation and
interactions. Modern technical equipment allows us to make3D images of embryos
in short time intervals and thus to observe the process of evolution and possibly track
each particular cell in time. In this paper we process long time sequences of 3D images
of a zebrafish (Danio Rerio) embryo obtained by a confocal microscope.

Obtaining the images by microscope is the first step of the research. Next, in order
to obtain some useful information, various image processing techniques have to be
applied. The image segmentation is necessary to extract theparticular cell from the



image and analyze its size and shape. It can be also used for quantitative analysis
of the embryo – counting the number of cells in the image, determining the volume
of the embryo and the density of cells in the organism. Finally, we can use it for
finding correspondences between cells in subsequent time steps and for detecting some
significant cell behavior, for example mitosis (division).In spite of quickly developing
technical equipment, it is still hard to obtain images suitable for embryo analysis.
The images usually suffer from some noise, the borders of cells might be unclear or
corrupted, and there can be some artifacts in the image. Also, it is necessary to analyze
a large quantity of images and each one of them can contain thousands of cells. All
this makes strong demands on the segmentation method: it hasto be fast, stable and
precise, able to detect objects with incomplete borders andoperate in noisy images.

The main goal of this paper is to introduce an efficient methodfor 3D image seg-
mentation. The method is obtained by generalizing the subjective surfaces method
[SAR 00], which was previously proved to work very well for non-trivial images
and practical applications [COR 06, FMP 07, SAR 00]. The generalization lies in
considering the classical model equation in a convection-diffusion form and then us-
ing different weights for the convection and the diffusion terms. We will show that
it speeds up the segmentation process. Our numerical methodis based on the semi-
implicit time discretization of nonlinear diffusion [HAN 03] and the flux based finite
volume technique for the space approximation [FRM 07]. As the image intensity can
be seen as a piecewise constant function (constant for each voxel), it appears to be the
natural choice. Study of the experimental order of convergence also shows that the
method converges to true solution of the segmentation equation.

2. The generalized subjective surface method

The subjective surfaces method is based on surface evolution. At the beginning,
we take a function (called segmentation function) and we letit evolve so that its iso-
surfaces are taking the shape of the segmented object. The evolution is driven by the
image intensity function, more precisely by the position ofedges in the image. Ideally,
the process ends up with a function whose isosurfaces all have the shape of the object
that we want to extract.

The so-called geodesic mean curvature flow equation was introduced to image
segmentation in [CAS 97, KIC 96]
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There, the authors followed one particular level set ofu to segment the object in
the image. Changing the view from one level set approach to a more robust graph
evolution, and using Evans-Spruck type regularization,|∇u| ≈

√
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obtain the classical subjective surface equation [SAR 00]
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whereu(x, t) is the segmentation function. ByIσ we denoteGσ ∗ I0, i.e. convolution
of I0(x) – the intensity of the original image – with the heat kernel. The function
g(s) is called the edge detector function. According to [CAS 97, KIC 96, SAR
00] we useg(s) = 1/(1 + Ks2), whereK is a positive constant. We can see that
the edge detector function gives small values for large gradients in the (convolved)
image. It also has an important property that−∇g points towards the edges in the
image. Generally, we can also useg(s) = f(1/(1 + Ks2)) which can, for a suitably
chosen functionf , speed up the process and improve the quality of the results.In some
cases, additional smoothing ofg(s) by convolution can be useful as well. Of course,
modification has to be chosen so that the above mentioned important properties of
edge detector are preserved.

Similarly to [ZAN 07], we can generalize [2] by introducing new coefficients
wcon andwdif that represent weights for the convection and the diffusionterms in its
advection-diffusion form, cf. [1]. The new model reads:

∂tu = wcon∇g.∇u + wdifg
√

ε2 + |∇u|2∇.
∇u

√

ε2 + |∇u|2
. [3]

Introducing new parameters in the equation, the model becomes more flexible. Having
the possibility to control separately the convective and diffusive processes, we have
the potential to improve the efficiency of the method. We solve the problem in the
domainΩ × [0, T ] and use the following boundary and initial conditions:

u(x, t) = 0 , x ∈ ∂Ω , u(x, 0) = u0(x) . [4]

3. Numerical approximation

3.1. Semi-implicit time discretization

First, we discretize [3] in time. For this purpose, we use semi-implicit time dis-
cretization that leads to the following equation forn = 1 . . .N , τ = T/N :

un − un−1

τ
− wcon∇g.∇un−1 = wdifg

√

ε2 + |∇un−1|2∇.
∇un

√

ε2 + |∇un−1|2
. [5]

Applying this technique makes the method unconditionally stable for the diffusion
part, and the time step is limited only by the CFL condition related to convection.

3.2. Finite volume space discretization

In order to discretize [5] in space, we use the finite volume strategy. We identify
the finite volume meshTh with the voxels of 3D image and denote each finite volume
by Vijk, i = 1 . . .N1, j = 1 . . .N2, k = 1 . . .N3. For eachVijk ∈ Th let Nijk denote
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the neighbors index shift, i.e., the set of all(p, q, r), such thatp, q, r ∈ {−1, 0, 1},
|p| + |q| + |r| = 1. Let m(Vijk) denote the volume ofVijk . The line connecting the
center ofVijk and the center of its neighborVi+p,j+q,k+r , (p, q, r) ∈ Nijk is denoted
by σpqr

ijk and its lengthm(σpqr
ijk ). Our finite volume grid being regular rectangular, let

h1, h2, h3 represent the size of finite volumes inx1, x2, x3 direction, respectively. The
planar sides of finite volumeVijk are denoted byepqr

ijk with aream(epqr
ijk ) and normal

νpqr
ijk . Let xpqr

ijk be the point where the lineσpqr
ijk crosses the sideepqr

ijk . Integrating [5]
over every finite volumeVijk , we get
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As un, un−1 are piecewise constant, we can rewrite the first term on the LHS:
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In order to approximate other terms, we have to perform several steps. First, the term
|∇un−1|, resp. |∇Iσ|, occurs in the integrals and we will need to approximate the
average modulus of these terms in bothVijk and on voxel sidesepqr

ijk . Let us use the
following definitions forp, q, r ∈ Nijk:
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These formulas can be understood as an approximation of the gradient in the point
xpqr

ijk , a barycenter ofepqr
ijk . Now we define
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|∇pqrIσ;ijk |). Moreover, let us denotev = −wcon∇g. As

suggested in [FRM 07], the convective term can be written in the equivalent form
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v.∇un−1 = ∇.(vun−1)−un−1∇.v and therefore, consideringun−1 constant inVijk

we get
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Let us define
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,

where we consider the approximation of∇g.νpqr
ijk . We will distinguish between the

outflow and inflow boundaries by defining two sets of indicesNout
ijk = {(p, q, r) ∈

Nijk , vpqr
ijk > 0} , N in

ijk := {(p, q, r) ∈ Nijk , vpqr
ijk ≤ 0} . If we use the upwind

principle for approximating the first integral on the RHS in [8], we obtain
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The diffusion part can be discretized in a very similar way. We can write
∫
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Finally, putting together [7], [9], [10] and boundary conditions, we obtain a linear
system with unknownsun

ijk. We solve it by the successive over relaxation (SOR)
method. Since we start the iterative process using the result from the previous time
step, the SOR method is sufficiently fast.

3.3. Experimental order of convergence of the numerical scheme

In order to experimentally verify the convergence of the method, we compute the
experimental order of convergence (EOC) for a test case. Since no analytical so-
lution is known for this highly nonlinear problem, we put function ũ(x, y, z, t) =
tcos(πx)cos(πy)cos(πz), fulfilling [4], into the equation. Then we get a problem
with a given right hand side and modify our scheme accordingly. As the edge indica-
tor we take functiong(x, y, z) = cos2(πx)cos2(πy)cos2(πz), the model parameters
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wcon = 1,wdif = 1, ε = 10−6, Ω = [−0.5, 0.5]3, T = 0.1, and we consider relation
τ = h2 which is standard when testing EOC for problems with the diffusion term. Ta-
ble 3.3 shows the values of error inL2((0, T ), L2(Ω)) norm for subsequently refined
grids. We can see that the method converges with an order bigger than 1.

h τ L2((0, T ), L2(Ω)) − error EOC
0.1 0.01 0.013657
0.05 0.0025 0.007088 0.94619
0.025 0.000625 0.003103 1.19171
0.0125 0.00015625 0.001256 1.30482
0.00625 0.0000390625 0.000495 1.34333

Table 1. Experimental order of convergence for a test case

4. Segmentation results

Now we will illustrate how the method can be used in biomedical applications. We
deal with a time sequence (700 time steps) of 3D images of zebrafish embryo. The
dimensions of each image are512× 512× 74 voxels. There are two types of images:
cell nuclei and cell membranes.

Figure 1. Segmentation of cell nuclei. On the left, the initial forms of segmentation functions.
On the right, the results of segmentation

First we segment the nuclei images, each nucleus individually. To initialize the
segmentation function, we consider that the nuclei have shapes similar to a sphere
or ellipsoid, so we use function that has all isosurfaces identical and of the shape
of an ellipsoid. The centers of the ellipsoids are given by the estimated centers of
cell nuclei given by the method introduced in [FMP 07]. The radii of the ellipsoids
are chosen by estimating the size of the cell, based on measuring the distance from its
nearest neighbor. The model parameters are chosen as follows: g(s) = Gρ∗

1
(1+Ks2)6 ,

K = 1000, ρ = 0.1, wcon = 10.0, wdif = 2.0. Time stepτ = 0.1 and space step
h = 1.0. The results can be seen in Figure 1. In all figures in this section, we display
a planar cut of the embryo (x-y plane) or its clip. We show isosurfaceu = 127 of the
initial and final segmentation function. Let us note that segmentation of one nucleus
took about 5 seconds in average, and it appears to be about 10 times faster than the
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Figure 2. Segmentation of cell membranes. On the left, the initial forms of segmentation
functions. On the right, the results of segmentation

Figure 3. Detection of mitoses. On the left, we can see the initial forms of segmentation
functions. On the right, the results of segmentation indicates that the two centers (nuclei)

belong to one cell.

segmentation by the classical subjective surfaces method [COR 06, SAR 00] or by
the segmentation using explicit finite difference schemes [ZAN 07].

As for the segmentation of membrane images, the initial formof segmentation
function is of ’Voronoi’ type. We start from an ellipsoid situated in the cell center as
in the case of nuclei, but when some point inside the ellipsoid belongs to an ellipsoid
of another cell, the function there is set to zero. The edge detectorg(s) = 1

1+Ks2 ,
K = 1000, wcon = 10.0, wdif = 0.2, τ = 0.1 andh = 1.0. We can see an example
in Figure 2. Again, the method appeared to be faster than the classical method or the
explicit finite difference scheme.

The membrane segmentation has an interesting application –it can be used for
mitosis detection. Possible mitosis can be detected as a situation when there are two
nuclei in one cell. When membrane segmentation gives approximately the same result
when started from two different centers, this means that thetwo centers (nuclei) belong
to the same cell and the cell can be marked as a candidate for mitosis, see Figure 3.
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Figure 4. Segmentation of whole embryo

Finally, using the membrane image, we can segment the whole embryo, see Figure
4. Then we can determine the volume of the embryo and the density of cells in it, and
consequently the time evolution of these quantities, whichhas an impact in biology.
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