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Abstract

We solve a convection-diffusion-sorption (reaction) system on a bounded domain
with dominant convection using an operator splitting method. The model arises
in contaminant transport in groundwater induced by a dual-well, or in controlled
laboratory experiments. The operator splitting transforms the original problem to
three subproblems: nonlinear convection, nonlinear diffusion, and a reaction prob-
lem, each with its own boundary conditions. The transport equation is solved by
a Riemann solver, the diffusion one by a finite volume method, and the reaction
equation by an approximation of an integral equation. This approach has proved to
be very successful in solving the problem, but the convergence properties where not
fully known. We show how the boundary conditions must be taken into account,
and prove convergence in L1,loc of the fully discrete splitting procedure to the very
weak solution of the original system based on compactness arguments via total
variation estimates. Generally, this is the best convergence obtained for this type of
approximation. The derivation indicates limitations of the approach, being able to
consider only some types of boundary conditions. A sample numerical experiment
of a problem with an analytical solution is given, showing the stated efficiency of
the method.
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1 Introduction

Contaminant transport with nonlinear sorption in a strong flow field gives
rise to a nonlinear convection-diffusion-sorption system. Precise mathematical
models are available and significant efforts have been made to develop efficient
numerical methods, see e.g. [1]. However, in the case of dominant convection
many of these methods break down numerically.

The general approach to avoid numerical instability is to use some regular-
ization or smoothing strategy. This is usually an upwind method in a finite
element framework. Although they are known to converge to the unique weak
solution, the time steps needed are sometimes prohibitively small. To avoid
this, the operator splitting method is chosen, which allows to choose the op-
timal method for each subproblem. This approach avoids high numerical dis-
persion and increases the sensitivity of the solution to a change of the model
parameters. As is shown in other papers of the authors, cf. [2], this gives very
good numerical results, but the convergence of the practical scheme has not
been proved yet. This will be the main goal of the present paper. It is shown
in this paper that due to the operator splitting a total variation approach
must be followed in proving convergence of the overall scheme, since one of
the subproblems is nonlinear transport. Thus, only L1,loc-convergence for ap-
proximations can be obtained and consequently the very weak solution of the
original problem has to be considered (that is, the corresponding integral iden-
tity doesn’t contain the derivatives of the unknown solution). Moreover, an
additional problem arises with the interpretation of the boundary conditions
for the very weak solution. This will be a weak point of applying the operator
splitting method and limitates the future use of operator splitting methods on
bounded domains. It implies that applications should test the convergence to
the correct boundary conditions as done in this paper.

The general mathematical model that is considered reads as follows

∂tF (C) + div(~vC − D∇C) + ρ∂tS = 0 (1)

∂tS = κ(ψn(C) − S) (2)

where x ∈ Ω ⊂ Rd, t ∈ (0, T ), d = 2, 3. In addition, initial and boundary
conditions need to be considered. Here, C represents the concentration of
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contaminant, S is the mass of the adsorbed contaminant per unit mass of the
porous medium, ~v is the groundwater velocity, ρ is the bulk density of the
porous medium, and D is the dispersivity tensor. The function F is of the
form F (C) = C + ρψe(C). Functions ψe(C) and ψn(C) are sorption isotherms
characterizing the equilibrium and nonequilibrium sorption. In most cases,
they are of the form ψ(C) = aCp, a, p > 0 (Freundlich isotherm) or ψ(C) =

aC
1+bC

, b > 0 (Langmuir isotherm). Finally, the parameter κ is the kinetic rate
of sorption.

For simplicity, we consider a rectangular domain, Ω, defined as [x(1), x(2)] ×
[y(1), y(2)], with inflow at the top, outflow at the bottom, and no-flow bound-
aries left and right. As a further simplification, inflow and outflow are consid-
ered to be perpendicular to the flow boundaries. These simplifications make
the proofs shorter without changing their premises.

Our interest is in the general problem
(P) Find {v, w} such that

1

g(x, y)
(∂tF (v) + ∂tw)=~h · ∇v + ∂x(a(x, y)∂xv) + ∂y(b(x, y)∂yv) in ΩT ,

∂tw=κ(ψn(v) − w) in ΩT ,

with ΩT := Ω × (0, T ), ~h = [h1(x, y), h2(x, y)]
T , 0 < T < ∞, subject to the

initial conditions (ic)

v(x, y, 0) = v0(x, y), w(x, y, 0) = w0(x, y),

and boundary conditions (bc)

b(x, y)∂yv + h2(x, y)v = h2(x, y)vI(x, t) for y = y(2) (inflow), (3)

∂νv = 0 elsewhere on ∂Ω, (4)

with ~ν the outward normal direction and

h1 = 0 on x = x(1) and x(2)(no-flow). (5)

The functions g, h, a and b are positive, bounded and smooth, F is such that
F and F−1 are Lipschitz continuous, monotone increasing with F (0) = 0,
F (s) < CL if s < L. In particular, F is taken to be of the form: F (v) =
v+ψe(v). We have that ψe and ψn are continuous, ψe is monotone increasing,
so F (v) ≥ v ≥ 0, and moreover that ψn is Lipschitz continuous. Furthermore,
v0 and vI are nonnegative, bounded and of bounded total variation. Due to
(4)-(5), the flux ~qν = −~hv − D∇v is orthogonal to the outward normal ~ν
along these (no-flow) boundaries. Outflow boundaries have advection out of
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the domain, and inflow boundaries advection into the domain. Due to the
limitations on ~h this corresponds to y = y(1) and y = y(2), respectively.

The main goal of the paper is to prove convergence of the operator splitting
method to a ‘very weak’ solution as defined below. Problem (P) arises in
column test laboratory experiments as well as in the dual-well field experiment.
For groundwater flow, the tensor D = (Dij), i, j = 1 and 2, from (1) is typically
defined as

Dij = (D0 + αT |~v|)δij +
vivj

|~v| (αL − αT )

where D0 is the molecular diffusion coefficient, δij the Kronecker symbol and
αL, αT the longitudinal and transversal dispersivities, respectively. The au-
thors have solved the original problem (1)–(2) in the dual-well setting, [2],
under the Dupuit-Forchheimer approximation (vertical flow is neglected) and
steady-state flow. Then, applying a bipolar transformation [3], (1)–(2) is trans-

formed into problem (P) with flow ~h = (0, h2), h2 a constant.

The development of the numerical operator splitting method and its practical
implementation to the dual-well was described in [2], [4]. The numerical exper-
iments confirm small numerical dispersion and its suitability for solving both
direct and inverse problems. In spite of the good practical results, the conver-
gence of the method was not yet proved. Here we show that the developed
operator splitting method is convergent to a ‘very weak’ solution.

Definition 1 A pair of functions {v, w} is said to be a very weak solution to
(P) if it satisfies the identities

∫

ΩT

(∂tφ)
F (v) + w

g
+
∫

Ω

F (v0(x, y)) + w0(x, y)

g
φ(x, y, 0)

+
∫

ΩT

v [∂x(a∂x(φ)) + ∂y(b∂y(φ))] −
∫

ΩT

(∇ · ~hφ)v

+
∫ T

0

∫ x(2)

x(1)
h2vI(t)φ dx dt|y=y(2) −

∫ T

0

∫ x(2)

x(1)
h2v(t)φ dx dt|y=y(1) = 0, (6)

∀φ ∈ C∞(ΩT ), fulfilling φ = 0 at t = T , and further ∂yφ = 0 for y = y(2),
∂yφ = 0 for y = y(1) and ∂xφ = 0 on x = x(1) and x = x(2), for t > 0, and

∫

ΩT

w∂tη + κ(ψn(v) − w)η +
∫

Ω
w0(x, y)η(x, y, 0) = 0. (7)

holds ∀η ∈ C∞(ΩT ), η(T ) = 0.

The very weak solution follows from integration by parts of the standard weak
solution. Let us also consider the localized version:

Definition 2 A pair {v, w} is said to be a local, very weak solution to (P) if
it satisfies the identities (6), (7) for test functions which have compact support
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near y = y(1) (the outflow boundary).

For the local, very weak solution the last term of (6) is zero.

Remark 3 The problem (P) has a unique weak solution under the assump-
tions (i)-(vi) listed in Section 3, see [5–8]. The weak solution is defined by
an integral identity which contains first derivatives (in time and space) and is
more regular (v ∈ L2((0, T ),W 1

2 ), ∂tv ∈ L2((0, T ), L2) - W 1
2 being the Sobolev

space). Approximating problem (P) by the operator splitting method, we can
guarantee only L1,loc(ΩT ) convergence of the approximations, based on bound-
edness of the total variation, since a nonlinear transport subproblem is a part
of the global approximation. Consequently, we need a notion of a very weak
solution containing the unknown without derivatives in the corresponding in-
tegral identity.

To prove convergence, we will use results by Kružkov in his analysis of hy-
perbolic equations, [9]. Several results exist in the literature, obtained for the
splitting procedure in an unbounded domain. In the paper of Crandall and
Majda, [10], a detailed analysis was done for the splitting method applied to
conservation laws. The same type of problems was investigated in the work of
Holden and Risebro, [11]. A splitting method for convection-diffusion problems
was analyzed by Holden, Karlsen, Risebro and Lie in [12] and [13]. Karlsen
and Lie proved convergence of a splitting procedure for convection-diffusion-
reaction problems in [14]. In these papers the authors consider a spatially
unbounded domain, i.e. without boundary conditions. There, the a priori es-
timate for the total variation in the parabolic part has been proved in one
dimension, but it seems that this technique cannot be extended to more di-
mensions. In this paper we develop an argumentation suitable for more space
dimensions. This, consequently, leads to a more complicated technique in the
proof of the compactness argument.

Furthermore, in this paper we consider a practical implementation for a system
of two differential equations, with a nonlinear term in the time derivative,
and moreover on a bounded domain, where one of the equations models non-
equilibrium sorption. This reaction is of a different type as that considered in
[14]. Non-trivial modifications of known results are needed as well as refined
and different techniques in the proofs.

2 Operator splitting method

In the following we choose a time step ∆t and an integer N such that N∆t =
T . We denote tn = n∆t. This choice is only made for convenience, and the
convergence can also be proved for a nonuniform time grid (see [15]).

5



In each time step we split the original problem (P) in three different subprob-
lems corresponding to the physical processes included in the mathematical
model. Namely, we have the hyperbolic (nonlinear transport) problem with
solution operator Tt, the parabolic (dispersion) problem with solution opera-
tor Dt and the sorption problem with solution operator At. If we suppose that
we have already computed the approximate solution [vn, wn], the correspond-
ing mathematical formulation for time interval (tn, tn+1] reads

∂tF (v) − ~G(x, y) · ∇v = 0, (8)

where ~G = g~h, along with an inflow and an initial condition

v(x, y(2), t) = vI(x, y
(2), t), v(x, y, tn) = vn, (9)

together with the parabolic problem

∂tF (v) = g(x, y) {∂x(a(x, y)∂xv) + ∂y(b(x, y)∂yv)} , (10)

along with the initial condition v(x, y, tn) = T∆tv
n and the boundary condition

∂νv = 0 on ∂Ω, (11)

and finally

∂tF (v) + ∂tw = 0, and ∂tw = κ(ψn(v) − w), (12)

with initial conditions v(x, y, tn) = D∆tT∆tv
n and w(x, y, tn) = wn. We have

that vn+1 = A∆tD∆tT∆tv
n and wn+1 = A∆tw

n. The corresponding (semi-
discrete) splitting method reads

vn = [A∆t ◦ D∆t ◦ T∆t]
n v0, wn = [A∆t]

n w0 n = 1, . . . , N.

For the fully discrete formulation, the exact solutions need to be replaced by
the corresponding numerical approximations. We use a front tracking method,
[5], to approximate Tt and a finite volume method (FVM), [16], to approximate
Dt. The sorption problem At is transformed to an integral equation that is dis-
cretized by piecewise linear approximation of the integrand. Let us denote the
approximate solution operators by T∆xy,∆t, D∆xy,∆t and A∆xy,∆t. Here, T∆xy,∆t

indicates a front tracking method. This means that dimensional splitting is
performed with a 1D-front tracking method per dimension, combined with a
suitable projection, as in [5], Chapter 4. So T∆xy,∆t = T∆x,∆t◦π◦T∆y,∆t, where
π indicates the projection defined below.

We construct a projection operator as in the Godunov method [17]. The front
tracking method used to solve the hyperbolic problem results in a profile
that consists of shocks and rarefaction waves. This must be projected onto
the fixed Cartesian grid before the diffusion operator can be applied. Let us
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consider a uniform grid {xi, yj}, with i = 1, . . . , N1 and j = 1, . . . , N2. We set
∆x = xi+1−xi, and analogously for ∆y. The projection operator is constructed
so that the mass

∫
F (v)dΩ is conserved.

Definition 4 The projection operators π and π̃ are defined by

πv(x, y) = F−1

(
1

|Ωij|
∫

Ωij

F (v(x, y)) dΩ

)
= F−1 (π̃F (v)) , for (x, y) ∈ Ωij ,

(13)
where Ωij = [xi, xi+1)× [yj , yj+1), with i = 1, . . . , N1−1 and i = j, . . . , N2 −1.

The fully discrete splitting method then reads

vn = [A∆xy,∆t ◦ D∆xy,∆t ◦ π ◦ T∆xy,∆t]
n v0, n = 1, . . . , N, (14)

wn = [A∆xy,∆t]
n w0, n = 1, . . . , N, (15)

In addition, the sorption part is solved in several substeps with a uniform time
step σ, mσ = ∆t. The main reason for σ is the different time scaling between
convection and diffusion on one hand and the sorption/reaction on the other
hand. We write:

vn = [[A∆xy,σ]
m ◦ D∆xy,∆t ◦ π ◦ T∆xy,∆t]

n v0, n = 1, . . . , N, (16)

wn = [[A∆xy,σ]
m]nw0, n = 1, . . . , N, (17)

We adopt the following notation:

[A∆xy,∆t ◦ D∆xy,∆t ◦ π ◦ T∆xy,∆t] v
n = A∆xy,∆t ◦ D∆xy,∆t ◦ πṽn+

1
3

= A∆xy,∆t ◦ D∆xy,∆tv
n+

1
3 = A∆xy,∆tv

n+
2
3 = vn+1 (18)

and A∆xy,∆tw
n = wn+1.

3 Convergence of the operator splitting method

In this section the technique used to prove the convergence of the numerical
operator splitting scheme is explained. We start by stating the convergence
theorem for problem (P), and next we prove a series of lemmas needed for its
proof, which is given in Sec. 3.5. First, we will assume the following conditions
to be satisfied throughout the text.

(i) F (v) is nondecreasing
(ii) F and F−1 are Lipschitz continuous, hence 0 ≤ c ≤ F ′ ≤ C
(iii) ψn(v) is nondecreasing and Lipschitz continuous
(iv) functions g(x, y), h1(x, y), h2(x, y), a(x, y) and b(x, y) are smooth
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(v) g(x, y) > 0, a(x, y) > 0, b(x, y) > 0 for ∀x, y ∈ Ω
(vi) v0(x, y), vI(x, t) and w0(x, y) are nonnegative, bounded and of bounded

total variation

For the norms we use the notations ‖ · ‖p for the standard norm in Lp(Ω),
the space of measurable p-th power Lesbesgue integrable functions over Ω. By
Xloc, we indicate the subspace of the function space X where the support of
the funcions is contained in Ω. We recall that the 2 dimensional total variation
of a function h(x, y) over a rectangular domain is given by

TVxyh(x, y) =
∫
TVx(h(x, y)) dy +

∫
TVy(h(x, y)) dx.

We also consider a numerical scheme satisfying ∆t = C∆x = C∆y, C fixed
as ∆t→ 0.

Definition 5 Let v∆t(x, y, t) be a piecewise constant function in t, v∆t(x, y, t) =
vn(x, y) for t ∈ (tn−1, tn), and analogously, consider w∆t.

The specific approximation methods used will be given below. The result can
be summarized in the following theorem.

Theorem 6 (Fully discrete convergence) Let the conditions (i)–(vi) be
satisfied. Then, the numerical approximation (v∆t(x, y, t), w∆t(x, y, t)) obtained
by the operator splitting scheme (14)–(15), resp.(16)–(17), applying front track-
ing for the advection, a finite volume scheme for the diffusion, and a time
discretization of the integral equation for the sorption, converges (up to a sub-
sequence) in L1,loc, to a local, very weak solution of the convection-diffusion-
reaction problem (P) for n → ∞, resp. for n → ∞, σ → ∞. If the local,
very weak solution is unique, the original sequence (v∆t(x, y, t), w∆t(x, y, t))
converges.

The proof of the theorem is based on application of Riesz-Fréchet-Kolmogorov
compactness criterion based on boundedness of total variation.

3.1 Hyperbolic step and projection

The transport problem can be solved by dimensional operator splitting, [11].
Therefore, we first consider only one space dimension. No outflow boundary is
set for (P) during this transport step. In this section we follow the arguments
in [12,11,5,18] and state the results only.

The 1D transport equation is given by

∂tF (v) −G(x, y)∂xv = 0. (19)
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Generally, there are many weak solutions to (19). One of them is the entropy
solution v and is physically relevant. It can be interpreted as

v := lim
ε→0

vε,

where vε is the solution of a regularized parabolic problem, where ε∆v is
added to (19) - for the exact definition see [17]. The front tracking approxima-
tion of (19) is based on the solution of the corresponding Riemann problems
(piecewise-constant initial profile). The acceptable shocks are moving with
Rankine-Hugoniot speed and the unacceptable shocks are split into pieces
(discretization), with each piece moving with the corresponding velocity. This
leads to a piecewise-constant approximation of the rarefaction waves which
develop from nonacceptable shocks.

Remark 7 As problem (P) is non-degenerate in the diffusion, no entropy for-
mulation is needed, and standard (very) weak solutions can be used. Therefore,
the entropy condition only plays a role in the hyperbolic step.

Let us recall the following results. Theorem 3.1 of [19] gives an important
stability result, based on a Kružkov analysis, see also [12,5]:

Theorem 8 Let u1 and u2 denote the two entropy solutions of

∂tui +Gi(x, t)∂xfi(ui) = 0, ui(x, 0) = ui,0, i = 1, 2,

with x ∈ R. Suppose that ∂xGi is bounded and fi satisfies a Lipschitz condition.
Then, we have

‖u1(�, t) − u2(�, t)‖1 ≤ eγt‖u1,0 − u2,0‖1 + λteγt min (TV (u1,0), TV (u2,0)) ,

where

λ = ‖f1‖Lip (‖G1 −G2‖∞ + νt(G1)) + ‖G2‖∞‖f1 − f2‖Lip,

γ = 2‖∂xG1‖∞‖f1‖Lip + ‖∂xG2‖∞‖f2‖Lip,

νt(G) = sup
0<z<t

‖G(�, z+) −G(�, z−)‖∞,

where G(�, z∓). = lim
t

≶
→z

G(�, t).

This result can be extended to Lipschitz continuous velocity fields Gi. Note
that in our setting, νt(G) = 0, and that all conditions of this theorem are
satisfied in (P), G being smooth and f = F−1 being Lipschitz continuous.
Along the lines of [12], Lemma 3.1, and [18], Lemma 2.1, we can obtain the
following bounds.

Lemma 9 Let v(x, t) be a solution of (19) obtained by the front tracking
method (under any fixed discretization of unacceptable shocks), with G smooth,
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positive and bounded and F and F−1 non-decreasing and Lipschitz continuous.
Then v satisfies the following estimates

‖F (v(., t))‖∞ ≤ max
(∥∥∥F (v0)

∥∥∥
∞
, ‖F (vI(.))‖∞

)
,

‖v(., t)‖∞ ≤ max
(∥∥∥v0

∥∥∥
∞
, ‖vI(.)‖∞

)
,

∥∥∥∥∥
F (v(., t)) − F (v0)

G

∥∥∥∥∥
1

≤ Ct,

TVxF (v(., t)) ≤ TVxF (v0) + TVtF (vI(.)) ≤ TVxF (v0) + Ct,

where C is a constant depending on the data. The solution can be constructed
by front tracking in a finite number of steps for any t > 0.

After the transport step in the x- or y-direction, a projection step is done.
Passing to 2 space dimensions, if we consider a time step ∆t, then starting

from v(x, y, tn) = vn, we arrive after one transport step at T∆xy,∆tv
n = ṽn+

1
3 .

With projection to the fixed grid, we next obtain πṽn+
1
3 = vn+

1
3 . The following

lemma is straightforward (see [11]).

Lemma 10 Let h(x, y) ∈ BV (R2), and let π and π̃ be the projection operators
from (13). Then we have

TVxyF (h) ≥ TVxyπ̃F (h) = TVxyF (πh)

We can also derive a result for the variation in time. In the same lines as in
[5,11], we obtain

Lemma 11 If C = ∆x/∆t = ∆y/∆t, the projection operator satisfies

‖F (vn+
1
3 )−F (ṽn+

1
3 )‖1 =

∫

Ω
|π̃F (ṽn+

1
3 )−F (ṽn+

1
3 )|dxdy ≤ C∆tTVxyF (ṽn+

1
3 ).

The above lemma will be useful to relate all errors made to the total variation
of the initial condition. Now let us consider the full two dimensional problem.
The boundedness is evident. Along the lines of [11], Lemma 2, we prove the
following lemma.

Lemma 12 For π ◦ T∆x,∆t ◦ π ◦ T∆y,∆tv
n = vn+

1
3 we have that

TVxyF (vn+
1
3 ) ≤ eC1∆t (TVxyF (vn) + C2∆t) ,

Here C1 and C2 are due to the refined stability estimate given in Theorem 8.

Remark 13 The proof in [11] is given for an unbounded domain and needs to
be adapted for our bounded domain. However, the bounded domain considered
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here has only little influence on the proof: no-flow-boundaries have no effect,
and the outflow is not accompanied by reflecting waves.

3.2 The parabolic step

The finite volume approximation scheme is given by

F (v
n+

2
3

i,j ) − F (v
n+

1
3

i,j )

gij

+
(
a

i+
1
2 ,j

+ a
i−

1
2 ,j

+ b
i,j+

1
2

+ b
i,j−

1
2

)
∆t

∆x2
v

n+
2
3

i,j −

∆t

∆x2

[
a

i−
1
2 ,j
v

n+
2
3

i−1,j + a
i+

1
2 ,j
v

n+
2
3

i+1,j + b
i,j+

1
2
v

n+
2
3

i,j+1 + b
i,j−

1
2
v

n+
2
3

i,j−1

]
= 0. (20)

where gij = g(xi, yj), ai+
1
2 ,j

= a(xi+xi+1

2
, yj), bi,j+1

2
= b(xi,

yj+yj+1

2
). For the

sake of brevity and simplicity in the proofs, we choose an equidistant grid,
and let ∆x = ∆y. Taking into account the boundary conditions (11), we put
a

i−
1
2 ,j

≡ 0 for the points {x1, yj} and a
i+

1
2 ,j

≡ 0 for the points {xN1 , yj},
j = 1, . . . , N2. Moreover, for {xi, y1}, i = 1, . . . , N1, we take b

i,j−
1
2
≡ 0 in (20),

and b
i,j+

1
2
≡ 0 for the points {xi, yN2}. For brevity of notation, we introduce

ı̃ = i− 1
2 , ̃ = j − 1

2 . For the boundedness and TV estimates we obtain

Lemma 14 Let v
n+

2
3

1 and v
n+

2
3

2 be the approximate solutions of (10), gener-

ated by the scheme (20) corresponding to the starting points v
n+

1
3

1 , v
n+

1
3

2 . Then,
one has

‖F (v
n+

2
3

1 )‖∞ ≤ ‖F (v
n+

1
3

1 )‖∞,

∥∥∥∥∥∥∥

F (v
n+

2
3

1 ) − F (v
n+

2
3

2 )

g

∥∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥∥

F (v
n+

1
3

1 ) − F (v
n+

1
3

2 )

g

∥∥∥∥∥∥∥
1

.

PROOF. In (20) we choose i = l and j = k, such that v
n+

2
3

l,k = max
ij

v
n+

2
3

ij .

Due to the properties of F , F (v
n+

2
3

l,k ) = max
ij

F (v
n+

2
3

ij ). We directly obtain

maxF (v
n+

2
3

i,j ) ≤ maxF (v
n+

1
3

i,j ), and therefore also max v
n+

2
3

i,j ≤ max v
n+

1
3

i,j . This

can be repeated for min
ij
v

n+
2
3

ij , which proves the first assertion. The second

assertion follows by subtracting (20) for v1 from the same equation for v2,

11



with dij = v
n+

2
3

1,ij − v
n+

2
3

2,ij . This gives



F (v

n+
2
3

i,j ) − F (v
n+

1
3

i,j )

gijdij

+ (aı̃+1,j + aı̃j + bi,̃+1 + bĩ)
∆t

∆x2


 dij

=
∆t

∆x2
[aı̃jdi−1,j + aı̃+1,jdi+1,j + bi,̃+1di,j+1 + bijdi,̃−1]+

F (v
n+

1
3

1,i,j ) − F (v
n+

1
3

2,i,j )

gij

.

Taking absolute values leads to




F (v
n+

2
3

i,j
)−F (v

n+
1
3

i,j
)

gijdij
+ (aı̃+1,j + aı̃j + bi,̃+1 + bĩ)

∆t

∆x2


 |dij| ≤

∣∣∣∣∣∣∣

F (v
n+

1
3

1,i,j
)−F (v

n+
1
3

2,i,j
)

gij

∣∣∣∣∣∣∣
+

∆t

∆x2
[aı̃j|di−1,j| + aı̃+1,j |di+1,j| + bi,̃+1|di,j+1| + bĩ|di,j−1|] ,

due to condition (i), and the fact that a and b are positive. Summation over
i and j, noting that a and b are zero on the boundary, proves the lemma.�

In [12], the bound of total variation is provided in 1D. In higher dimensions,
a different approach is needed. The following lemma is sufficient to prove TV
boundedness of the scheme (14)–(15). First, rewrite (20) as

F (v
n+

2
3

i,j
)−F (v

n+
1
3

i,j
)

gij
= ∆t

∆x

[
aı̃+1,jD

i
i+1,jv − aı̃jD

i
i,jv
]

+ ∆t
∆y

[
bi,̃+1D

j
i,j+1v − bĩD

j
i,jv
]
,

(21)
where

Di
ijv =

v
n+

2
3

i,j
−v

n+
2
3

i−1,j

∆x
, Dj

ijv =
v

n+
2
3

i,j
−v

n+
2
3

i,j−1

∆y
.

Lemma 15 Let vn+
2
3 be the solution of (20) with a and b ≥ δ > 0. Then,

∆tTVxyv
n+

2
3 ≤ C1∆t− C2

∑

ij

1

gij

[
F (v

n+
2
3

ij ) − F (v
n+

1
3

ij )

]
vn+

2
3∆x∆y, (22)

where C1 and C2 > 0.

PROOF. We multiply both sides of (21) with v
n+

2
3

ij . We sum over i and j,
and apply Abel’s summation,

∑m
k=1 dk(ck − ck−1) = dmcm − d0c0 −

∑m
k=1(dk −

dk−1)bi−1 in the rhs, once with k = i and ci = a
i+

1
2 ,j
Di

i+1,jv, di = v
n+

2
3

ij , and

12



once with k = j and cj = b
i,j+

1
2
Dj

i,j+1v, dj = v
n+

2
3

ij . Using the boundary

conditions (Dk
ijv = 0, k = i, j), we arrive at

∑

ij

1

gij

[
F (v

n+
2
3

ij ) − F (v
n+

1
3

ij )

]
v

n+
2
3

ij

+ ∆t
∑

ij

[
a

i−
1
2 ,j

[Di
ijv

n+
2
3 ]2 + b

i,j−
1
2
[Dj

ijv
n+

2
3 ]2
]

= 0. (23)

We can now rewrite the total variation. Invoke the inequality |f | ≤ 1
2

+ 1
2
f 2.

In combination with (23) and the fact that aı̃j and bĩ ≥ δ > 0, we obtain

∑

ij

[∣∣∣∣D
i
ijv

n+
2
3

∣∣∣∣+
∣∣∣∣D

j
ijv

n+
2
3

∣∣∣∣
]
∆x∆y (24)

≤ 1

2
|Ω| + 1

2
|Ω| + 1

2δ

∑

ij

[
a

i−
1
2 ,j

[Di
ijv

n+
2
3 ]2 + b

i,j−
1
2
[Dj

ijv
n+

2
3 ]2
]
∆x∆y

≤ |Ω| − 1

2δ

1

∆t

∑

ij

1

gij

[
F (v

n+
2
3

ij ) − F (v
n+

1
3

ij )

]
v

n+
2
3

ij ∆x∆y.�

3.3 The sorption step

The sorption has no explicit dependence on space. Whenever possible, for
simplicity we only mention the time dependence. From (12) we deduce,

F (v(t)) + w(t) = C0, and w(t) = wne−κ(t−tn) + κ
∫ t

tn

e−κ(t−s)ψn(v(s)) ds,

(25)

where C0 = C(x, y) ≡ F (vn+
2
3 ) + wn+

2
3 is a constant in time and where

wn+
2
3 ≡ wn. Consequently, we obtain

F (v(t)) = F (vn+
2
3 ) + wn − wne−κ(t−tn) − κ

∫ t

tn

e−κ(t−s)ψn(v(s)) ds. (26)

This nonlinear integral equation can be solved numerically using l micro-time
steps σ, lσ = ∆t in the approximation of the integral. We linearize ψn(s) by
a piecewise linear function and successively obtain ṽ(t) by Newton’s method,
setting ṽ(∆t) = vn+1. This can be performed up to a required accuracy. After-
wards, w can be determined from (25). To distinguish the two, we denote by
(v(t), w(t)) the solution to (25) and by (vσ(t), wσ(t)) the numerical approxi-
mation. For the details see (57) below.

13



Lemma 16 Let (v(t), w(t)) be the solution to (25) obtained by the described
approximation method. Then,

‖F (v(t))‖∞ + ‖w(t)‖∞ ≤
(
‖F (vn+

2
3 )‖∞ + ‖wn‖∞

)
(1 + C∆t) (27)

PROOF. Let us consider the exact solution of (25). By the positivity of F,w
and ψn, and by the Lipschitz continuity of ψn, as well as by F (v) ≥ v ≥ 0, we
obtain from (26)

|F (v(t))|≤ |F (vn+
2
3 )| + |wn|(1 − e−κ(t−tn)) + κ

∫ t

tn

e−κ(t−s)|ψn(v(s))| ds

≤ |F (vn+
2
3 )| + |wn|(1 − e−κ(t−tn)) + κL

∫ t

tn

F (v(s)) ds.

Similarly, from the second equality of (25),

|w(t)| ≤ |wn|e−κ(t−tn) + κL
∫ t

tn

F (v(s)) ds.

Adding the two previous estimates gives

|F (v(t))| + |w(t)| ≤ |F (vn+
2
3 )| + |wn| + 2κL

∫ t

tn

(|F (v(s))|+ |w(s)|) ds,

which allows to apply Gronwall’s lemma, resulting in the required inequality
for the exact solution. This can be extended to the approximation, see Remark
18.�

Lemma 17 Let (v(t), w(t)) be the solution to (25) obtained by the described
approximation method, then, if ∆t = C∆x = C∆y and ψn is Lipschitz con-
tinuous, we have that

TVxyF (v(t)) ≤
(
TVxyF (vn+

2
3 ) + C∆t TVxyw

n

)
(1 + C∆t) (28)

TVxyw(t) ≤ TVxyw
n + C

∫ tn+1

tn

TVxyv(s) ds, (29)

where C is a positive constant.

PROOF. We start with the TVy, denoting by subscript j a grid point on the
y-axis. Substract (26) for vj from the expression for vj+1 to obtain

F (vj+1(t)) − F (vj(t)) = F (v
n+

2
3

j+1 ) − F (v
n+

2
3

j ) + (wn
j+1 − wn

j )
(
1 − e−κ(t−tn)

)

− κ
∫ t

tn

e−κ(t−s) (ψn(vj+1(s)) − ψn(vj(s))) ds. (30)

14



Taking absolute values, and summing over j, we obtain an expression for TVy.
The same can be done for TVx, allowing to obtain an expression for TVxy.
Assuming Lipschitz continuity of ψn and moreover that ∆t = C∆x = C∆y,
it follows that

TVxyF (v(t)) ≤ TVxyF (vn+
2
3 ) +

(
1 − e−κ(t−tn)

)
TVxyw

n + Lκ
∫ t

tn

TVxyv(s) ds

≤ TVxyF (vn+
2
3 ) +

(
1 − e−κ∆t

)
TVxyw

n + Lκ
∫ t

tn

TVxyF (v(s)) ds. (31)

We used the fact that ψe is nondecreasing, and F (v) = v + ψe(v) so that
|vj+1−vj | ≤ |F (vj+1)−F (vj)|. From (31), using Gronwall’s Lemma, we obtain
the first assertion. Similarly, (25), gives

TVxyw(t) ≤ e−κ(t−tn)TVxyw
n + Lκ

∫ t

tn

TVxyv(s) ds (32)

The second inequality of the lemma is straightforward. Again this result for
the exact solution can be extended to the approximation, see Remark 18.�

Remark 18 Lemma’s 16 and 17 state estimates for the exact solution (v, w)
of the sorption problem. We need analogous estimates for the numerical so-
lution (vσ, wσ) – σ being the discretization parameter for the reaction part.
These analogous estimates can readily be obtained for a practical integration
scheme for (25), see eg. [15].

3.4 The four steps combined

To prove the key issue of total variation boundedness of the numerical solution,
we need to define an auxiliary function. Let

B(s) := sF (s) −
∫ s

0
F (z) dz.

We have that

[F (u) − F (v)]u ≥ B(u) − B(v). (33)

Indeed, [F (u) − F (v)]u = F (u)u− F (v)v − (u − v)F (v) ≥ F (u)u− F (v)v −∫ u
v F (z) dz ≡ B(u) − B(v), since F (u) is monotonously increasing. Note also

that B(s) > 0 if s > 0, and B(0) = 0, as well as B′(s) = sF ′(s). Moreover,
the boundedness of B on (0, L) follows from the boundedness of F on (0, L).

We have the following lemma for v∆t from Def. 5.

Lemma 19 The approximation scheme given by (18), with ∆t = C∆x =

15



C∆y, satisfies

‖vn‖∞ + ‖wn‖∞ ≤ C, and TVxyw∆t(t) +
∫ T

0
TVxyv∆t(t) dt ≤ C,

where the constant C is independent of the space and time discretization and
only depends on the domain, as well as on a, b, ‖w0‖∞, ‖vI‖∞ and ‖v0‖∞.

PROOF. Lemma 16 in combination with Lemma 9, Lemma 14, and the
properties of π, give

‖F (vn+1)‖∞+‖wn+1‖∞ ≤ {max (‖F (vn)‖∞, ‖F (vI(t))‖∞) + ‖wn‖∞} (1+C∆t)

Consequently, using v < F (v), and the properties of the initial state w0, v0 and
the boundary state vI , the first assertion is true for n = 0, and by induction
also for all n. For the second inequality, we consider (28) from Lemma 17, we
use the Lipschitz continuity of F in the right hand side, and we apply Lemma
15. Furthermore, applying (33), we obtain

TVxyF (v(t)) ≤
(
C1L− C2L

∆t

∑

ij

1

gij

[
F (v

n+
2
3

ij ) − F (v
n+

1
3

ij )

]
v

n+
2
3

ij ∆x∆y

+C3∆t TVxyw
n
)
(1 + C∆t)

≤
(
C1L− C2L

∆t

∑
ij

1
gij

[
B(v

n+
2
3

ij ) − B(v
n+

1
3

ij )

]
∆x∆y

+C3∆t TVxyw
n
)
(1 + C∆t)

=
(
C1L+ C3∆t TVxyw

n − C2L
∆t

∑
ij

1
gij

∫

Ωij

[
B(vn+1

ij ) − B(vn
ij)
]
dxdy

+C2L
∆t

∑
ij

1
gij

∫

Ωij

[
B(vn+1

ij ) −B(v
n+

2
3

ij ) +B(vn+
1
3 (x, y)) − B(ṽn+

1
3 (x, y))

+B(ṽn+
1
3 (x, y)) −B(vn

ij)
]
dxdy

)
(1 + C∆t)

≤
(
C1L− C2L

∆t

∑
ij

1
gij

∫

Ωij

[
B(vn+1

ij ) −B(vn
ij)
]
dxdy + C3∆t TVxyw

n

+C2L
∆t

∑
ij

1
gij

∫

Ωij

[
B(vn+1

ij ) −B(v
n+

2
3

ij )

]
dxdy

+C2L
∆t

∑
ij

v
n+

1
3

ij

gij

∫

Ωij

[
F (v

n+
1
3

ij ) − F (ṽn+
1
3 (x, y))

]
dxdy

+C2L
∆t

∑
ij

1
gij

∫

Ωij

[
F (ṽn+

1
3 (x, y)) − F (vn

ij)
]
[ṽn+

1
3 (x, y)]dxdy

)
(1 + C∆t).

Let us denote the last three terms in the first factor by I1, I2 and I3 (con-
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tributions due to sorption, projection and transport, respectively). I2 is zero,
as this is exactly the projection (13). I3 can be estimated by using Lemma 9
(Lipschitz continuity in time and L∞-diminishing property of the transport
part) and the positivity of g. We obtain

I3 ≤ C‖F (vn))‖∞ + C‖F (vI(t))‖∞ ≤ C.

To estimate I1, note that (12) yields for every micro time step σ,

F (vn,m) − F (vn,m−1)

σ
+
wn,m − wn,m−1

σ
= 0

for m = 1, . . . l, lσ = ∆t, vn,0 = vn+
1
3 . Multiplying this equation by σ and

using (33) implies

B(vn,m) −B(vn,m−1) ≤ −(wn,m − wn,m−1)F−1(Cn
0 − wn,m)

where we used (25) and Cn
0 = F (vn+

2
3 ) + wn = F (vn,m) + wn,m = F (vn+1) +

wn+1, m = 0, 1, . . . l. After summation over m and integration, we obtain

I1 ≤
C2L

∆t

∑

ij

∫

Ωij

(
−∑l

m=1
(wn,m−wn,m−1)

σ
F−1(Cn

0,ij − wn,m)σ
) dxdy

gij

≤ C2L

∆t

∑

ij

1

gij

∫

Ωij

(
−
∫ tn+1

tn

(∂tw
n(t))F−1(Cn

0,ij − wn(t)) dt+ O(∆t)
)

dxdy

≤ C2L

∆t

∑

ij

1

gij

∫

Ωij

(∫ tn+1

tn

∂t[G(Cn
0,ij − wn(t))] dt+ O(∆t)

)
dxdy,

where we introduced the function G, satisfying G(s) =
∫
F−1(s) ds. Then, one

finds

I1 ≤
C2L

∆t

∑

ij

1

gij

∫

Ωij

(
[G(Cn

0,ij − wn+1) −G(Cn
0,ij − wn)] + O(∆t)

)
dxdy

≤ C

∆t

∑

ij

∫

Ωij

|G′| |wn+1 − wn| + O(∆t)

∆t
≤ C.

Here we used that G has bounded derivative and that w is the solution of an
integral equation and hence its changes in time are of order O(∆t). Using the
estimates of I1, I2 and I3, as well as the relation between v and F (v), we now
have

TVxyv(t) ≤(
C1 + C3∆t TVxyw

n − C2

∆t

∑
ij

∫

Ωij

1

gij

[
B(vn+1

ij ) − B(vn
ij)
]
dxdy

)
(1 + C∆t).

(34)
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Multiplying this by ∆t at t = tn+1, and summing over n gives,

N∑

n=1

[∆t TVxyv
n] (35)

≤C(1 + C∆t)T − C2(1 + C∆t)
∑

ij
1

gij

[
B(vN

ij ) −B(v0
ij)
]
∆x∆y

+(1 + C∆t)∆tC3

N∑

n=1

∆t TVxyw
n

≤CT + C
∑

ij
1

gij
B(v0

ij)∆x∆y + C ≤ CT + C ‖F (v0)‖∞‖v0‖∞
ǫ

‖Ω‖ + C ≤ C,

where we used 0 ≤ B(v0) ≤ ‖F (v0)‖∞‖v0‖∞ and

∆t
N∑

n=1

∆t TVxyw
n ≤ C

∑

n

∑

ij

(∣∣∣wn
i+1,j − wn

i,j

∣∣∣+
∣∣∣wn

i,j+1 − wn
i,j

∣∣∣
)

∆x∆y∆t ≤ C,

due to the uniform boundedness of wn
ij and ∆t = C∆x = C∆y. Estimating

TVxyw, we substitute (34) into (29), to obtain

TVxyw(t) ≤ TVxyw
n+

C∆t

(
C1 + C3∆t TVxyw

n − C2

∆t

∑
ij

∫

Ωij

1

gij

[
B(vn+1

ij ) − B(vn
ij)
]
dxdy

)
(1+C∆t).

Putting t = tN , applying recursion on n and applying the same techniques as
before gives

TVxyw
N ≤ TVxyw

0 + C ≤ C. � (36)

The TV boundedness property of Lemma 19 can be rephrased as follows.

Lemma 20 Let v∆t denote the approximate solution defined by Def. 5. Then

∫ T

0

∫

Ω
|v∆t(x+ k∆x, y + l∆y, t) − v∆t(x, y, t)|dxdydt ≤ C(k∆x+ l∆y), (37)

holds for k, l = 1, 2, . . .. H,ere C only depends on the domain, on a and b, and
on ‖w0‖∞, ‖vI‖∞ and ‖v0‖∞.

With respect to the t-variable, the following L1-Hölder continuity can be
proved.

Lemma 21 Let v∆t, w∆t denote the approximate solution defined by Defini-
tion 5, (15). Then

18



∫ T

0

∫

Ω
|v∆t(x, y, t+ k∆t) − v∆t(x, y, t)|dxdydt ≤ C

√
k∆t, (38)

∫ T

0

∫

Ω
|w∆t(x, y, t+ k∆t) − w∆t(x, y, t)|dxdydt ≤ Ck∆t. (39)

uniformly for k, where C only depends on the domain, on a and b and on
‖vI‖∞ and ‖v0‖∞.

PROOF. The result for w follows directly from (25). The proof for v is based
on the Kružkov argument in [5]. Due to the strong Lipschitz continuity of the
solution of the hyperbolic problem and the properties of the projection, (13),
we have that

∑

ij

∫

Ωij

1

gij

[
F (v

n+
1
3

ij ) − F (ṽn+
1
3 (x, y))

]
φhdxdy = 0, (40)

and
∑

ij

∫

Ωij

1

gij

[
F (ṽn+

1
3 (x, y)) − F (vn

ij)
]
φhdxdy ≤ C‖φ‖∞∆t, (41)

where φ is a smooth function and where we consider its piecewise constant
approximation φh ≡ φ∆x,∆t = φij, for (x, y) ∈ Ωij . Now, for the parabolic
step we multiply both sides of (21) by φij and sum up over i and j. Using the
notation (18) and applying Abel’s summation, we get

∑

ij

∫

Ωij

1

gij

[
F (v

n+
2
3

ij ) − F (v
n+

1
3

ij )

]
φhdxdy (42)

≤∆t

∣∣∣∣∣∣

∑

ij

[
aij [D

i
ijv

n+
2
3 ]Di

ijφh + bij [D
j
ijv

n+
2
3 ]Dj

ijφh

]
∆x∆y

∣∣∣∣∣∣

≤∆tC max (‖Dxφh‖∞, ‖Dyφh‖∞)TVxyv
n+

2
3

≤C∆t‖∇φh‖∞TVxyv
n+

2
3 ≤ C∆t‖∇φ‖∞TVxyv

n+
2
3 . (43)

Here, we used the properties of a and b, and the fact that φh → φ for ∆t → 0,
dropping higher order terms in ∆t. It remains to consider the sorption. From
(26), by the Lipschitz continuity of ψn and by the boundedness of v and w, it
follows

F (v(tn+1) − F (vn+
2
3 ) ≤ |F (v(tn+1) − F (vn+

2
3 )| ≤ |wn|(1 − e−κ∆t)

+ κL
∫ tn+1

tn

e−κ(t−s)|v(s)| ds ≤ κ(1 + L)C∆t. (44)

The above is valid for the exact solution v(tn+1) of the integral equation.
However, the same holds for the numerical approximation vn+1 as the linear
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interpolant of ψn(v(s)) can be bounded in the same way. Therefore, we have

‖F (vn+1) − F (vn+
2
3 )‖1 ≤ C∆t and

∑

ij

∫

Ωij

1

gij

[
F (vn+1

ij ) − F (v
n+

2
3

ij )

]
φhdxdy ≤ C‖φ‖∞∆t. (45)

From the first equality of (25) it immediately follows that also ‖wn+1−wn‖1 ≤
C∆t. We used wn+1 ≡ wn+

2
3 , wn+

1
3 ≡ wn. Combining the four steps (43), (40),

(41) and (45) and repeating the argument for time steps n+ 1, . . . , n+ k, we
find,

∑

ij

∫

Ωij

φh

gij

[
F (vn+k

ij ) − F (vn
ij)
]
dxdy ≤ C∆t(‖φ‖∞k+‖∇φ‖∞

k∑

i=1

TV (vn+i−
1
3 )).

Multiplying by ∆t, summing on n, we get

∫ T

0

∫

Ω

φ

g
[F (v∆t(x, y, t+ k∆t)) − F (v∆t(x, y, t))] dxdydt

≤ C(‖φ‖∞ + ‖∇φ‖∞)k∆t. (46)

Here, we used the fact that
∑k

i=1 ∆t
∑N

n=1 TVxyv
n+i−

1
3∆t ≤ kC∆t, which can

be obtained applying the same reasoning as was used in Lemma 19. Changing
the summation into integrals, numerical errors are introduced (e.g. when gij

is replaced by g(x, y)). However, these go to zero as ∆x → 0.

For a special choice of φ (see [13,9]), (46) results in

∫ T

0

∫

Ω

1

g
|F (v∆t(x, y, t+ k∆t)) − F (v∆t(x, y, t))| dxdydt ≤ C

√
k∆t.

Recall that v∆t is bounded. Use the fact that TVxyv ≤ C TVxyF (v), (F ′(v) ≥
1
C

), and notice that g < C. We conclude that

∫ T

0

∫

Ω
|v∆t(x, y, t+ k∆t) − v∆t(x, y, t)| dxdydt ≤ C

√
k∆t. �

3.5 Compactness

Now we modify v∆t and w∆t by new functions which reflect the realization
of all phenomena (transport, diffusion, reaction) in the time interval ∆t. We
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define vν(x, y, t) as (see [10])

vν(x, y, t) =





T∆xy(3(t− tn))vn(x, y), t ∈ [tn, tn+
1
3
)

D∆xy(3(t− t
n+

1
3
))vn+

1
3 (x, y), t ∈ [t

n+
1
3
, t

n+
2
3
),

A∆xy(3(t− t
n+

2
3
))vn+

2
3 (x, y), t ∈ [t

n+
2
3
, tn+1),

for n = 0, . . . , N − 1 ,where vn is the solution obtained at time tn and

vn+
1
3 = πT∆xy(3(t

n+
1
3
− tn))vn(x, y) = πṽn+

1
3 (x, y). Here, we indicate by ν the

discretization parameters, ν ≡ ν(∆t). Furthermore, t
n+

1
3

= tn +(tn+1 − tn)/3,

t
n+

2
3

= tn + 2(tn+1 − tn)/3. Next, define wν(x, y, t) as

wν(x, y, t) =





T∆xy(3(t− tn))wn(x, y) ≡ wn(x, y), t ∈ [tn, tn+
1
3
)

D∆xy(3(t− t
n+

1
3
))wn(x, y) ≡ wn(x, y), t ∈ [t

n+
1
3
, t

n+
2
3
)

A∆xy(3(t− t
n+

2
3
))wn(x, y), t ∈ [t

n+
2
3
, tn+1),

where wn is the solution obtained at time tn and wn+1 = A∆xy(3(tn+1 −
t
n+

2
3
))wn(x, y). This definition corresponds to the fact that the unknown w

is changing only in one part of the splitting process. We further write τn =
tn+1 − tn. All results obtained for (v∆t, w∆t) are also valid for (vν , wν). We can
state:

Lemma 22 If ∆t → 0, then there exists a subsequence vνj
(x, y, t) of the se-

quence vν(x, y, t) such that vνj
→ v for j → ∞ in L1,loc(Ω × I), Ω × I =

(x(1), x(2))×(y(1), y(2))×(0, T ). Similarly, we can find a subsequence wνj
(x, y, t)

of wν(x, y, t) such that wνj
→ w for j → ∞ in L1,loc(Ω × I)

PROOF. Lemma 19 implies that vν(x, y, t) is uniformly bounded. From Lem-
mas 19-21 it follows that

∫ T
0

∫
Ω |vν(x+k∆x, y+l∆y, t+m∆t)−vν(x, y, t)|dxdydt

≤ C(k∆x+l∆y+
√
m∆t),. Thus, the condition of the compactness criterion in

the Riesz-Fréchet-Kolmogorov theorem is satisfied. Consequently, there exists
a subsequence vνj

(x, y, t) that converges to some v(x, y, t) in L1,loc(Ω × I).

Lemmas 19, 21 give all necessary results for wν too. Then, in an analogous
way, we can prove the existence of wνj

(x, y, t) converging to some w(x, y, t) in
L1,loc(Ω × I). �

Remark 23 We emphasize the fact that the convergence is in L1,loc(Ω × I).
Hence, nothing can be said on the value of v on the boundary or about its
derivatives. Therefore, the local, very weak formulation is consistent with our
approach for proving the convergence result.
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We now prove Theorem 6:

PROOF. Lemma 22 states that subsequences {vν}∆t>0 and {wν}∆t>0 con-
verge to some v(x, y, t) and w(x, y, t), respectively. To complete the conver-
gence proof (in the case of a unique local, very weak solution of (P)) for the
splitting procedure, it is now sufficient to show that this limit is the very weak
solution (6)-(7) of problem (P).

Consider test functions φ(x, y, t) ∈ C∞(Ω × I), with compact support away
from the the outflow boundary. At the inflow boundary, y = y(2), we impose
∂yφ

∣∣∣
y=y(2)

= 0 and at the no-flow boundary we impose ∂xφ
∣∣∣
x=x(1)

= 0 =

∂xφ
∣∣∣
x=x(2)

. Furthermore, we require φ(x, y, T ) = 0. We also consider the test

functions η ∈ C∞(Ω × I) with η(T ) = 0. The variational formulation is then
given by (6)-(7), adapted as mentioned in Def. 2. We have to show that the
limit functions v(x, y, t) and w(x, y, t) satisfy (6)-(7). We use ideas from [10,5].

We begin with the transport part for t ∈ (tn, tn+
1
3
) and consider the new vari-

able z = 3(t− tn), together with the accompanying transformation of the test
function φ(x, y, z) = φ(x, y, z

3
+ tn). Write formally vν(u, v, t) = vn

T (3(t− tn)),
where vn

T (t) = T∆y(t)v
n(x, y). In the considered time interval, vν is the exact

solution of the transport problem (8) with as the initial state the piecewise
constant function vn, and with the inflow condition v(x, y(2), t) = vI(x, y

(2), t).
We denote by v∆t,M,tr(x, y

(2), t) the value on the outflow boundary during the
transport step. We can write

∫

Ω

∫ t
n+

1
3

tn

(
1

3

F (vν) + wν

g
∂tφ− vν∇ ·

(
~hφ
))

dΩ dt

=
∫

Ω

∫ τn

0

(
F (vn

T (z))

g
∂zφ− vn

T (z)∇ ·
(
~hφ
))

dΩ
1

3
dz

+
∫

Ω

1

3

wn

g

∫ t
n+

1
3

tn

∂tφ dΩ dt

=
1

3

∫

Ω

F (vn
T (z))

g
φ

∣∣∣∣∣

z=τn

z=0

dΩ − 1

3

∫ τn

0

∫ x(2)

x(1)
h2v

n
T (z)φ

∣∣∣∣∣

y=y(2)

y=y(1)

dz

+
1

3

∫

Ω

wn

g

(
φ(t

n+
1
3
) − φ(tn)

)
dΩ
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=
1

3

∫

Ω

F
(
ṽn+

1
3

)

g
φ(t

n+
1
3
) dΩ− 1

3

∫

Ω

F (vν(tn))

g
φ(tn) dΩ

−1

3

∫ tn+1

tn

∫ x(2)

x(1)
h2vI(x, y

(2), t̃)φ(
t̃− tn

3
+ tn) dx dt̃

+
1

3

∫ tn+1

tn

∫ x(2)

x(1)
h2v∆t,M,tr(x, y

(1), t̃)φ(
t̃− tn

3
+ tn) dx dt̃

+
1

3

∫

Ω

wn

g

(
φ(t

n+
1
3
) − φ(tn)

)
dΩ. (47)

The term containing v∆t,M,tr is 0 due to the compact support of φ near the

outflow boundary. Above we can replace φ( t̃−tn
3

+ tn) by φ(t̃), adding O(∆t2)
to the equality. For this equality, we use t̃ = 3(t− tn) + tn and φ ∈ C1(Ω× I).

Hence, φ( t̃−tn
3

+ tn) = φ(t̃) + O(∆t) for t̃ ∈ (tn, tn+1). The error goes to zero,
even after summation over n (i.e.

∑
n(∆t)2 → 0). Therefore, we may drop the

error term.

We now turn our attention to the diffusion part over the time interval (t
n+

1
3
, t

n+
2
3
)

with initial state vn+
1
3 . This corresponds to the scheme (21). Multiply both

sides of (21) with φij = φ(xi, yj, tn+
1
3
) and sum over i and j. Using the stan-

dard notation (18) and putting φ
n+

2
3

ij = φ(xi, yj, tn+
2
3
), we obtain that

I :=
N1∑

i=0

N2∑

j=0

[
∆x∆y

gij

F (v
n+

2
3

ij ) − F (v
n+

1
3

ij )

τn
φij − φij


ai+1,j

v
n+

2
3

i+1,j − v
n+

2
3

ij

∆x
∆y

−ai,j

v
n+

2
3

i,j − v
n+

2
3

i−1,j

∆x
∆y


−φij


bi,j+1

v
n+

2
3

i,j+1 − v
n+

2
3

ij

∆x
∆x− bi,j

v
n+

2
3

i,j − v
n+

2
3

i,j−1

∆y
∆x




]

= 0.

Rearranging the first term and applying Abel’s summation on the last two
terms, give

I =
N1∑

i=0

N2∑

j=0

∆x∆y

gij


−

φ
n+

2
3

ij − φij

τn
F (v

n+
2
3

ij ) +
F (v

n+
2
3

ij )φ
n+

2
3

ij

τn
− F (v

n+
1
3

ij )φij

τn




+
N1∑

i=1

N2∑

j=0

φij − φi−1,j

∆x
ai,j

v
n+

2
3

i,j − v
n+

2
3

i−1,j

∆x
∆x∆y

+
N1∑

i=0

N2∑

j=1

φij − φi,j−1

∆y
bi,j

v
n+

2
3

i,j − v
n+

2
3

i,j−1

∆y
∆x∆y = 0, (48)
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where we used a0,j = aN1+1,j = 0 = bi,0 = bi,N2+1 because of the homoge-
neous Neumann boundary condition. We again apply Abel’s summation on
the second and third double sum of (48), to obtain

I =
N1∑

i=0

N2∑

j=0

∆x∆y

gij


−

φ
n+

2
3

ij − φij

τn
F (v

n+
2
3

ij ) +
F (v

n+
2
3

ij )φ
n+

2
3

ij

τn
− F (v

n+
1
3

ij )φij

τn




−
N1∑

i=2

N2∑

j=0

(
ai,j

φij − φi−1,j

∆x
− ai−1,j

φi−1,j − φi−2,j

∆x

)
v

n+
2
3

i−1,j

∆x
∆x∆y

−
N1∑

i=0

N2∑

j=2

(
bi,j

φij − φi,j−1

∆y
− bi,j−1

φi,j−1 − φi,j−2

∆y

)
v

n+
2
3

i,j−1

∆y
∆x∆y

+
N2∑

j=0

aN1,j

φN1,j − φN1−1,j

∆x

vN1,j

∆x
−

N2∑

j=0

a1,j

φ1,j − φ0,j

∆x

v
n+

2
3

0,j

∆x

+
N1∑

i=0

bi,N2

φi,N2 − φi,N2−1

∆y

v
n+

2
3

i,N2

∆y
−

N1∑

i=0

bi,1
φi,1 − φi,0

∆y

v
n+

2
3

i,0

∆y
= 0. (49)

The four single sums contain values of the solution v on the boundary. These
terms are all zero for sufficiently small ∆x and ∆y due to the choice of φ. We
therefore have

I =
N1∑

i=0

N2∑

j=0

∆x∆y

gij


−

φ
n+

2
3

ij − φij

τn
F (v

n+
2
3

ij ) +
F (v

n+
2
3

ij )φ
n+

2
3

ij

τn
− F (v

n+
1
3

ij )φij

τn




−
N1−1∑

i=1

N2∑

j=0

(
ai+1,j

φi+1,j − φi,j

∆x
− ai,j

φi,j − φi−1,j

∆x

)
v

n+
2
3

i,j

∆x
∆x∆y

−
N1∑

i=0

N2−1∑

j=1

(
bi,j+1

φi,j+1 − φi,j

∆y
− bi,j

φi,j − φi,j−1

∆y

)
v

n+
2
3

i,j

∆y
∆x∆y = 0. (50)

By reordering terms, multiplying by τn, writing formally vν(u, v, t) = vn
D(3(t−

t
n+

1
3
)), with vn

D(t) = Dδ,∆x,∆y(t)v
n+

1
3 (x, y), (50) can be seen as an approxima-

tion of the following equality

∫

Ω

∫ τn

0

[
F (vn

D(z))

g
∂zφ(z) + vn

D(z)
(
∂xa∂xφ(z) − ∂yb∂yφ(z)

) ]
dΩdz

=
∫

Ω

F (vn
D(τn))

g
φ(τn) dΩ −

∫

Ω

F (vn
D(0))

g
φ(0) dΩ, (51)
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where φ(x, y, z) = φ(x, y, z
3
+t

n+
1
3
). Errors due to numerical differentiation and

integration in time and space occur when passing from (50) to (51). However,
these errors go to zero as ∆t → 0, also after summation on n. Therefore, we
need not consider them further. As a last step we rewrite (51) as

∫

Ω

∫ t
n+

2
3

t
n+

1
3

[
1

3

F (vν(t)) + wν(t)

g
∂tφ(t) + vν(t) (∂xa∂xφ(t) + ∂yb∂yφ(t))

]
dΩdt

=
1

3

∫

Ω

F (vν(tn+
2
3
))

g
φ(t

n+
2
3
) dΩ − 1

3

∫

Ω

F (vn+
1
3 ))

g
φ(t

n+
1
3
) dΩ

+
1

3

∫

Ω

wn

g

(
φ(t

n+
2
3
) − φ(t

n+
1
3
)
)
dΩ. (52)

The procedure is completed by handling the sorption part in a similar way.
In doing so we take a local time step σ. Then, the numerical scheme for the
sorption problem in point (xi, yj) actually has the form:

F (vm+1
ij ) − F (vm

ij ) + wm+1
ij − wm

ij = 0

for m = 0, . . . ,M − 1, where τn = Mσ. We multiply this equation by φm
ij ,

where φ is a proper test function. Then we can again apply summation by
parts and we obtain

0 =
M−1∑

m=0

(
F (vm+1

ij ) − F (vm
ij )

σ
+
wm+1

ij − wm
ij

σ

)
σφm

ij = φM
ij F (vM

ij ) − φ0
ijF (v0

ij)

+ φM
ij w

M
ij − φ0

ijw
0
ij −

M−1∑

m=0

F (vm+1
ij )

φm+1
ij − φm

ij

σ
σ −

M−1∑

m=0

wm+1
ij

φm+1
ij − φm

ij

σ
σ

Multiplying by ∆x∆y
gij

and summing over i and j, this can be seen as an ap-

proximation of

∫

Ω

∫ τn

0

(
F (vn

A(z)) + wn
A(z)

g
∂tφ

)
dz dΩ =

∫

Ω

F (vn+1)

g
φ(τn) dΩ

−
∫

Ω

F (vn+
2
3 )

g
φ(0) dΩ +

∫

Ω

wn+1

g
φ(τn) dΩ −

∫

Ω

wn

g
φ(0) dΩ,

where we wrote symbolically vn
A(t) = A(t)vn+

2
3 and wn

A(t) = A(t)wn. Here, we
make an error of order O(1)τ 2. We use the same argumentation as in the case
of the dispersion problem and we let σ → 0. Finally, repeating the procedure
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from the previous two parts we obtain

∫

Ω

∫ tn+1

t
n+

2
3

1

3

(
F (vν) + wν

g
∂tφ

)
dt dΩ =

1

3

∫

Ω

F (vn+1)

g
φ(tn+1) dΩ

− 1

3

∫

Ω

F (vn+
2
3 )

g
φ(t

n+
2
3
) dΩ +

1

3

∫

Ω

wn+1

g
φ(tn+1) dΩ − 1

3

∫

Ω

wn

g
φ(t

n+
2
3
) dΩ.

(53)

Combining the three results by adding (47), (52), and (53) for n = 0, . . . , N−1,
we arrive at

∫ T

0

∫

Ω

(
1
3

F (vν) + wν

g
∂tφ− χT (t)vν∇ ·

(
~hφ
)

+ χD(t)vν(t) [∂xa∂xφ(t) + ∂yb∂yφ(t)]

)
dΩ dt

=
1

3

∫

Ω

F (vν(T )) + wν(T )

g
φ(T ) dΩ − 1

3

∫

Ω

F (vν(0)) + wν(0)

g
φ(0) dΩ

+
1

3

N−1∑

n=0

∫

Ω

[
F (ṽn+

1
3 ) − F (vn+

1
3 )
] φ(t

n+
1
3
)

g
dΩ

− 1

3

∫ T

0

∫ x(2)

x(1)
h2vI(x, y

(2), t)φ(t) dx dt. (54)

Here, χT (t) and χD(t) are characteristic functions defined as

χT (t) =

{
1 for t ∈ ∪k[tn, tn+

1
3
)

0 otherwise
, χD(t) =

{
1 for t ∈ ∪k[tn+

1
3
, t

n+
2
3
)

0 otherwise.
.

We have (see [10,5]) that χT (t) and χD(t) ⇀ 1
3

in L2(0, T ) for ∆t → 0.

Recall further that the test function φ was chosen so as to satisfy φ(T ) = 0.
Moreover, for ∆t→ 0, (n→ ∞), the projection error represented by the third
term on the rhs of (54), tends to zero. This property follows from

1
3

N−1∑

n=0

∫

Ω

[
F (ṽn+

1
3 ) − F (vn+

1
3 )
] φ(t

n+
1
3
)

g
dΩ

= 1
3

N−1∑

n=0

∑

ij

∫

Ωij

[
F (ṽn+

1
3 ) − F (v

n+
1
3

ij )

] φij(tn+
1
3
)

gij

dΩ

+ 1
3

N−1∑

n=0

∑

ij

∫

Ωij

[
F (ṽn+

1
3 ) − F (v

n+
1
3

ij )

] 


φ(t

n+
1
3
)

g
−
φij(tn+

1
3
)

gij



 dΩ = I1 + I2.

By the definition of the projection, (13), we have that I1 ≡ 0, ∀n. For I2 we
can use the smoothness of φ and g with g > ǫ, together with Lemma 11 and
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Lemma 19, to obtain

I2 ≤ 1
2

N−1∑

n=0

∫

Ω

∣∣∣∣∣F (ṽn+
1
3 ) − F (v

n+
1
3

ij )

∣∣∣∣∣

[
‖∇φ‖∞

ǫ
+

‖φ‖∞‖∇g‖∞
ǫ2

]
∆x dΩ

≤ 1
3

N−1∑

n=0

C∆t TVxyF (ṽn+
1
3 )∆x ≤ C∆x.

We now pass to the limit ∆t→ 0 in (54), with ∆t = C∆x. Taking into account
the convergence of vν and wν to v and w in L1,loc(Ω × I), we finally obtain
that the limit functions v, w satisfy (6).

We now proceed to prove that [v, w] satisfy (7). We can proceed analogously.
As wν(t) remains constant for t ∈ (tn, tn+

2
3
), for n = 0, . . . , N − 1, we get

∫

Ω

∫ t
n+

1
3

tn

1

3
wν∂tη dt dΩ =

1

3

∫

Ω
η(x, y, t

n+
1
3
)wn dΩ− 1

3

∫

Ω
η(x, y, tn)w

n dv, (55)

and similarly

∫

Ω

∫ t
n+

2
3

t
n+

1
3

1

3
wν∂tη dt dΩ =

1

3

∫

Ω
η(x, y, t

n+
2
3
)wn dΩ − 1

3

∫

Ω
η(x, y, t

n+
1
3
)wn dΩ.

(56)
Now recall (26). More in detail, if we solve the sorption problem with a local
micro-time step σ, then at any time point σm = mσ, m = 0, . . . , l, lσ = ∆t,
we have

F (vm) = F (vn+
2
3 ) + wn − wne−κσm (57)

−κ
m−1∑

i=0

∫ σi+1

σi

e−κ(σm−z)
((

1 − z − σi

σ

)
ψn(vi) +

z − σi

σ
ψn(vi+1)

)
dz

wm = wne−κσm

+κ
m−1∑

i=0

∫ σi+1

σi

e−κ(σm−z)
((

1 − z − σi

σ

)
ψn(vi) +

z − σi

σ
ψn(vi+1)

)
dz.

Denote by Li(z) the linear interpolant of ψn(v) on the interval (σi, σi+1). We
can compute

wm+1 − wm

σ
= wne

−κ(σm+σ) − e−κσm

σ

+κ
m−1∑

i=0

∫ σi+1

σi

e−κ(σm+σ−z) − e−κ(σm−z)

σ
Li(z) dz+

κ

σ

∫ σm+σ

σm

e−κ(σm+σ−z)Lm(z) dz.

In the above we have approximations of derivatives of e−κt, namely
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e−κ(σm+σ) − e−κσm

σ
=−κe−κσm + k1σ,

e−κ(σm+σ−z) − e−κ(σm−z)

σ
=−κe−κ(σm−z) + k2σ.

Therefore, we can continue

wm+1 − wm

σ
= −κwne−κσm − κ2

m−1∑

i=0

∫ σi+1

σi

e−κ(σm−z)Li(z) dz

+
κ

σ

∫ σm+σ

σm

Lm(z) dz + ε1(σ) + ε2(σ) + ε3(σ), (58)

where ε1(σ) = k1w
nσ, ε2(σ) = κ

∑m−1
i=0

∫ σi+1
σi

k2σLi(z) dz, and

ε3(σ) =
κ

σ

∫ σm+σ

σm

(
e−κ(σm+σ−z) − 1

)
Lm(z) dz.

If we evaluate the integral of Lm(z) in (58), the equation can be rewritten as

wm+1 − wm

σ
= κ

ψn(vm+1) + ψn(vm)

2
− κwm + ε1 + ε2 + ε3. (59)

We consider (59) in the point (xi, yj), and multiply it by the test function
values ηm

ij , by ∆x∆y and by σ. Finally, we sum over i, j and m to obtain

∑

ij

l−1∑

m=0

wm+1
ij − wm

ij

σ
ηm

ij σ∆x∆y=
∑

ij

l−1∑

m=0

κ
ψn(vm+1

ij ) + ψn(vm
ij )

2
ηm

ij σ∆x∆y

−
∑

ij

l−1∑

m=0

κwm
ij η

m
ij σ∆x∆y + e1 + e2 + e3.

We apply summation by parts to the left hand side to get

∑

ij

wl
ijη

l
ij∆x∆y −

∑

ij

w0
ijη

0
ij∆x∆y −

∑

ij

l−1∑

m=0

wm+1
ij

ηm+1
ij − ηm

ij

σ
σ∆x∆y

=
∑

ij

l−1∑

m=0

κσ
ψn(vm+1

ij ) + ψn(vm
ij )

2
ηm

ij ∆x∆y

−
∑

ij

l−1∑

m=0

κwm
ij η

m
ij σ∆x∆y + e1 + e2 + e3 (60)

This is an approximation of

∫

Ω

∫ τn

0
(wn

A(t)∂tη + κ (ψn(vn
A(t)) − wn

A(t)) η) dt dΩ

=
∫

Ω
wn+1η(τn) dΩ −

∫

Ω
wnη(0) dΩ + e1 + e2 + e3. (61)
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Using (61), we compute

∫

Ω

∫ tn+1

t
n+

2
3

(
1

3
wν∂tη + κ (ψn(vν) − wν) η

)
dt dΩ

=
1

3

∫

Ω

∫ τn

0
(wn

A(ξ)∂τ η̄ + κ (ψn(vn
A(ξ)) − wn

A(ξ)) η̄) dξ dΩ (62)

=
1

3

∫

Ω
η(tn+1)w

n+1 dv − 1

3

∫

Ω
η(t

n+
2
3
)wn dΩ +

1

3
(e1 + e2 + e3),

where we have used the substitution ξ = 3(t−t
n+

2
3
) and η̄(x, y, t) = η(x, y, ξ/3+

t
n+

2
3
). Finally, we complete the proof by summing up (55) , (56) and (62) for

n = 0, . . . , N − 1, using η(T ) = 0, to obtain

∫

Ω

∫ T

0

(
1

3
wν∂tη + χA(t)κ (ψn(vν) − wν) η

)
dt dΩ − 1

3

∫

Ω
w(x, y, 0)η(0) dΩ

= E1 + E2 + E3, (63)

where we make an error of order O(τ). The characteristic function χA(t) is
defined as

χA(t) =

{
1 for t ∈ ∪k[tn+

2
3
, tn+1)

0 otherwise.

We still have to examine the error terms E1, E2 and E3. These were obtained
from ε1(σ), ε1(σ) and ε1(σ) by the same operations that led first from (58) to
(60) and next to (63). We have

E1 =
1

3
χA(t)

∑

ij

l−1∑

m=0

k1w
nηm

ij σ
2∆x∆y.

As wn is bounded, this term tends to zero as σ → 0. We next consider E2.
Because vi (and ψn(vi)) are bounded we have

E2 =
1

3
χA(t)κ

∑

ij

l−1∑

m=0

m−1∑

k=0

∫ σk+1

σk

k2σLk(z) dz

≤ 1

3
χA(t)κCk2σ

∑

ij

l−1∑

m=0

σmη
m
ij σ∆x∆y ≤ Cσ∆t.

Finally, for the term E3 we can write

E3 =
1

3
χA(t)κ

∑

ij

l−1∑

m=0

ηm
ij σ∆x∆y

∫ σm+σ

σm

e−κ(σm+σ−z) − 1

σ
Lm(z) dz.
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On account of the boundedness of ψn we can estimate the integral as follows

∫ σm+σ

σm

e−κ(σm+σ−z) − 1

σ
Lm(z) dz ≤ C

∫ σm+σ

σm

e−κ(σm+σ−z)−1
σ

dz = k3σ

Therefore, we have

E3 ≤
1

3
χA(t)κk3

∑

ij

l−1∑

m=0

ηm
ij σ

2∆x∆y

As σ → 0, the right hand side approaches zero.

Summarizing, if v and w are the limits of vν and wν for ν → 0, from (63) we
have the desired equality

∫

Ω

∫ T

0
(w∂tη + κ (ψn(v) − w) η) dt dΩ−

∫

Ω
w(x, y, 0)η(x, y, 0) dΩ = 0. �

This proves the existence of a local, very weak solution introduced in Def. 2.

Remark 24 We cannot prove bc (4) on the outflow boundary. Instead we
have from (47) that our approximate solution converges on the outflow bound-
ary to the unknown limit function lim∆t→0 v∆t,M,tr = vM,tr(t), which, generally,
cannot be related to v(x, y, t), the concentration inside the domain. This cor-
responds to the natural outflow condition

b∂yv + h2v = h2vM,tr,

indicating a continuous flux condition. However, it does not exclude that ∂yv =
0. As we consider dominant convection, we have anyway h2 >> b.

Remark 25 In some practical situations, the Lipschitz continuity of ψe, (resp.
F ) cannot be guaranteed. For example, if we use Freundlich sorption isotherms
of the form ψ(v) = avq, 0 < q < 1, then we have ψ′(0) = ∞ and the Lipschitz
condition is not satisfied. Let us now consider the following sequence for ε > 0:

Fε(v) = F (v) if v > ε, Fε(v) =
F (ε)

ε
v otherwise.

Fε(v) is Lipschitz continuous for all ε and it uniformly converges to F (v) as
ε → 0. Let (vε, wε) be the weak solution of the problem (P), where we use
Fε(v) instead of F (v). This solution is regular (vε ∈ L2((0, T ),W 1

2 ), ∂tvε ∈
L2((0, T ), L2), W

1
2 being the Sobolev space). Along the same lines as in [20] it

is possible to find a subsequence {εj}j>0 such that (vεj
, wεj

) is convergent in
L2(ΩT ). The limit is the weak solution (v, w) of the original problem (P).
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4 Numerical experiments

Before an analysis of the method from the theoretical point of view existed,
it was extensively tested. A large amount of numerical experiments for both
forward and inverse problems was realized. Some of them were published e.g. in
[2], [21]. At this point we present only one linear example with non-equilibrium
sorption of which the analytical solution is known, as the intention of this
paper was to provide the theoretical results. In the experiment presented here,
we consider a one-dimensional problem of the form

∂tC + 2∂xC −D∂2
xC + ∂tS = 0 ∂tS = κ(C − S)

with the following boundary conditions and initial conditions

C(0, t) = CI(t) ≡ 1 C(x, 0) = 0, S(x, 0) = 0 (64)

In this simple case, it is possible to find an analytical solution of the problem
(see [22], where the solution is over a semi-infinite domain [0,∞)). The com-
parison between the splitting scheme and the analytical solution can be seen
in Fig. 1. We also add a comparison with two finite difference schemes, namely
an implicit upwind and an exponential upwind method. As we can see, the
splitting method leads to results with lower numerical dispersion.

As for the parameters, we set the sorption rate coefficient κ = 6.95 and take as
the diffusion coefficients D = 0.1 and 0.01, respectively. We use the value 0.08
for the space step for both finite difference and operator splitting schemes. We
take an operator splitting time step of ∆t = 0.04 and ∆t = 0.02, respectively.
Hence, no projection error occurs after transport for the first experiment,
resulting in a very exact approximation. The second experiment clearly shows
that even with a projection step adding numerical dispersion, the operator
splitting is better suited for the problem at hand than the upwind schemes.
In this second experiment, D << 2, and numerical dispersion in the upwind
methods overshadows the low diffusion coefficient completely.

Next, we present two tables showing the convergence as the mesh size is de-
creased. For this the Courant number is fixed to be 0.5. In Table 1 the experi-
mental order of convergence (EOC) is given for the operator splitting, as well
as for the upwind scheme. The proof of convergence given does not provide a
theoretical prediction of the rate of convergence. In this case we can see that it
is of order 1. This order is typical for an operator splitting method. Obviously,
it is possible to use a higher order upwind scheme, but this does not imply
that the operator splitting approach is not suitable for practical applications.
In the case of dominant advection, focused upon in the introduction, splitting
is a very attractive method to avoid small time steps while retaining high
accuracy. Even if the convergence is only of first order, the error made on the
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Fig. 1. Comparison of the operator splitting and upwind schemes with the analytical
solution (dotted line) at t = 2s, ∆x = 0.08. Left: D = 0.1, ∆t = 0.04. Right:
D = 0.01, ∆t = 0.02.

∆x L2((0, T ), L2(Ω))-error EOC

0.08 0.06027

0.04 0.03084 0.9668

0.02 0.01561 0.9820

0.01 0.00793 0.9771

0.005 0.00401 0.9820

∆x L2((0, T ), L2(Ω))-error EOC

0.08 0.13162

0.04 0.07037 0.9034

0.02 0.03658 0.9440

0.01 0.01869 0.9688

0.005 0.00948 0.9788

Table 1
Left: Experimental order of convergence for the operator splitting method. Right:
Experimental order of convergence for the upwind scheme

larger time step is very small in all subproblems, if higher order methods are
applied for those problems. Splitting also has the advantage that well estab-
lished toolboxes can be used to solve the subproblems, as opposed to codes
that solve the global problem.

Remark 26 The practical implementation in [3,2] benefits strongly from the
operator splitting scheme as, in essense, the problem is 1D in the convec-
tive part, and 2D in the diffusion. For multi-dimensional flow problems, one
could instead use operator splitting between diffusion-convection and adsorp-
tion, using an upwind method to control the convective part. Operator splitting
between diffusion and convection is possible, but the authors are aware of the
fact that multi-dimensional front tracking is more cumbersome and increases
the numerical dispersion. Nevertheless, front tracking is used in many practical
applications, [5].
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[15] M. Remeš́ıková, Numerical solution of direct and inverse contaminant transport
problems with adsorption, Ph.D. thesis, Comenius University (2005).

[16] E. R., G. T., H. R., Handbook for Numerical Analysis, Vol. VII, Elsevier, North-
Holland, Amsterdam, 2000, Ch. Finite Volume Methods, pp. 715–1022.

33



[17] R. J. Le Veque, Finite volume methods for hyperbolic problems, Cambridge
texts in applied mathematics, Cambridge University Press, Cambridge, 2002.

[18] K. H. Karlsen, K.-A. Lie, N. Risebro, A front tracking method for conservation
laws with boundary conditions, in: M. Fey, R. Jeltsch (Eds.), Hyperbolic
problems: theory, numerics, applications (Seventh international conference in
Zurich, 1998), Vol. 192 of Int. Series of Numerical Mathematics, Birkhaüser,
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