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Abstract

We will study a conditional state on a quantum system (an orthomo-
dular lattice). We will define an independence of events and differently
from the situation in the classical theory of probability, if an event a is
independent of an event b, then the event b can be dependent on the event
a. We will show that we can define an s-map (function for simultaneous
measurements on a quantum system). It can be shown that if we have
the conditional state we can define the s-map and conversely. By using
the s-map we can introduce a joint distribution also for non-compatible

observables on a quantum system.

1 Introduction

The idea that quantum probabilities are nothing else than conditional probabili-

ties was intensively discussed from various points of view, see, e.g., [1]-[5], [7]-[8],
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[16] [24],[26]. Recently this approach to quantum probability was generalized
in the so called contextual framework [9]-[13],[16]-[19]. In the latter approach
we consider conditioning with respect to various contexts, complexes of experi-
mental physical conditions and not conditioning of one event a, with respect to
other event b, under the same context (state) as it was done in investigations
on conditional probabilities (compare with Kolmogorov [14][15], Renyi [25], Cox
[6], or quantum system generalizations [3], [4],[16]-[18]).

In the present paper we still use the traditional event-conditioning (under
the fixed conditional state). However, we essentially generalize the notion of a
conditional state (here we continue investigations [19]-[23]).

We will study a conditional state on a quantum system using convex com-
bination of states. This approach helps us to define an independence of events
in a different way, than it is done in the classical theory of probability. If an
event a is independent of an event b, then the event b can be dependent on
the event a (problem of causality) ([20], [22], [23]). We can define an s-map
(function for simultaneous measurements on a quantum system). By using the
s-map we can introduce a joint distribution also for non-compatible observables
on a quantum system. It can be shown that we can define a covariance and a
correlation on L. We show, that also for an un-symmetry s-map on a Boolean
algebra (a single probability space) we get the same situation as in the classical

theory of probability.

1. A conditional state on an OML

In this part we introduce the notions as a quantum system (an orthomodular

lattice), a state, a conditional state and their basic properties.

Definition 1. 1 Let L be a nonempty set endowed with a partial ordering <.

Let there exists the greatest element 1 and the smallest element 0. We consider



operations supremum (V), infimum A (the lattice operations ) and an map L:

L — L defined as follows.

(i) For any {an}neca € L, where A C N is finite,

Van,/\aneL.

neA neA
(i) For any a € L (a*)! = a.
(iii) If a € L, then aV a* = 1.
(iv) If a,b € L such that a < b, then b+ < a™*.
(v) If a,b € L such that a < b then b= aV (a*~ A b) (orthomodular law).

Then (L,0,1,V,A, L) is said to be the orthomodular lattice (briefly OML).

Let L be an OML. Then elements a,b € L will be called:
e orthogonal (aLb) iff a < bt

e compatible (a <> b) iff there exist mutually orthogonal elements ay,b1,c €
L such that

a=a Ve and b=0b; Ve

Ifa; € Lforany i =1,2,...,n and b € L is such, that b <> a; for all 4, then

b Vi, a; and

n

([7],[24],[26]).-

Definition 1. 2 A map m : L — [0,1] such that

(i) m(0) =0 and m(1) =1.



(i) If aLb then m(aV b) = m(a) +m(b)

1s called a state on L.

Definition 1. 3 [22] Let L be an OML. A subset Ly C L — {0} is called a

conditional system (CS) in L if the following conditions hold:
e Ifa,be Ly, thena Vb€ L.

e Ifa,b€ Lo and a < b, then a* Ab € Ly.

Let A C L. Then Lo(A) is the smallest CS, that contains the set A.

Definition 1. 4 [22] Let L be an OML and let Lo be a CS in L. Let f :
L x Lo — [0,1]. If the function f fulfills the following conditions:

(C1) for each a € Ly f(.,a) is a state on L;
(C2) for each a € Ly f(a,a) =1;

(C3) if {a;}, € Lo and a; are mutually orthogonal, then for each b € L

n n n

f(ba \/ ai) = Zf(aia \/ ai)f(baai);

then it is called a conditional state.

Proposition 1. 1 [22] Let L be an OML. Let {a;}7—, € L, n € N where
a; L a; for i # j. If for any i there exists a state o;, such that a;(a;) = 1,
then there ezists a CS such that for any k = (k1, ks, ..., kn), where k; € [0;1] for

i € {1,2,...,n} with the property Y ;" | ki = 1, there ezists a conditional state
fi: L x Lo — [0;1],

such that



1. for any i and each d € L fx(d,a;) = a;(d);

2. for each a;

fk(aia

k2

ai) = ki.
1

n

Definition 1. 5 [22] Let L be an OML and f be a conditional state. Letb € L,
a,c € Lo such that f(c,a) = 1. Then b is independent of a with respect to the
state f('ac) (b xf(.,c) a) ’Lf f(b: C) = f(baa)

The classical definition of independency of events in a probability space

(Q, B, P) is a special case of this definition, because

P(A|B) = P(A|Q) if and only if P(A N B|Q) = P(A|Q)P(B|Q).

If Lo be CS and f: L x Ly — [0,1] is a conditional state, then ( [22])

(i) Let at,a,c € Lo, b€ L and f(c,a) = f(c,a’) = 1. Then b < . a if and

only if b =<y ) a't.

(ii) Let a,c € Lo, b € L and f(c,a) = 1. Then b x;( ) a if and only if

bL Xf(.’c) a.

(iii) Let a,c,b € Lo, b <> a and f(c,a) = f(c,b) = 1. Then b <y ) a if and
only if a <y ) b.

2. Observables and an s-map

Let L be an OML. Let us denote L2 = L x L.



Definition 2. 1 /23] Let L be an OML. The map p : L? — [0, 1] will be called

an s-map if the following conditions hold:
(s1) p(1,1) =1;
(s2) if a L b, then p(a,b) =0;
(s8) if a L b, then for any c € L,
p(aVb,c) =pla,c)+ pb,c)

p(ca aV b) = p(c7 a) + p(c, b)

Proposition 2. 1 [23] Let L be an OML and let there be an s-map p. Let

a,b,c € L, then
1. ifa < b, then p(a,b) =plaAb,aAb) =p(b,a);
2. if a < b, then p(a,b) = p(a,a);
3. if a <b, then p(a,c) < p(b,c);
4- p(a,b) < p(b,b);

5. if v(b) = p(b,b), then v is a state on L.

Proposition 2. 2 [23] Let L be an OML, let there be an s-map p. Then there

exists a conditional state fp, such that

p(a, b) = fp(a: b)fp(a: 1)'

Let L be an OML and let Lo = L—{0}. If f : Lx Ly — [0,1] is a conditional

state, then there exists an s-map py : L x L — [0,1].



Indeed in the [23] has been shown that if p is a s-map and Ly = {b €

L : p(b,b) # 0}, then f,(a,b) = f) E‘;;’)) is a conditional state and conversely if

Ly = L — {0}, then ps(a,b) = f(a,b)f(b,1) is a s-map.
Proposition 2. 3 [23] Let L be an OML.

(a) If f is a conditional state, then b <¢( 1) a iff ps(b,a) = ps(a,a)ps(b,b),
where py is the s-map generated by f.

(b) Let p be an s-map. Then b <y ( 1y a iff p(b,a) = p(a,a)p(b,b), where f,

is the conditional state generated by the s-map p.

We say that a s-map p is an un-symmetric s-map if there exist a,b € L, such
that p(a,b) # p(b,a). If for each a,b € L p(a,b) = p(b,a) we say that p is a

symmetric s-map.

Proposition 2. 4 Let L be an OML and let p be an un-symmetric s-map. Then
there exist two symmetric s-maps ¢1 and q2 such that for any ¢ € L g;(c,¢c) =

v(c),i=1,2.

Proof. Let p be an un-symmetric ssmap. If for ¢,d € L p(c,d) = p(d,c),
then g¢;(¢,d) = p(c,d), i = 1,2. From the assumption it follows that there
exist a,b € L, such that p(a,b) # p(b,a). Let ¢qi1(a,b) = q1(b,a) = p(a,b) and
g2(a,b) = g2(b,a) = p(b,a). From it follows, that ¢; is symmetric, i = 1,2. As
p is the symmetric s-map for each compatible elements (Proposition 2.1), then

g; is also s-map and ¢;(c¢) = v(c) for c € L and ¢ = 1,2. (Q.E.D)

We say that a conditional state f(.,.) is Bayesian if for each a,b € Lg
f(a,b)f(b,1) = f(b,a)f(a,1).

Proposition 2. 5 Let L be an OML. Let p be a s-map and let f be a conditional

state.



(a) The s-map py is symmetric for each a,b € Ly iff f is the Bayesian condi-

tional state.
(b) The s-map p is symmetric iff f, is the Bayesian conditional state.

Proof. (a) Let f be a Bayesian conditional state and pg(a,b) = f(a,b)f(b,1).

From it follows, that
pr(a,b) = f(a,b)f(b,1) = f(b,a)f(a,1) = ps(b,a).
Conversely, if pr(a,b) = pg(b,a), then

f(a= b)f(ba 1) = Dy (aa b) = pf(ba a) = f(ba a)f(aa 1)'

(b) Let p(a,b) = p(b,a) for each a,b € L. Let a,b# 0. Then f,(a,b) = ’;E;fg

and fp(b,1) = p(b,b). From it follows, that
p(b,b) fp(a,b) = fp(b,1)fp(a,b) = p(a,b)
p(a,a)fp(b,a) = fp(a,1) f,(b, a) = p(b, a).
Hence p is the symmetric s-map, then
fo(0, 1) fp(a,b) = fp(a,1) fp(b, a).
The opposite implication we can prove analogically. (Q.E.D.)

Let B(R) be a o-algebra of Borel sets. A homomorphism z : B(R) — L is
called an observable on L. If z is an observable, then R(z) := {z(E); E €
B(R)} is called a range of the observable z. It is clear that R(z) is a Boolean
algebra [Var]. A spectrum of an observable z is defined by the following way:
o(x) = N{E € B(R); z(E) = 1}. If g is a real function, then g o z is such

observable on L that:
(1) R(gox) C R(z);

(2.) o(gox) ={g(t); teo(x)};



(3.) for any E € B(R)
goz(E) =z({t € o(z);9(t) € E}).

We say that = and y are compatible (z < y) if there exists a Boolean sub-
algebra B C L such that R(z) U R(y) C B. In other words = «+ y if for any
E,F € B(R), z(E) < y(F).

We call an observable z a finite if o(z) is a finite set. It means, that o(z) =

{ti}i=;, n € N. Let us denote O the set of all finite observables on L.

Definition 2. 2 Let L be an OML and p : L x L — [0;1] be an s-map. Let
z,y € O. Then an map p;,y : B(R) x B(R) — [0,1], such that

Pzy(E, F) = p(z(E),y(F)),

is called a joint distribution for the observables x and y for the s-map p..

If € O and m is a state on L, then m,(E) = m(z(E)), E € B(R) is a
probability distribution for z and
m@) = Y tm(()
teo(x)
and for any real function g we have
m(gox):= Y g(tym(z(t).
teo(x)
Definition 2. 3 Let L be an OML and let p : L x L — [0;1] be an s-map. Let
z,y € O. Then
zi€o(z) y;€0(y)

is called the first joint moment for observables x,y.

From the previous definition it follows that

plz,z) = Y aip(a(e)e@) = Y @fv(z@) =v(gow),

zi€o(x) z;€a(z)



where g(t) = t2.
From analogy with the classical theory of probability we can define notions
for example as covariance (c(.,.)), variance (var(.)) and correlation coeficient

(r(.,.)) by the following way:

c(z,y) = p(z,y) — v(z)v(y),

var(z) := c(z, ),

_ c(z,y)
r@y) = var(z) var(y)

In spite of the classical theory of probability in this case c(x,y) is not equal

to ¢(y,x) in general.

Proposition 2. 6 Let L be an OML, let p be an s-map on L and let O be
a set of all finite observables on L. For each x,y € O there exist probability
spaces (:,Si, B;) (i = 1,2) and random wvariables &,m; (i = 1,2), which are

S;-measurable such that:
(a) Ei(&) =v(z) and E;(m:) = v(y), i =1,2;
(b) c(z,y) = cov(&,m), c(y, z) = cov(nz,&2);
(c) (c(z,9))* < c(z,2)e(y,y).
Proof. If z,y € O, then o(z) = {z:}}2;, 0(y) = {y;};2,. Let us denote
N ={(zi,y;);i=1,...,m1, j=1,..,ns},

QZ = {(yJJm’L)h? = 17 ey N2, 0= 17 "'7”1}7
Sp=2%%, k=12

Then (4, Sy) is the measurable space. Let us denote

&((wi,y5) =z, m(zi,y5) = v,



& ((yi,2i) = zi,  m2((yj, i) = yj-

If p is an s-map, then from the properties of p follows, that P = p,,, is the
probability measure on (€;,S1) and P, = p,, is the probability measure on
the measurable space (Qa,S3).

(a) It is clear, that

Pi({we€ My &(w) =m}) = Pi{(wi,y);5 = 1,...,m2}.

From it follows, that

P({we; &w)=xi}) =p(a(:),y(0(y)) = ple(z:),1) = v(z(z:))-

Hence

Now, we can see, that
Ei(&) = ZMR’(& =xi) = v(z).
k

Similarly we get
E;i(ni) = v(y).

(b) From the theory of probability it follows, that
var(gr,m) = 305 (@i — v(@) (s — v(W)Pi (& = 2i,m = y,)
i g
Let us denote a; = z(x;) and b; = y(y;). Then

cov(&r,m) =Y _ (i — v(x))(y; — v(y))p(ai, b;)

4,
and

cov(€z,m2) = Y (xi — v(2)) (y; — v(y))p(bj, as)-

%]



As
Zp(ai:bj) = Zp(bjaa’i) =1,
4, 4,

> plai,b)) = Zp(bjaai) =v(b;)

k3

and
Zp(ai,bj) = Zp(bj,ai) = v(a:)
we have J J
zZj(mi —v(@)(y; — v(y))p(b), ai) = p(z,y) — v(z)v(y) = c(z,y).
Similarly’

var(§2,m2) = p(y, =) — v(z)v(y) = c(y, )-

(c) As (cov(ér,mr))* < cov(ér, &) cov(nr, i) and cov(éx, &) = c(, ), cov(nk, k) =
c(y,y) we have

(c(z,9))* < c(z,2)c(y,y),

(c(y,2))* < e(z,z)c(y, ).

(Q.ED.)

Proposition 2. 7 Let L be an OML and let z,y € O. Then

(i) c(z,y) = p(gs © x, gy 0 y), where g. is a real function such that g.(t) =
t—v(z), forz€ O, ;

(i) r(z,y) € [-1,1];

(i) if © <>y, then c(x,y) = c(y,z) and r(z,y) = r(y, ).



Proof. Let z,y € O. Then o(z) = {z;}{%; and o(y) = {y;}72;-

(i) From the definition g, o z, g, o y we have

P(gzoT,gyoy) =2, 9:(i)gy(y;)p(2(@i), y(y;))
=22 (@i — v(@)(y; — v(y))p(e(z:), y(y;))
=302, ziyip(@(@i), y(y;))
—v(@)v(y) 22, 32, p(x(@i), y(y;))
=p(z,y) —v(z)v(y) = c(z,y).
(ii) From the previous proposition we know that there exist two probability
spaces (%, Fr, Py) and random variables &, mx, k = 1,2 such that c(z,y) =
cov(&1,m) and c(z,y) = cov(&a,m2). Moreover c(z,z) = cov(&y, &) = var(&y)-

Analogically ¢(y,y) = cov(nk,nr) = var(n). Then

_ c(z,y) __cowl&,m)  _ L) = py
r(z,y) Jem 0wy JoarEeartn) p1,m) =p

and
r(y,x) = Ay 7) - owllerm) p(&2,m2) = pa-

Vel@,2)ely,y)  /var(&)var (i)
because py is correlation coeficient on the probability space (Qg, Fk, Px), then
pr € [-1,1] for for k = 1,2. From this follows that r(z,y),r(y,z) € [-1,1].
Also this fact follows immediately from the Proposition 2.4 (c).

(ili) Let z <> y. Then for each z; € o(x) and each for y; € o(y) we have

p(x(ﬂfi%y(yj)) =P(y(yj),$($i))

and so
plz,y) =30 2, wiyip(e(zi), y(y;))
=2 Z]’ ziy;p(y(y;), ()
=p(y, ).
From this follows that

c(z,y) = c(y, x).



(QED)

In the previous proof we could see, than an un-symmetry of a covariance is
dependent only on an un-symmetric s-map. Let (Q,S, P) be a classical proba-
bility space and &,n be some random variables on it. From the classical theory
of probability we know, that the set of all random variables is a linear space, the
covariance cov(&,n) is the inner product and the standard deviation +/cov(n,n)
is the norm. From it follows that the correlation coeficient

_ cov(€,n) _
p&m Veov(n,n)cov(E, €) cos(p),

where Bp is the angle between the random variables ¢ and 7 in this geometry.

Example 2. 1 . Let L = {a,a*,b,b1,0,1}. Let cVd = 1 ifc # d and
c,d € L—{0}. Letchd=01ifc# d and c,d € L — {1}. Let (d*)r =d
for d € L and 1+ = 0. It is clear that L is an OML and By = {d,d*+,0,1},
d € {a,b} is a Booelan algebra. Let f(s,t) is defined by the following way:

s/t a at b bt 1

a 1 0 0.4 04 | 04
at 0 1 0.6 06 | 0.6
b 0.2 11/30 1 0 0.3
bt 0.8 19/30 0 1 0.7

From f this we can compute ps(s,t) . Then we get:

s/t a at b bt
a 0.4 0 0.12 0.28
at 0 0.6 0.18 0.42
b 0.08 0.22 0.3 0
bt 0.32 0.38 0 0.7




We can see that ps(a,b) = ps(a,a)ps(b,b), but ps(b,a) # ps(b,b)ps(a,a). In
the following we will write py = p. Let x,y be observables on L such that
R(z) = {a,at,0,1} = B,, and R(y) = {b,b+,0,1} = By. It is easy to see, that

x 48 not compatible with y. Let, for example,
z(-1)=a z(1)=a*

y(0)=b y(5) ="b".

In the following tables we have the joint distributions py , and py 4.

Da,y 0 5
-1 0.12 0.28
1 0.18 0.42
Dy.z -1 1
0 0.08 0.22
5 0.32 0.38

Now we can compute the following characteristics:
v(r) =-1x04+0.2x0.6=0.2,

v(iy) =0x0.3+5x0.7=3.5,
p(z,y) = —5x%x0.28+5x 0.42=0.7,
p(y, ) = —5 % 0.32+ 5 x 0.38 = 0.3,
c(z,y) = p(z,y) — v(z)v(y) =0.7—02x%x3.5=0,
c(y,z) = py,z) —v(z)r(y) = 0.3 —0.2 x 3.5 = —0.4,
c(z,r) = 0.96 c(y,y) = 5.25,

r(z,y) =0 r(y,z) = 0.178.



In the end we can rewrite these results in to ”the covariance matriz”:
c(z,x) c(z,y) 0.96 0
c(y,z) c(y,y) 0.178 5.25
We can see that “the covariance matriz” need not be symmetry. In the classical

theory of probability, where we suppose that all random variables are compatible,

it has to be symmetry.

Example 2. 2 . Let L be the same OML as in the Example 2.1. Let p(s,t) is

defined by the following way:

s/t a at b bt
a 0.4 0 0.08 0.38
at 0 0.6 0.22 0.32
b 0.08 0.22 0.3 0
bt 0.32 0.38 0 0.7

Let z,y be observables on L such that R(z) = {a,at,0,1}, and R(y) =

{b,b1,0,1}. It is easy to see, that x is not compatible with y. Let, for example,

In this case py y = Py.z-

Da,y 0 5
-1 0.08 0.38
1 0.22 0.32

Now we get



p(z,y) =ply,2) = =03,  c(z,y) = c(y,z) = —04,
c(z,x) = 0.96, c(y,y) = 5.25,
r(z,y) =r(y,z) = 0.178.
In the end we can write these results to the covariance matriz:

c(z,z) c(z,y) 0.96 0.178
c(y,z) c(y,y) 0.178 5.25

We can see that the covariance matriz is symmetry as in the classical theory of

probability, but x,y are not compatible.

In the end we can say, that we cannot prove that two observables are com-

patible by using statistics, but we can only prove that they are not compatible.
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