
Atoms in Archimedean lattice effect algebras and its

sub-lattice effect algebras
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Abstract

Lattice effect algebras are common generalizations of MV -algebras and ortho-

modular lattices ([2], [3], [6]). Thus they may include noncompatible pairs of ele-

ments as well as elements which are unsharp, fuzzy or imprecise. It was shown that

the set S(E) of all sharp elements of a lattice effect algebra E is an orthomodular

lattice, [5]. Further, the set B(E) of all those elements which are compatible with

every element of E is an MV -algebra (MV -effect algebra). Thus the set C(E) of

all elements which are sharp and simultaneously compatible with all elements of

the lattice effect algebra E is a Boolean algebra which is the intersection of S(E)
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and B(E) ([4], [8], [9]). Finally, every lattice effect algebra E is a set-theoretical

union of MV -algebras called blocks of E. In fact a block of E is a maximal subset

of pairwise compatible elements of E, [10].

Every atom (a minimal nonzero element) of a block of E is also an atom of

E. On the other hand an atomic effect algebra E (i.e., with an atom under every

nonzero element) may have non-atomic block (see [1]). Moreover if S(E) or C(E)

are atomic then E may be atomless, e.g., for standard effect algebra of real numbers

in the interval [0, 1].

We present some families of Archimedean atomic lattice effect algebras in which

S(E) or C(E), resp. B(E) or every block of E is atomic for every E of these

families.

Some applications of mentioned results in problems on the existence of states,

resp. the smearing of states from sharp elements onto E can be shown, [11].
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[8] Z. Riečanová, Compatibility and central elements in effect algebras, Tatra

Mountains Math. Publ. 16 (1999), 151–158.
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