Atoms in Archimedean lattice effect algebras and its

sub-lattice effect algebras

ZDENKA RIECANOVA* and JAN PASEKAT

Department of Mathematics Department of Mathematics
Faculty of Electrical Engineering and Statistics
and Information Technology Faculty of Science
Slovak University of Technology Masaryk University
Ilkovicova 3 Kotlarskd 2
SK-812 19 Bratislava CZ-611 37 Brno
Slovak Republic Czech Republic
e-mail: zdenka.riecanova@stuba.sk paseka@math.muni.cz

January 23, 2009

Abstract

Lattice effect algebras are common generalizations of MV -algebras and ortho-
modular lattices ([2], [3], [6]). Thus they may include noncompatible pairs of ele-
ments as well as elements which are unsharp, fuzzy or imprecise. It was shown that
the set S(F) of all sharp elements of a lattice effect algebra E is an orthomodular
lattice, [5]. Further, the set B(E) of all those elements which are compatible with
every element of F is an MV-algebra (MV-effect algebra). Thus the set C(F) of
all elements which are sharp and simultaneously compatible with all elements of

the lattice effect algebra E is a Boolean algebra which is the intersection of S(FE)
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and B(E) ([4], [8], [9]). Finally, every lattice effect algebra E is a set-theoretical
union of MV -algebras called blocks of E. In fact a block of E is a maximal subset
of pairwise compatible elements of E, [10].

Every atom (a minimal nonzero element) of a block of E is also an atom of
E. On the other hand an atomic effect algebra E (i.e., with an atom under every
nonzero element) may have non-atomic block (see [1]). Moreover if S(E) or C(E)
are atomic then F may be atomless, e.g., for standard effect algebra of real numbers
in the interval [0, 1].

We present some families of Archimedean atomic lattice effect algebras in which
S(E) or C(E), resp. B(E) or every block of E is atomic for every E of these
families.

Some applications of mentioned results in problems on the existence of states,

resp. the smearing of states from sharp elements onto E can be shown, [11].
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