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Abstract
State spaces of quantum structures can be efficiently represented using

hypergraphs. We introduce a new representation which allows to use
rather general hypergraphs and preserves faithfulness of states.

The description of mathematical structures representing quantum mechani-
cal systems can be a difficult task. It has been facilitated by the use of Greechie
diagrams. These are hypergraphs in which vertices correspond to atoms and
edges to maximal Boolean subalgebras. This technique was first published
in [3]. Greechie diagrams allow to describe orthomodular lattices, orthomod-
ular posets, and orthoalgebras provided that all chains are finite (see [2, 4, 9]
for more details). Recently they were generalized to effect algebras [8]. Here
we shall concentrate on the study of OMLs. This case appears to be the most
difficult one, the results for other quantum structures follow from it.
A state (=probability measure) on an OML L is a mapping s : L → [0, 1]

such that s(1) = 1 and ∀a, b ∈ L, a ≤ b′ : s(a ∨ b) = s(a) + s(b). A state on a
hypergraph K = (V, E) (where V is the set of vertices, E is the set of edges) is a
mapping s : V → [0, 1] such that ∀E ∈ E :

∑
v∈E s(v) = 1 . By S(L) we denote

the state space(=the set of all states) of an OML, resp. a hypergraph L.
The states on a quantum structure are in a one-to-one correspondence to

states on its Greechie diagram. This allows to study state spaces efficiently [10].
However, a non-trivial question arises: Which hypergraphs are Greechie dia-
grams of (the desired class of) quantum structures? Although an answer is given
for orthomodular lattices (OMLs) in [1], its application may be rather difficult.
(Easier characterizations are known for more general structures—orthomodular
posets and orthoalgebras.) In general, it is not easy to design a hypergraph with
given state space properties and satisfying the conditions for Greechie diagrams.
Even if a hypergraph is designed, the verification of these conditions may be
difficult.
Another approach has been initiated in [5] and completed in [7]. It is based

on a weaker correspondence between the hypergraph and the OML. The con-
struction does not possess a one-to-one correspondence between elements of an
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OML and some features of the hypergraph. Nevertheless, a one-to-one corre-
spondence between states exists. This mapping is not only an affine home-
omorphism as in [5]; it preserves also the ranges of states and the values at
corresponding elements. This relation is expressed in terms of evaluation func-
tionals.
The evaluation functional associated with a ∈ L is the mapping e(a) : S(L)→

[0, 1], s 7→ s(a). We use the notation e(L) := {e(a) : a ∈ L}. In order to extend
the notion of evaluation functional to hypergraphs, we need to evaluate it not
only on the vertices of the hypergraph, but also on all subsets of all edges. A
precise definition is based on the notion of semipasted family of Boolean algebras,
see [6, 7] for details.
Two OMLs L,K are called functionally isomorphic iff there is a bijection

ˆ: e(L) → e(K) and an affine homeomorphism ˜: S(L) → S(K) such that
f̂(s̃) = f(s) for all f ∈ e(L), s ∈ S(L). This notion is canonically extended
to other quantum structures and to hypergraphs so that we can also speak of
a functional isomorphism of an OML and a hypergraph. Following [5] and [7],
given a hypergraph, we may construct a functionally isomorphic orthoalgebra,
orthomodular poset, and even an orthomodular lattice:

Theorem 1 [7] Every finite hypergraph is functionally isomorphic to a finite
orthomodular lattice.

Thus the state space can be modelled using any hypergraph and we can guar-
antee the existence of an OML with the desired properties. The only limitation
is that we may refer only to properties preserved by the functional isomorphism.
These include the convex structure, the ranges of states, etc.
One desirable property of states which is not preserved by the functional

isomorphism is faithfulness. A state s is called faithful if ∀a 6= 0 : s(a) 6= 0. A
functional isomorphism does not preserve this property. The construction of [7]
results typically in an OML with non-zero elements on which all states vanish.
Such elements cannot be distinguished from 0 by evaluation functionals. Start-
ing from a faithful state on a hypergraph, it may happen that the corresponding
state on an OML is not faithful. This is the motivation of a new approach. We
want a stronger correspondence between the hypergraph and its corresponding
OML so that faithfulness of states would be preserved: Two OMLs (or hyper-
graphs) L,K are called faithfully functionally isomorphic iff there is a bijection
ˆ: e(L\{0})→ e(K \{0}) and an affine homeomorphism ˜: S(L)→ S(K) such
that f̂(s̃) = f(s) for all f ∈ e(L \ {0}), s ∈ S(L).
Our intention is to keep a loose correspondence so that the restrictions on

the hypergraph be as weak as possible. The optimal conclusion would be a
variant of Theorem 1 with faithfulness preserved. However, this is not pos-
sible, as shown already in [5]: There are hypergraphs which are not faithfully
functionally isomorphic to any OML. Here we announce a new result—a charac-
terization of hypergraphs which are faithfully functionally isomorphic to OMLs.
We shall need the following notions: A component of a hypergraph is a maximal
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connected subhypergraph. An odd graph is a hypergraph such that each edge
has exactly 2 vertices and there is a loop (=cycle) of an odd order.

Theorem 2 A hypergraph is faithfully functionally isomorphic to an orthomod-
ular lattice iff at least one of the following conditions holds:

• There is no component which is an odd graph.

• There is a vertex v such that s(v) = 0 for each state s.

• There is a component which is not an odd graph and contains an element
b such that s(b) = 1/2 for all states s.

The use of the latter theorem is not as easy as Theorem 1, but it is much
more comfortable than the original Greechie diagram approach of [1, 3]. It
extends the contribution of [7] to the study of those properties of state spaces
which are preserved by faithful functional isomorphisms, not only by ordinary
functional isomorphisms.
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