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DISCRETE DUALITY FINITE VOLUME METHOD FOR MEAN
CURVATURE FLOW OF SURFACES∗

L. TOMEK† , K. MIKULA† , AND M. REMEŠÍKOVÁ†

Abstract. In this paper we propose a new numerical method for solving the mean curvature
flow of surfaces. Two-dimensional surface is usualy approximated by a triangular mesh. Widely
used discretization of Laplace-Beltrami operator over triangulated surfaces is the so-called cotangent
scheme [7, 8]. In the cotangent scheme the unknowns are the vertices of the triangulation. The basic
idea of our new approach is to include a representative point of each triangle (vertex of the dual
mesh) in the scheme as a supplementary unknown and generalize the discrete duality finite volume
method [3] from R2 to 2D surfaces embedded in R3. We derive the numerical scheme and present
numerical experiments illustrating the basic properties of the method.
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1. Introduction. Let ϕ0 : M → R3 be a smooth embedding of a 2-dimensional
manifold M in Euclidean space. The evolution of M0 = ϕ0(M) by the mean curvature
flow is a one-parameter family of embeddings ϕ : M × [0, tf ]→ R3 satisfying

∂tϕ(X, t) = H(X, t)N(X, t) with ϕ(X, 0) = ϕ0(X),(1.1)

where H(X, t) and N(X, t) are respectively the mean curvature and the unit normal
of the surface M t = ϕt(M) at the point X ∈M , where ϕt = ϕ(·, t), see Fig. 1.1. The
mean curvature at given point is the sum of the principal curvatures, H = κmax+κmin.
The quantity h(X, t) = H(X, t)N(X, t) is called mean curvature vector.

Fig. 1.1. Evolving surface from differential geometry viewpoint.

For a surface with boundary, the model (1.1) is coupled with a Dirichlet boundary
condition

ϕ(X, t) = ϕ0(X), X ∈ ∂M.(1.2)
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Using the formula h = 4gϕϕ (see [6]) we can rewrite the model (1.1) to the form

∂tϕ = 4gϕϕ with ϕ(X, 0) = ϕ0(X).(1.3)

The symbol 4gϕ denotes the Laplace-Beltrami operator associated with the metric
tensor gϕ induced by the embedding ϕt (we use abbreviation gϕ for gϕt).

The numerical methods for solving the equation (1.3) are usually based on a
finite element method [1, 4] or a finite volume method [7, 8]. In this work we deal
with a finite volume method. Given a (primal) mesh, finite volume methods for the
equation (1.3) may be classified into two main distinct categories: ”vertex-centered”1

and ”cell-centered”2 methods. For a review of these methods, we refer to [5].
In the paper [2] the authors study a specific cell-centered method, the so-called

diamond-cell method. A diamond cell is a quadrilateral cell associated with a side
of the primal mesh and is obtained by joining the two vertices of this side with the
centers of the two cells of the primal mesh which share this side. The mean value of
∇ϕ is defined using the values of ϕ at the centers and at the vertices of the primal
cells. The discrete solution at the vertices of the primal mesh is computed by an
interpolation of its values at the centers of the neighboring cells.

In the paper [3] the authors develop a discrete duality finite volume (DDFV)
method which is a fusion of the vertex-centered and cell-centered approach. They
adopt the diamond-mesh technique to reconstruct ∇ϕ, but instead of interpolating
the values of ϕ at the vertices of the primal mesh, they consider these values as
supplementary unknowns of the numerical scheme.

In this work we generalize the DDFV from R2 to 2D surfaces embedded in R3.
The motivation for a new finite volume method for the mean curvature flow rises
also from the fact that the finite volumes in the widely used vertex-centered method,
the so-called cotangent scheme [8], are not defined uniquely in the following sense:
the ”cell center” of a triangle (cell of the primal mesh) used for the construction of
the finite volume (cell of the dual mesh) can lie anywhere in the triangle and the
integral of the term 4gϕϕ in (1.3) over the finite volume is the same. Since, in the
discrete differential geometry [8], the mean curvature vector is then approximated
by dividing the integral by the area of the finite volume, it may lead to arbitrary
number depending on the choice of the ”cell center”. In our scheme we reduce this
non-uniqueness by including the cell centers to unknowns.

2. Discretization of mean curvature flow. In this section we perform a
discretisation of (1.3) by a new discrete duality finite volume (DDFV) method.

2.1. Time discretization. In order to discretize (1.3) in the time domain, the
semi-implicit approach is used. The time derivative is approximated by a finite dif-
ference and the Laplace-Beltrami operator is taken from the previous time step. If τ
is the time step, N = tf/τ is the number of time steps, tn = nτ and ϕn = ϕ(·, tn),
we obtain

ϕn − ϕn−1

τ
= 4ϕn−1ϕn(2.1)

for n = 1, . . . , N , where the symbol 4ϕn−1 denotes the Laplace-Beltrami operator
from the previous time step with respect to the metric gϕn−1 induced by ϕn−1.

1Computing approximate values of ϕ at the vertices of the primal mesh
2Computing approximate values of ϕ at the centers of the cells of the primal mesh.
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2.2. Space discretization.

2.2.1. Triangular mesh. The construction of a mesh for DDFV method is
based on the triangular mesh used in cotangent scheme [8]. It considers a trian-
gulation M̄ of the manifold M , which is a simplical complex homeomorphic to M .
Corresponding homeomorphism ρ : M̄ → M induces a triangular structure on M
consisting of vertices Xi = ρ(X̄i), i = 1, . . . , nF , edges ej , j = 1, . . . , nE and triangles
Tp, p = 1, . . . , nT , where X̄i, i = 1, . . . , nF are the vertices of the triangulation M̄ .
The surface Mn = ϕn(M) is also endowed with a triangular structure induced by the

Fig. 2.1. Triangulated surface from the point of view of the differential geometry.

map ϕn ◦ ρ (Fig. 2.1, sketched by solid lines). An approximation of Mn is defined
using a new embedding ϕ̄n : M → R3 which is linear on each triangle Ti,p. The
surface M̄n = ϕ̄n(M) is a polyhedral approximation of Mn (Fig. 2.1, sketched by
dashed lines) with vertices Fni = ϕn(Xi) = ϕ̄n(Xi), edges enj = ϕ̄n(ej) and triangular
faces T np = ϕ̄n(Tp).

The finite volume mesh is constructed by the barycentric subdivision of M . The
finite volume (or covolume) Vi around a vertex Xi is a region bounded by the piecewise
linear curve joining the barycenters of the neighbouring triangles and the midpoints
of the edges leading to the neighbouring vertices Xi,p, p = 1, . . . ,m where m is the
number of neighbours.

2.2.2. Diamond mesh. In our approach we modify the mesh M̄n used in the
cotangent scheme. We create a representative point Tni of each triangle T ni (Fig. 2.2,
left). The point Tni does not need to lie in the triangle, only its projection to T ni does.
The vertices Fni and Tni will be referred to as F -vertices and T -vertices respectively.

Fig. 2.2. Left, the edges of the original mesh (blue lines) and the edges of the diamond mesh
(red lines) in the neighbourhood of the vertex Fi. Right, the diamond mesh (red lines) on the sphere.

Next, the triangular mesh is replaced by a diamond mesh. The edges of the diamond
mesh are the line segments joining each F -vertex with all neighbouring T -vertices
(Fig. 2.2). For a manifold with boundary the edges connecting boundary F -vertices
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are also included to the diamond mesh (Fig. 2.3, right). The basic geometric object
is a diamond cell, denoted by V D, which is a surface patch bounded by four edges
(Fig. 2.4). For a manifold with boundary the boundary diamond cells V D are triangles
with two F -vertices and one T -vertex (Fig. 2.3, right).

Fig. 2.3. Left, local coordinates on an inner diamond cell on M . Right, a boundary diamond
cell on M̄n.

The manifold M̄ and the homeomorphism ρ : M̄ → M are changed analogously.
The homeomorphism ρ induces a new structure on M with vertices Xi, i = 1, . . . , nF
and Bi, i = 1, . . . , nT . For the embedding ϕ̄n : M → R3 of a diamond cell V D with
vertices X1, B1, X2, B2 we use a bilinear interpolation

ϕ̄n (X) = (1− λ)(1− µ)Fn1 + λµFn2 + λ(1− µ)Tn1 + (1− λ)µTn2 , X ∈ V D,(2.2)

where Tni = ϕn(Bi), F
n
i = ϕn(Xi) and λ, µ ∈ [0, 1] are the local coordinates of a

point X ∈ V D (Fig. 2.3, left). Geometric quantities needed in following computations
are denoted in Fig. 2.4 and will be defined properly later. The center C of an inner
diamond cell V D is defined by ϕ̄n(C) = 1

4 (Fn1 + Tn1 + Fn2 + Tn2 ) = S. If V D is a

Fig. 2.4. The geometry of a diamond cell. Left, a diamond cell on the manifold M . Right,
ϕ̄-image of a diamond cell on M̄n.

boundary diamond cell, the equation (2.2) reduces to a linear interpolation.
Resulting mesh consists of nV = nF + nT vertices and ndia = 3

2nT diamond cells
(in case of closed manifold3). Our diamond mesh is a generalization of 2D planar
diamond mesh used in DDFV method developed in [3] to 2D surfaces in R3.

2.2.3. Induced metric gϕ̄n . For the derivation of the numerical scheme we
need the expression for the induced metric gϕ̄n at the center C of a diamond cell V D.
To obtain the induced metric gϕ̄n , the standard Euclidean metric is pushed back from
R3 to M by the map ϕ̄ and evaluated at the center C (i.e. (λ, µ) =

(
1
2 ,

1
2

)
). The

resulting expression is (in the matrix form)

gCϕ̄n ↔
1

4

(
‖u− v‖2 (u− v) · (u+ v)

(u− v) · (u+ v) ‖u+ v‖2
)
,(2.3)

where u = F2 − F1, v = T2 − T1, see [9] for details.

2.2.4. Equations for F -vertices. The finite volume V Fi around the vertex
Xi is a region bounded by a curve joining the neighbouring vertices Bi,p and the
centers Ci,p of the diamond cells V Di,p, p = 1, . . . ,m (Fig. 2.5, left). The part of the

boundary between Bi,p−1 and Bi,p is a curve γTi,p : (λ(t), µ(t)) = (1 − t, t), t ∈ [0, 1]

(by convention, Xi is the origin of the local coordinate system on each V Di,p).

3For a manifold with boundary ndia >
3
2
nT and ndia approaches 3

2
nT as the mesh size decreases.
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Fig. 2.5. Left, the finite volume V F
i around the vertex Xi ∈ M . Right, the notation in the

neighbourhood of the vertex Fn
i = ϕ̄n(Xi) ∈ M̄n.

To obtain the equation for Fni we integrate (2.1) over V Fi , with ϕn being replaced
by its piecewise bilinear approximation ϕ̄n. We obtain (using the divergence theorem)

χn−1(V Fi )
Fni − F

n−1
i

τ
=

m∑
p=1

∫
γT
i,p

gϕ̄n−1

(
∇ϕ̄n−1 ϕ̄n, νn−1

i,p

)
dξn−1,(2.4)

where νn−1
i,p is the outward unit normal to the covolume V Fi on the curve γTi,p. The

area of the covolume χ(V Fi ) is approximated by the total area of 2m triangles with
vertices Fi, Si,p, Ti,p and Fi, Ti,p, Si,p+1 (Fig. 2.5, right) for p = 1, . . . ,m (by conven-
tion, Si,m+1 = Si,1). Note that the equation (2.4) is a vector one, thus for each i we
have 3 scalar equations.

Calculation of the integral over γTi,p. We approximate the value of the integral
in (2.4) using the value in the center Ci,p. To simplify the notation we omit most of
indices i and n throughout this section.∫

γT
p

gϕ̄ (∇ϕ̄ϕ̄, νp) dξ ≈
∣∣γTp ∣∣ gCp

ϕ̄

(
∇ϕ̄ϕ̄(Cp), ν

F
p

)
,(2.5)

where |γTp | = ‖Tp−1−Sp‖+‖Ti−Sp‖ is the approximate length of γTp and νFp = νp(Cp)

is the outward unit normal to ∂V Fi at point Cp. The tangent vector to γTp at point Cp
is γ̇Tp = −∂λ+∂µ. We obtain a formula for the normal νFp = (νFp )λ∂λ+ (νFp )µ∂µ after

using conditions g
Cp

ϕ̄n(γ̇Tp , ν
F
p ) = 0 (orthogonality), g

Cp

ϕ̄n(νFp , ν
F
p ) = 1 (normalization)

and (νFp )λ, (νFp )µ > 0 (correct orientation) in the following form

νFp =
‖v‖2 + u · v

‖v‖
√
‖u‖2‖v‖2 − (u · v)2

∂λ +
‖v‖2 − u · v

‖v‖
√
‖u‖2‖v‖2 − (u · v)2

∂µ,(2.6)

where u = Fi,p − Fi, v = Ti,p − Ti,p−1, see [9] for details. From (2.2) we evaluate the
derivatives of the embedding in the center of the diamond cell

∂λϕ̄(Cp) =
1

2
(u− v), ∂µϕ̄(Cp) =

1

2
(u+ v).(2.7)
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Using the formula gϕ̄ (∇ϕ̄ϕ̄, νp) = νλp ∂λϕ̄ + νµp ∂µϕ̄ and the equations (2.7), (2.6) the
integral (2.5) follows∫

γT
p

gϕ̄ (∇ϕ̄ϕ̄, νp) dξ =

∣∣γTp ∣∣ dTp
2χ(V Dp )

(Fi,p − Fi)−
∣∣γTp ∣∣
dTp

cotωp(Ti,p − Ti,p−1),(2.8)

where dTp = ‖Ti,p − Ti,p−1‖ is the distance between T -vertices of the diamond cell

V Di,p, the area χ(V Dp ) = 1
2

√
‖u‖2‖v‖2 − (u · v)2 = 1

2‖u× v‖ can be interpreted as the
approximate measure of the diamond cell calculated as the area of the quadrangle
with vertices F ′1, T1, F ′2, T2 (Fig. 2.4, right) which we get by shifting the line segment
F1F2 in the direction of the vector u× v until it intersects the segment T1T2 and ωp
is the angle between F ′1F

′
2 and T1T2.

Final equations. We use (2.8) on the right-hand side of (2.4) and reorder the
sum (replace p by (p + 1) in the term containing Ti,p−1). The formula for the dis-
cretization of the Laplace-Beltrami operator follows∫

V F
i

4ϕ̄ϕ̄ dχ = −1

2

m∑
p=1

∣∣γTi,p∣∣ dTi,p
χ(V Di,p)

Fi +
1

2

m∑
p=1

∣∣γTi,p∣∣ dTi,p
χ(V Di,p)

Fi,p

−
m∑
p=1

(∣∣γTi,p∣∣
dTi,p

cotωi,p −
∣∣γTi,p+1

∣∣
dTi,p+1

cotωi,p+1

)
Ti,p.(2.9)

We combine (2.4) with (2.9) and obtain the equations for F -vertices

an−1
i Fni +

m∑
p=1

bn−1
i,p Fni,p +

m∑
p=1

cn−1
i,p Tni,p = Fn−1

i(2.10)

for i = 1, . . . , nF and n = 1, . . . , N , where

ai = 1 + τ
2χ(V F

i
)

m∑
p=1

qFi,p, bi,p = − τ
2χ(V F

i
)
qFi,p, ci,p = τ

χ(V F
i

)

(
qTi,p − qTi,p+1

)
(2.11)

for p = 1, . . . ,m and where qi,m+1 = qi,1 and

qFi,p =

∣∣γTi,p∣∣ dTi,p
χ(V Di,p)

, qTi,p =

∣∣γTi,p∣∣
dTi,p

cotωi,p.(2.12)

To reduce the complexity of notation we omitted the time step index n in (2.11) and
(2.12). All geometric quantities in (2.11) and (2.12) are calculated from the (n−1)-th
time step.

In case of the surface with boundary (1.2) we fix each boundary vertex Fni ∈ ∂M̄n

by replacing the corresponding equation (2.10) with Fni = Fn−1
i .

2.2.5. Equations for T -vertices. We construct the finite volume V Ti around
the vertex Bi (Fig. 2.6) as a region bounded by the curves γFi,p : (λ(t), µ(t)) = (1 −
t, 1 − t), t ∈ [0, 1], for p = 1, 2, 3 (by convention, Xi+1,p is the origin of the local
coordinate system on each V Di,p).



DISCRETE DUALITY FVM FOR MCF OF SURFACES 39

Fig. 2.6. Left, the finite volume V T
i around the vertex Bi ∈ M . Right, the notation in the

neighbourhood of the vertex Tn
i = ϕ̄n(Bi) ∈ M̄n.

Using a procedure analogous to the one presented in section 2.2.5 we obtain the
equations for T -vertices (see [9] for details)

ân−1
i Tni +

3∑
p=1

b̂n−1
i,p Tni,p +

3∑
p=1

ĉn−1
i,p Fni,p = Tn−1

i(2.13)

for i = 1, . . . , nT and n = 1, . . . , N , where

âi = 1 + τ
2χ(V T

i
)

3∑
p=1

q̂Ti,p, b̂i,p = − τ
2χ(V T

i
)
q̂Ti,p, ĉi,p = τ

χ(V T
i

)

(
q̂Fi,p − q̂Fi,p−1

)
(2.14)

for p = 1, 2, 3 and where q̂i,0 = q̂i,3 and

q̂Ti,p =

∣∣γFi,p∣∣ dFi,p
χ(V Di,p)

, q̂Fi,p =

∣∣γFi,p∣∣
dFi,p

cotωi,p.(2.15)

If a neighbouring diamond cell V Di,p is a boundary diamond cell (Fig. 2.3, right),
we perform a substitution Tni,p = Fni,p + Fni,p+1 − Tni in equation (2.13).

2.2.6. Fully discrete formulation. The formulas (2.10), (2.13) represent a
system of 3nV = 3nF + 3nT linear equations for the (vector) unknowns Fni , i =
1, · · · , nF and Tni , i = 1, · · · , nT . The system is coupled with an initial condition
F 0
i = ϕ0(Xi) and T 0

i = ϕ0(Bi).

3. Numerical experiments. In this section we test the numerical scheme in
several numerical experiments. In our implementation the BiCGStab (BiConjugate
Gradient Stabilized) method [10] was used to solve the system of linear equations. In
all experiments we set the initial position of each T -vertex to be a projection of the
barycenter to the sphere with mean curvature vector equal to 1

3

(
hFi,1 + hFi,2 + hFi,3

)
,

where hFi,p is the mean curvature vector in the neighbouring vertex Fi,p.

3.1. Experimental order of convergence. If the initial condition M0 is the
unit sphere, then the evolving surface M t is a shrinking sphere with radius r(t) =√

1− 4t. The knowledge of the exact solution allows us to study the experimental
order of convergence (EOC) of the numerical method. We calculate the EOC as

EOC = log2

(
δh
δh/2

)
,(3.1)
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where δh is a space-time L2-error for a mesh with characteristic edge length h.
We use the discretization of the sphere (Fig. 3.1) based on the division of the

regular icosahedron. The mesh refinement was done by dividing each triangle into
four triangles and the new F -vertices were projected onto the sphere. The stopping

Fig. 3.1. The discretization of the unit sphere for the DDFV method, from left to right: nV =
122, 482, 1922, 7682.

time was set to tf = 0.08 s. We adopted the standard coupling for parabolic problems
τ ∼ h2. We use following L2-error

L2-error =

[
N∑
n=1

(
nF∑
i=1

(
‖Fni ‖ − r(tn)

)2χn(V Fi )

2
+

nT∑
i=1

(
‖Tni ‖ − r(tn)

)2χn(V Ti )

2

)
τ

] 1
2

.

(3.2)
The results are presented in Tab. 3.1.

Table 3.1
Results for the DDFV method on sphere. nV is the total number of vertices, nF , nT denote

the number of F and T -vertices respectively, τ is the time step, N is the number of time steps, next
column is the L2 error, ”iter” is the total numbers of iterations of the BiCGStab method needed
throughout the computation, EOC is the experimental order of convergence and CPU is the time in
seconds needed for the computation on a single 2.3 GHz processor.

nV nF nT τ N L2error iter EOC CPU
122 42 80 0.04 2 1.34e-02 7 0.02
482 162 320 0.01 8 3.26e-03 34 2.03 0.13

1922 642 1280 0.0025 32 8.01e-04 128 2.03 1.16
7682 2562 5120 0.00062500 128 1.95e-04 450 2.04 12.91

30722 10242 20480 0.00015625 512 4.66e-05 1703 2.07 194.78

Looking at Tab. 3.1 we observe the second order accuracy (EOC ≈ 2). This order
of convergence is due to the space discretization that is second order accurate and
due to the coupling τ ≈ h2. Investigating the convergence in time alone, we would
observe the first order accuracy.

3.2. The motion of T-vertices. The motion of T -vertices is crucial. A priori
it is not clear if T -vertices will evolve properly with F -vertices and if the projection of

Fig. 3.2. The evolution of a bumpy sphere with nV = 1922, τ = 0.0025. The selected time
steps are n = 0, 4, 12, 32.
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Tni onto the plane of the triangle with vertices Fni,1, F
n
i,2, F

n
i,3 will lie in the triangle or

if T -vertices can escape. In this section we test the behaviour of T -vertices for several
initial conditions M̄0. The first example is the evolution of a bumpy sphere (Fig. 3.2).
Looking at Fig. 3.2 we do not observe any undesirable behaviour of T -vertices (e.g.
escaping). The second example is the evolution of a cymling-like shape (Fig. 3.3). We
can observe that the regions with relatively high initial curvature become problematic
during the evolution. In the detail in Fig. 3.4 we can see the contraction of diamond
cells which would lead to obviously wrong results in the following time steps. This

Fig. 3.3. The evolution of a cymling-like shape with nV = 1922. Time steps: n = 0, 4, 8, 12.

Fig. 3.4. Contraction of diamond cells in the region of relatively high initial curvature.

behaviour is also present in the cotangent scheme, where it can be eliminated by
adding a special tangential term to the model (1.1) in order to control the tangential
motion of the grid points [7]. The tangential redistribution of the grid points along
the surface in the DDFV method could be the object of a further research.

Fig. 3.5. The evolution of a cylinder with nV = 600, τ = 0.0025 with diamond mesh displayed.
The selected time steps are n = 0, 40, 100, 200.

Fig. 3.6. A degeneration of the diamond mesh. Left and middle, time steps n = 580, 640.
Right, the degeneration in detail n = 640.

The last example is the evolution of a cylinder with the Dirichlet boundary con-
dition prescribed on the boundary circles. The evolving surface converges to the
catenoid which is the minimal surface stretched between two circles (Fig. 3.5). How-
ever, at much later time steps we can observe an unwanted tangential motion of
T -vertices and a degeneration of the diamond mesh (Fig. 3.6).
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3.3. Eliminating the tangential velocity. In the numerical experiment with
a cylinder evolving to the catenoid we revealed an unwanted tangential motion of
T -vertices. Our basic model is the mean curvature flow ∂tϕ = h. We can rewrite the
model into the form

∂tϕ ·N = h ·N, (∂tϕ · T1)T1 + (∂tϕ · T2)T2 = 0,(3.3)

where T1, T2 are vectors tangent to the surface and the vectors T1, T2, N form an
orthonormal basis at each point of the surface. From the analytical point of view, the
form (3.3) is equivalent to the basic model. However, the forms differ in the discrete
setting. The mean curvature vector h = HN is replaced by the Laplace-Beltrami
operator h = 4ϕϕ and after discretization, the vector 4ϕϕ does not necessarily point
in the normal direction, due to distretization errors. There are many possible ways of
discretizing (3.3). We use the one presented below. Using (3.3) we obtain

∂tϕ = (∂tϕ ·N)N +

2∑
i=1

(∂tϕ · Ti)Ti = (4ϕϕ ·N)N.(3.4)

In equation (3.4) the total velocity vector ∂tϕ points in the normal direction, because
the vector 4ϕϕ is projected onto the normal. Therefore, any tangential motion is
prohibited. Before the discretization we add a zero to the right-hand side of (3.4).

∂tϕ = 4ϕϕ−
(
4ϕϕ− (4ϕϕ ·N)N

)
= 4ϕϕ−

(
h− (h ·N)N

)
.(3.5)

The term
(
h − (h ·N)N

)
represents the tangential velocity. The time discretization

is performed using semi-implicit approach.

ϕn − ϕn−1

τ
= 4ϕn−1ϕn −

(
hn−1 − (hn−1 ·Nn−1)Nn−1

)
.(3.6)

After the space discretization we would obtain the system of equations similar to
(2.10), (2.13), the difference would be in the right-hand side only.

In following experiments (Fig. 3.7 and Fig. 3.8) we can see that after elimination
of the tangential velocity the T -vertices move properly and no degeneration of the
diamond mesh is present.

Fig. 3.7. The evolution of a cylinder. No degeneration of the mesh is present. The selected
time steps are n = 0, 100, 200, 640.

Fig. 3.8. The evolution of a hemisphere. The selected time steps are n = 0, 40, 80, 600.
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