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Abstract: The paper presents numerical algorithms, postprocessing and validation steps for
an automated cell tracking and cell lineage tree reconstruction from large-scale 3D+time
two-photon laser scanning microscopy images of early stages of zebrafish (Danio rerio) em-
bryo development. The cell trajectories are extracted as centered paths inside segmented
spatio-temporal tree structures representing cell movements and divisions. Such paths are
found by using a suitably designed and computed constrained distance functions and by a
backtracking in the steepest descent direction of a potential field based on a combination
of these distance functions combination. Since the calculations are performed on big data,
parallelization is required to speed up the processing. By careful choice and tuning of al-
gorithm parameters we can adapt the calculations to the microscope images of vertebrae
species. Then we can compare the results with ground truth data obtained by manual check-
ing of cell links by biologists and measure the accuracy of our algorithm. Using an automatic
validation process and visualisation tool that can display ground truth data and our result
simultaneously, along with the original 3D data, we can easily verify the correctness of the
tracking.
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1 Introduction

With the recent research in biology and medicine the in vivo imaging of various
organisms at cell level at very early stages of development without corrupting the
cell integrity and normal evolution of the embryo is becoming possible thanks to
the advancement of the modern microscopy techniques. Using two-photon laser
scanning microscopy we can obtain long periods of the 3D+time images of an em-
bryonic development with relatively short time step beginning just a few hours after
the fertilization. By expression of the fluorescence protein trough the RNA injec-
tion at the one-cell stage we can obtain the labelling of cell nuclei and membranes
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(Fig.[T). Thanks to the transparency for the laser scanning and thanks to the similar-
ity with human cells in many aspects, this can be used to perform various analyses
of the embryogenesis and the growth of organisms and the Zebrafish (Danio reio)
embryogenesis is studied extensively. The results are used both in basic and applied
biology and medicine research, e.g. in the anticancer drug design. To process such
a large amount of data there is a need for efficient and parallel algorithms that will
allow us to quickly process this data and obtain satisfying results.
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Figure 1
Volume rendering of cell nuclei (top) and cell membrane (bottom) data from confocal microscope.

In this paper we focused on the cell tracking part of our algorithm, mainly on the
efficient OpenMP parallel implementation of 4D Rouy-Tourin scheme with fixing
[11]] and on the detailed description of various postprocessing steps and result val-
idation by comparison with ground truth data. These topics are not discussed in

(7. 9].

The paper is organized as follows. In the section[2] we briefly describe the individual
steps of our image processing workflow. In the next section, section 3] we present
our approach to cell trajectories and lineage tree extraction and discuss the numeri-
cal approaches used in the tracking method and parameters that can be used to tune
and improve the tracking results. In section ] we discuss the paralelization of the
distance function calculation. Then we discuss extraction of the cell trajectories and
postprocessing of the results in section[5] In the last section, section[6] we discuss
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the numerical experiments on real 3D+time image sequences of the early zebrafish
embryogenesis and perform the automatic validation of the results by comparison
with the ground truth data containing correct cell links in time verified manually by
biologists and manual visual checking using our visualization tool.

2 Image processing workflow

Developing algorithms for the analysis of the embryogenesis images, we first start
with the image filtering to reduce the noise in the original 3D images obtained from
a two-photon laser microscope. For the filtering we are using a geodesic mean cur-
vature flow method (GMCF) based on the nonlinear diffusion equation that was
developed by Chen et al. in [1]] and efficiently discretized by Kriva et al. in [2} 3].
We apply the filtering to the cell nuclei and membrane images and in this step we
eliminate various small structures and noise which do not represent the cell nuclei
or membrane structures. For the computation we are using a parallel MPI imple-
mentation of the algorithm and Red-Black SOR parallel solver.

In the next step we detect the cell nuclei identifiers using a level-set center detection
method (LSCD) developed by Frolkovic et al. in [3}4]]. This model is based on the
nonlinear advection-diffusion equation which is applied to the result of GMCF filter-
ing. The basic assumption is that cell nuclei are represented by humps of relatively
higher image intensity where the diameter of cell nuclei is rather large compared to
the diameter of spurious inner cell structures. Thus applying a sufficient number of
evolutionary steps of LSCD, the spurious structures are shrunk and smoothed but
larger humps are still significant and we can look for the remaining local maxima
in the volume representing the coordinates of the cell nuclei. The method is paral-
lelized with MPI using Red-Black SOR parallel solver to solve the linear system.
These cell nuclei coordinates will represent the basic input data for our segmentation
and tracking algorithms.

Using the cell identifiers, we can move to the segmentations of inner cell structures,
the cell nuclei. Here we use the generalized subjective surface equation (GSUB-
SUREF) of advection-diffusion type developed by Sarti et al. in [3} 5, 16]. The cell
identifiers are used as seeds for the segmentations.

With the cell nuclei coordinates from the LSCD and nuclei segmentations from
GSUBSURF we came up with the idea of the construction of 4D segmentation that
will sufficiently approximate the real cell shapes. The first approach was to use
3D ellipsoids with constant half-axes for all cells in all time steps to obtain some
very rough approximation of cell nuclei and combine them to the 4D segmentation.
Here we found that thanks to the imperfection of the input data a non negligible
number of cell identifiers that should represent the cell nuclei were missing and the
result of the tracking was many short disjointed trajectories. To improve the results,
the next step was considering 4D ellipsoids constructed also in the time dimension.
Using such time overlapping we were able to achieve connected trajectories (close
gaps) even in cases when the cell nuclei are missing in single time step [[7, 18]. We
improved the approximation of cell nuclei by using the diameters of 4D ellipsoid
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from performed segmentations of each single cell in the whole dataset so each 4D
ellipsoid is unique and is approximating the corresponding cell. By shrinking or
enlarging this diameter one can further refine the quality of the tracking results.
Calculating suitable designed distance functions inside the 4D segmentation and
using their combination to construct a potential field, we can extract cell trajectories
representing their spatio-temporal movement during the embryogenesis. Here we
can use a special weighted combination of the distance functions during the potential
field construction to further improve the tracking results [9].

There are also developed other approaches to the problem of cell tracking. In [10]
Amat et al. are using the methods based on sequential Bayesian approach with
Gaussian mixture models are used. In [3] there has been presented a method to build
the cell lineage tree for the complex stages of Zebrafish embryo development based
on stochastic simulated annealing minimization of a heuristic energy functional.

3 Cell tracking

Our method is composed of five basic steps:

e construction of a 4D segmentation yielding the 4D spatio-temporal tree struc-
ture,

e computation of constrained 4D distance functions inside this 4D segmentation
and designing of a proper combination of them in order to built a potential
field for tracking,

e cxtraction of cell trajectories using the steepest descent direction of the po-
tential field,

e centering the extracted trajectories inside the 4D spatio-temporal trees in or-
der to eliminate duplicates,

e construction of the cell lineage tree by detecting trajectories which merge
together when going backward in time indicating mitosis and thus a branching
node of the lineage tree.

3.1 4D segmentations

4D segmentation is a spatio-temporal structure which approximates the space-time
movement of cell nuclei. According to Zanella et al. in [6, |12] the shape of cell
nuclei during zebrafish embryogenesis is reasonably approximated by spheres or
ellipsoids. Thus, in order to construct 4D segmentation we use cell identifiers de-
tected in all time steps, sb,,m = 1,...,n-,1 = 1,...,Ng (m denotes cell identifier
index at time step [/ and Ny is the number of time steps) by LSCD method from
[4] and create 4D ellipsoids around all these points. To determine halfaxes of the
ellipsoids we use real cell nuclei segmentations obtained using the generalized sub-
jective surface (GSUBSURF) method [6l [12] paired with cell coordinates from the
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Figure 2

Projection of the 4D segmentation to one time step. For each cell identifier we can see the central sphere
(inside the red circle) surrounded by the overlaps of the sphere from the previous time step (inside the
green circle) and from the next time step (inside the blue circle). Three further parts of 4D segmentation
are shown as well.

cell detection step. We calculate the volume of the real segmented nucleus and com-
pute the radius of a sphere with the same volume. This radius is then used as spatial
half-axes for the constructed ellipsoid. Here, we also introduce a parameter S repre-
senting shrinking of the half-axes (if § < 0) or expanding of them (if S > 0). A slight
shrinking of the real radius is used later in the tracking algorithm since it helps to
have a spatially non-overlapping tubular structure representing the cell movement.
This parameter is tuned by comparison of the tracking with ground truth data and
its optimal choice can improve the quality of tracking results. In temporal direction
we are using halfaxis equal to d6 corresponding to the image acquisition interval
(Fig. 2). The nonzero temporal halfaxis is important due to the time overlap which
we create and thus we improve connectivity of 4D spatio-temporal tree structures.
Thanks to the time overlap we interconnect branches of the 4D spatio-temporal tree
where a cell center was not detected in one frame but it was detected in two neigh-
boring frames and thus we correct false negative errors of the cell center detection
algorithm.

3.2 Computing 4D distance functions and building the potential
field

Our 4D segmentation containing 4D spatio-temporal tree structures can be repre-
sented by a 4D piecewise constant function, with some BIG, a sufficiently large
number greater than maximum distance in the data (e.g. BIG = 10%), value outside
of the segmentation and with zero value inside it. Using this information, we com-
pute two types of distance functions inside the 4D spatio-temporal tree structures.
We call them constrained because all the calculations are constrained by the bound-
aries of the 4D segmentation. Due to that fact, the computed distances between 4D
points of the 3D+time image sequence are not the standard Euclidean distances in
R* but they represent minimal Euclidean paths between the points inside the 4D
segmentation.
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The first type of distance function will be denoted by Dy (x1,x3,x3,0). It is calcu-
lated gradually inside all simply connected regions, starting from cell centers in the
lowest possible time step 6. After the calculation is completed in all regions reach-
able from these cell centers, we fix the computed values and continue the calculation
from centers in the next time step but only in regions where the values are not yet
fixed. Using this approach we calculate the distance function Dy (x1,x;,x3,0) in-
side the whole 4D segmentation. At the end all doxels inside the 4D segmentation
contain the value of the distance to the farthest (backwardly in time) cell identi-
fier to which it is continuously connected. The second type of distance function,
Dpg(x1,x2,x3,0), represents the distance of any inner point of the 4D segmenta-
tion to the boundary of the 4D segmentation. Again, Dp(x1,x2,x3,0) = 0 for all
(x1,x2,x3,0) outside of the 4D segmentation.

Based on these facts we build the new potential field
V(X] ,X2,X3, 9) == DL(XI 3 X2,X3, 6) - (XDB(Xl ,X2,X3, 6)3 (l)

which is used for the extraction of cell trajectories. The parameter & > 0 is used to
adjust the weight of Dp function to tune and improve tracking results.

Both distance functions Dy (x],x7,x3,0) and Dg(x,x2,x3, ) are computed numer-
ically on the doxel structure of the 3D-+time image sequence using the Rouy-Tourin
scheme [13]]. We numerically solve the time relaxed Eikonal equation, which has
the following form

di+|Vd| =1 )

for the unknown function d(x;,x2,x3,0,7). Here we solve a spatially 4D problem,
so Vd is the 4D gradient of the function d, i.e. the vector of partial derivatives with
respect to x1,x2,x3 and 0 variables. For discretization of the equation (2)) we use the
spatially 4D Rouy-Tourin scheme.

We identify here the 4D doxels with finite volumes V;;i; having four indices. With-
out losing generality, we rescale the time step d0 to be equal to dx; = dx; = dx3
and denote their common value by &p (standardly we set hp = 1). Let d{’ﬂd de-
note the approximate value of solution d in the barycenter of V;;i; in a discrete step
t" = ntp where 7p is the length of step discretizing ¢ variable. Then, for every
Viju we define the index set Njjy of all (p,q,rs) such that p,q,r,s € {—1,0,1},
|p| + |g| + |r| +|s| = 1. In order to build the scheme for any (p,q,r,s) € Njju, we
define

2
pqrs __ : n—1 n—1
Dy = (mm (di+p. jrakerivs ~ Diju 70)) €)
and then also
pars _ —P =4, —1,=S DTS
My, = max (Dijkl s D ) . “4)

Using this notations, the 4D Rouy-Tourin scheme for solving equation (2) has the
following form

T
0 ol D /171000 | 170100 5 170010 | 170001
diju = dijy JFTD*% Mg + Mg +Migg” + My ®)
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Since the scheme produces monotonically increasing updates that are gradually ap-
proaching a steady state, we can implement (3) in a computationally efficient way
[11]. Let us consider the index set I of all indices (i, j,k,/) and the set %" that
contains the indices (i, j,k,I) € I of the finite volumes where the steady state has
been already approximately reached, i.e. |dl."jkl — df].;ll| < €, where € is some chosen
small threshold value. The basic principle is that we perform all computations only
in the finite volumes that have not yet reached the steady state. The number of these
finite volumes and the computational time needed to complete one time step of the
procedure gradually decrease until the values in all cells are fixed. The method is
given by Algorithm I:

v Do while 7" #1
v Do forall (i, j,k,0) €1
v if (i,j,k,1) € #" then continue
v else
v update d’;; using
Vot [dly, —di) | < € then " = FMU{(i, j,k, 1)}
vV n=n+1

4 OpenMP parallel implementation of 4D Rouy-Tourin
scheme

The two main standards for parallel programing are MPI - Message Passing Inter-
face [[14] and OpenMP - Open Multi-Processing [[15)]. With the MPI, the parallel
calculation runs in multiple independent processes, so this standard is suitable for
systems with distributed memory. Here the processes communicate using MPI sub-
routines to exchange data using some communication media (e.g. local network or
high speed interconnect). The disadvantage is that this communication always in-
cludes some overhead. On the other hand, OpenMP runs the calculation in single
process with multiple parallel threads. Each thread has access to shared portion of
the memory, so the communication tends to be fast with minimal overhead. The dis-
advantage is that this approach cannot be used on systems with distributed memory.
When dealing with 4D data and 4D computations by using MPI parallelization, we
would need to send large amount of data during interprocess communication. E.g.,
we would need around 120MB of data to send and receive between each neighbor-
ing parallel processes during each time step of distance function calculation. So,
we decided to use OpenMP for parallelization, which is faster in this case. The
drawback of this approach is that we need to run the calculation on single shared
memory computer and we are limited by the amount of the available memory of
such a server. For example, for a 320 time step dataset with 512 x 512 x 120 voxels
3D volumes we need roughly 128GB of shared memory. Since current generation
HPC servers have 256GB or more of shared memory at disposal, OpenMP approach
is applicable. In comparison, with MPI approach in standard cluster configuration,
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where all internode communication is going through 1Gbit network, it spent 2 sec-
onds on the communication part, when running on two servers. The total time of
calculation of a single Rouy-Tourin time step took 5-7 seconds, depending on the
number of already fixed points. We can see that the communication part is sig-
nificant, contributing 30% of the single time step execution. When running on a
single server, so the communication does not need to go through network, it took
1 second, which is still a measurable difference. In OpenMP version there is no
communication needed.

Using OpenMP directives we were able to parallelize most parts of the whole calcu-
lation by dividing the data in the time dimension and doing the calculations on the
data in parallel. Since the distance function is calculated in an explicit manner using
only the data form previous time step, no communication is needed. The only parts
that remain serial are reading of the input data and writing of the results, since these
parts are limited by the speed of disk drives and there is no sense on parallelizing
them.

On standard multiprocessor servers, the global memory space is divided into sepa-
rate units, so-called NUMA nodes, where each processor has fast access to a local
NUMA node, but slow access to other NUMA nodes. E.g. each NUMA node could
contain 32GB of memory, which equals 256GB of total memory with 8 proces-
sors. Since in our calculations we need 128GB of memory, even a serial code can
use the memory from multiple nodes. In this case, it is more efficient to use nu-
mactl utility to set node memory interleaving policy, when the memory is allocated
from all nodes in a round-robin fashion. Since the other CPUs are not under load
and the memory access is evenly distributed between nodes, the performance hit
is lower than if the program uses memory only from certain nodes. In Fig. 3] we
can see memory distribution when running serial calculation using default settings
and when using node memory interleaving set with numact! utility. Using the mem-
ory interleaving, the memory usage is equal across all nodes, while with default
settings, only memory from nodes 1,2,3,5 and 7 is used. In this test, the second
distance function Dp calculation took 752 seconds with default settings and 558
seconds with memory interleaving, which is more than 25% faster.

Using the parallel processing, it is important to bind an individual parallel process
or in our case, thread, to a single NUMA node, or processor core. Thus, when the
thread allocates some local memory, it does not happen that the process scheduler
switches the thread to a different CPU where the thread does not have any data
in local memory. When the thread is bound to a certain CPU, it will run on this
CPU for its whole lifetime. For CPU binding with OpenMP programming we can
use the environment variable OMP_PROC_BIND. If it is set to TRUE, then the
individual threads will be bound to single CPU cores in a sequential manner. This is
not optimal, because when we want to run e.g. only 4 parallel threads, they will be
bound to the first four cores of the first CPU, so they will all run on a single NUMA
node and have to share a single memory access. The optimal would be a binding
to NUMA nodes in round-robin fashion. To use this type of binding, we can use
GOMP_CPU_AFFINITY environment variable that is not in the OpenMP standard,
but is an extension of GCC compiler. Setting this variable to ”’0 4 8 12" will bind the
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Figure 3
on top, node memory usage with default settings, memory is used only on certain nodes, on bottom, node
memory is used evenly with memory interleaving.

first thread to CPU core 0, second to 4 etc. and each thread will run on single NUMA
node with dedicated memory controller and the combined memory bandwidth will
be 4-times wider than in the previous case. In our test, with calculation running in
parallel on the first four CPU cores on a single NUMA node, the calculation of Dp
took 362 seconds, when running on first cores of four NUMA nodes the calculation
took only 143 seconds, which is more than twice as fast.

When running the calculation in 32 parallel threads without any binding, it took 57
seconds and with binding it took 32 seconds which is again nearly twice as fast.
Without the binding, the parallel threads are switched between CPUs and NUMA
nodes by the operating system process scheduler. The node memory usage of paral-
lel calculation with and without binding can be seen in Fig. ]

Since the OpenMP program runs as a single process with multiple threads in a single
shared memory space, we can use a special programming technique which utilizes
the so-called lazy allocation feature of Linux kernel where the physical memory
is actually allocated only after writing in it. In the program for computation of
the distance function we allocate one large array using single call of the malloc()
function which allocates only virtual memory in Linux and no physical memory is
used. Then we write zeroes into this array in a parallel for cycle and only then the
real physical memory is allocated. Since we use static OpenMP scheduling, each
parallel thread will allocate memory on node on which it is actually running and
then in all subsequent parallel cycles, the thread will always get the same part of
the calculation and will use only local memory allocated in the first parallel cycle.
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on top, node memory usage without thread binding is uneven, on bottom memory usage with thread
binding and optimal allocation, each thread is accessing only the local memory and the calculation is
faster.

With this approach we achieve optimal uniform NUMA node memory usage even
without memory interleaving and combining with thread binding the threads are
mainly using the local node memory and accesses to memory on other nodes are
minimized.

The speed-up of the parallel calculation when running multiple threads can be seen
in Table [} Because with more threads we can use local memory optimally, the
speed-up is more than double in some cases.

Table 1
Parallel speed-up of the calculation with increasing number of threads.

Threads 1 2 4 8 16 32
Time (s) 752 324 143 73 43 32
Speedup - 232 526 1030 1749 235

The total speed-up of parallel computation running in 32 parallel threads compared
to serial code is 23.5 times.
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5 Extraction of the cell trajectories

The cell trajectory is represented by a series of points in space-time (discrete spatio-
temporal curve) for which we prescribe the condition that there exists exactly one
point in every time step [ = Np,...,N,, 1 < Np < N, < Ng. The extraction of cell
trajectories is realized in two steps

e at first, we use backtracking in time by the steepest descent direction of the
potential V built in (1) starting from all cell identifiers s/,,m = 1,...,n}, de-
tected in all time steps [ = 2,..., Ny, recursively moving to the nearest points
with strictly lower value of the potential,

o then we center all the extracted trajectories inside the 4D spatio-temporal trees
by using the constrained distance function Dp in order to eliminate duplicates.

For the trajectories extraction we are again using the OpenMP parallelization and
extracting each trajectory in parallel. In this case, we are using the numact! utility to
set the memory interleaving policy, because during the backtracking we can move
through the whole dataset and we cannot predict the parts of memory through which
the trajectory will move. It is noteworthy that the longest part of this process is the
writing of the results to disk which cannot be parallelized. The parallel backtracking
and centering part lasts around 5 minutes and the writing part lasts 10 minutes.

The trajectories are stored in a text file with the following format:

e Each trajectory is defined by 1 line header containing a unique ID and the
trajectory length
-—trajectory: 3632944 length: 28

e Then there are exactly length lines with coordinates in time and space repre-
senting the trajectory points
184 393 90 452
184 393 91 453
184 393 90 454
184 392 90 455
184 392 90 456

5.1 Postprocessing of the extracted trajectories and cell lineage
tree reconstruction

To fully reconstruct the cell lineage tree, we need to do further postprocessing on
the trajectory extraction result. We have to eliminate duplicate points when two tra-
jectories merge and continue backwards in time together and indicate mitosis on the
merged trajectory. In the postprocessing step we also improve the results by recon-
necting still disjointed trajectories and fix mitoses of more than two cells joining in
the same time. Our postprocessing software is written in C# language and it can be
easily run in multiplatform environment using .NET Framework in Windows family
of operating systems or mono in unix systems without recompilation.
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Let us consider a mother cell which is going to divide at time step /, i.e. at time
step /4 1 it has two descendants and in later times maybe more due to further di-
visions. Without losing generality, let the number of descendant of this cell in the
whole image sequence be N; = 2™. Up to time [ the life of the cell is represented
by exactly N, trajectories which are, however, until time / composed by the same
spatio-temporal points. From the time [ + 1, the half of trajectories differs from
the second half, but every half is again composed by the same points until the next
division. The representation of cell life by the multiple trajectories which are par-
tially the same does not cause any problem in visualization and/or reconstruction of
a single cell or cell population movements and divisions. However, the reduction of
the equal multiple parts of trajectories is necessary for the reconstruction of the cell
lineage tree and is explained below.

The cell lineage tree is stored in a structure with a specific format. For each node of
the cell lineage tree we store the spatio-temporal coordinates of the corresponding
point, its unique global ID and the global ID of its mother in the extracted trajectory.
In case of the first point of the trajectory, the mother ID is set to zero. To fill in the
lineage tree structure, we subsequently take all points of the extracted trajectories,
starting with the longest trajectories, and add subsequently the node representation
of those points to the structure. For every trajectory we start by the first point and
check whether the node corresponding to this point already exists in the structure. If
it exists, it means that we have already added a trajectory which has some part equal
to the current one. And also that there exists a later time after which the trajectories
differ. We skip all equal points which are already represented as nodes in the lineage
tree structure. Only the first different point of the current trajectory is added to the
structure, together with the mother ID of the last equal point from the previously
added trajectory. Using such approach we obtain the whole cell lineage tree where
each node exists only once and the nodes are logically linked together in the same
manner as it is in the real cell mother-daughter relation.

The lineage tree is then stored in a file with the following format

100007;8;44;-72;28;0;0;-1;-65536
100008;9;-83;19;32;0;0;-1;-1
100009;9;-36;2;39;1;0;-1;-16776961
100010;25;-79;18;33;1;9;-1;-1

where each point has global ID, local ID, three coordinates in space and one co-
ordinate in time, local ID of the mother point and two optional parameters. In our
case, the first —1 represents that the point was not validated and the last number
represents the color of the point in ARGB format for visualization purposes. In this
example we can see that the point with the global ID 100008 in time 0 is the mother
point of the point with the global ID 100010 in time 1 since they are related using
their local ID’s. When the local ID of the mother equals 0, then the point has no
mother and represents the starting point of the trajectory.
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Now if we had perfect data, no further postprocessing would be needed. Since the
real data are noisy and further errors can be introduced by wrong center detection,
segmentation and near trajectory overlapping in space, we need to do additional
steps to improve the results and try to fix errors. The most common errors are
points where there are more than two trajectories merging and where the trajectories
are disjointed because the corresponding connecting center in single time-step is
missing and the time overlap in segmentation is insufficient.

For each point we calculate its movement direction using the central difference be-
tween the next and previous point of the trajectory, the average movement direction
by averaging the movement direction using three points forward and backward and
the average direction with respect to the points from the surrounding trajectories by
averaging the direction with points in the near vicinity given by a fixed threshold.
Now we can move to individual postprocessing steps.

o In the first step we disconnect all points where there are more than two trajec-
tories merging and leave only the two nearest trajectories to merge.

e Next we try to reconnect the ending trajectories with the beginning trajectories
in the next step searching for the nearest trajectory in the direction of the
average cell movement gradually increasing the search radius from one to ten
doxels.

o In the last step we again try to reconnect the ending trajectories with the be-
ginning trajectories, but in the distance of two time steps, gradually increasing
the search radius up to ten doxels.

Since the reconnection of trajectories in each time step is idependent, we can use
parallelization. For the paralelization we are using Task Parallel Library [16] in-
cluded in Microsoft .NET Framework 4.0 and higher and also supported by the
mono framework. We are using the Parallel.For construct to process multiple time
steps in parallel. Using

Parallel.For(0, nodes.Length - 1, i =>

{

the runtime will automatically split the calculation to all available processors. Vari-
ous parallelization options can be set using the Parallel Options class, which we are
not using in this case. Unfortunately currently there is no way to control the NUMA
node binding so the best we can do is to use the NUMA memory interleaving pol-
icy when running the postprocessing on a NUMA server. We tested the parallel
speed-up on standard quad-core desktop CPU intel core 17-4770k. The serial code
took 413 seconds and the parallel version took 144 seconds, which represents the
speed-up of 2.87. After this postprocessing we have the tracking results ready for a
validation.
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6 Validation of the results of numerical experiments on
real Zebrafish embryogenesis data with ground truth
data

For the testing of the method and for the reconstruction of the cell lineage tree we
use one of the dataset produced by BioEmergences platform [[17] with the acquisi-
tion step d0 = 50 seconds, Ny, number of time steps, is equal to 480 and dimension
of every 3D image is 512x512x104 voxels. The real voxel size is dx; = dx; = dx3 =
1.33 micrometer in every spatial direction. In the last time step Ng = 480 the biolo-
gist marked cell populations forming various organs of the embryo and we can use
this information to visualize the formation of these organs in time, Fig. 5} Using
developed approach we can track those cell populations. Since the size of a sin-
gle 3D image is about 27MB, for 480 time steps we deal with about 13 GB of raw
data which requires usage of high-performance parallel computing (HPC) facilities
especially when designing spatially 4D numerical algorithms.

Figure 5
Visualization of the organ formation in time steps 1, 160, 320 and 480.

Before tracking, all 3D images of the processed data were filtered by 10 steps of
geodesic mean curvature flow (GMCF) model [2, 3] and the cell nuclei identifiers
were detected by 15 steps of level set center detection (LSCD) algorithm [4}13]]. The
cell nuclei were segmented using the generalized subjective surface (GSUBSURF)
method [3]]. From several millions of cell identifiers we built the 4D segmentation
and then the cell trajectories were extracted. The correctness of the mother-daughter
cell links for the first dataset was validated using the ground truth data and the results
are presented in Table [2]and Fig. [d

The ground truth data (GTD) contains 38797 manually checked links between cells
in time during all 480 time steps which we can use to validate the correctness of cell
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links in our results. It also contains 71 valid mitoses that can be used for the accuracy
of mitosis detection. Since the mitoses in ground truth data and in our tracking can
be shifted by a few time steps in time, we are using the following procedure for the
validation.

o In the first step, we find the corresponding trajectory points in our results with
points in the ground truth data by finding the points with the same coordinates
or with the shortest distance to the ground truth data points.

e Then we can easily check for the correctness of the cell links by checking
if the link between two points in ground truth data is the same as the link
between the corresponding points in our results. If it is the same we have a
correct mother-daughter link, if the link is missing or we have the link to a
different corresponding cell, then we have a wrong mother-daughter link.

e For the mitosis detection, we have three different possibilities:

— The mitosis is in the same time step in the ground truth data and our
results. This is the most simple case and can be validated easily just by
checking the links between points.

— The mitosis occurs later in our dataset than in the ground truth data,
but on the same trajectory. We call this case “forward mitosis” and we
move forward by the links between cells, checking the links in daughter
cells after mitosis in the ground truth data and corresponding cells in our
results looking for mitosis in the next five time steps.

— In the third case, the mitosis occurs later in the ground truth data than in
our dataset, but on the same trajectory. We call this case “backward mi-
tosis” and we move backward through corresponding points and search
for mitosis in our results in the previous five time steps.

Using this approach we can validate the results of our tracking algorithm by com-
paring it with the ground truth data. We are interested in two parameters, correctness
of the cell links and the number of correctly detected mitoses.

To tune the tracking results of the 4D segmentation approach (ellipsoids created
from diameters of real cell nuclei segmentations) we adjust two parameters men-
tioned in section S and ¢. First, we can expand or shrink the nuclei radii used
for building the 4D segmentation. By comparison with ground truth data we con-
cluded that the best results for these two datasets were obtained when we shrink the
radii by § = —0.5, cf. Fig.@ The second parameter is o, used in the construction of
the potential V. We try to find the optimal o to obtain the best ratio of correct links
and detected mitoses. We tested the tracking for o € [0.5,4] and obtained the best
results around o = 1.6, see Table 2] where we achieved 94% accuracy of cell link
detection and 21% of mitosis detection. When comparing the number of detected
mitoses (Table [3) we can see that it is decreasing very fast and around o = 3.2,
where we have 96.5% correct links, we have only 3 correct mitosis, which is only
4% of all 71 mitosis in the ground truth data. The problem is caused by the fact, that
the cell nuclei right after the mitosis “jump” away from each other, thus creating
large gaps in the 4D segmentation. Improving the mitosis detection is difficult and
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Figure 6

Number of wrong links in tracking compared to ground truth data, depending on « and S. With o
increasing towards 2, the number of wrong links is decreasing, then it stabilizes and the best result is
obtained for § = —0.5, cf. also TableE}

still an open problem. Possible direction in this research would be to use membrane
images for creating the 4D segmentation where no jumps during the cell split occur.
The quality of membrane images by a confocal microscopy is still not sufficient
for this puprose, but one could use simulated cell membranes by using approxi-
mate Voronoi shapes constructed around the cell identifiers, which gives promising
results.

Table 2
Comparison of the tracking result obtained with segmentation from real nuclei segmentations with
ground truth data depending on o, with § = —0.5.

o Correct Correct Wrong Wrong
mother links | daughter links | mother links | daughter links
04 34856 34719 3935 4072
0.8 35510 35371 3280 3419
1.2 36064 35946 2726 2844
1.6 36551 36493 2240 2298
2.0 37125 37126 1668 1667
2.4 37288 37309 1506 1485
2.8 37349 37386 1448 1411
3.2 37402 37437 1395 1360
3.6 37357 37415 1440 1382
4.0 37377 37434 1420 1363

For manual visual validation we created a tool to visualize the result alongside the
ground truth data. One can display the tracking with the trajectories with optional
length, highlight trajectory start and end, cell mitosis and the volume rendering of
original data along with the 2D slices can also be displayed.

Here we present the Figures showing our tool for visual validation. In Fig.
one can see the visualization of the volume rendering of the original cell along with
the trajectories from the ground truth data (left) and our tracking result. Here the
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Table 3

Comparison of the correctly detected mitosis with segmentation from real nuclei segmentations with
ground truth data depending on o, with § = —0.5.

Correctly Correctly Total
Correctly
a o . detected detected correctly
detected mitosis e . e e o .

forward mitosis | backward mitosis | detected mitosis
0.4 10 0 6 16
0.8 6 0 10 16
1.2 5 0 14 19
1.6 3 0 12 15
2.0 2 0 4 6
2.4 2 0 1 3
2.8 2 0 1 3
32 2 0 1 3
3.6 2 0 1 3
4.0 2 0 2 4

trajectory in our result is the same as the trajectory manually validated by biologists
even for a long time interval (20 time steps forward and backward in this case). In
Fig.[8|and Fig. 9 the cells before mitosis are displayed. One can see that the mitosis
will occur since the trajectory is divided. Correctly detected cell mitosis is displayed
in Fig.[8] In Fig.[9]on the right, in our result, the mitosis is not detected and only
one branch of the trajectory is registered.

Conclusions

In this paper we presented an algorithm for the cell tracking on large-scale 3D+time
microscopy data. We created parallel implementation of the 4D Rouy-Tourin scheme
to speed up the data processing and then we applied this method to complex stages of
the zebrafish early embryogenesis microscopic images. Using our automatic post-
processing and validation workflow we can easily compare the tracking with ground
truth data. Using the visualization tool we can visually verify the correctness by
displaying the ground truth data along with our result and volume rendering of the
original images.
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