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Abstract: The NaturaSat software integrates various image processing techniques together with
vegetation data, into one multipurpose tool that is designed for performing facilities for all require-
ments of habitat exploration, all in one place. It provides direct access to multispectral Sentinel-2
data provided by the European Space Agency. It supports using these data with various vegetation
databases, in a user-friendly environment, for, e.g., vegetation scientists, fieldwork experts, and
nature conservationists. The presented study introduces the NaturaSat software, describes new
powerful tools, such as the semi-automatic and automatic segmentation methods, and natural nu-
merical networks, together with validated examples comparing field surveys and software outputs.
The software is robust enough for field work researchers and stakeholders to accurately extract
target units’ borders, even on the habitat level. The deep learning algorithm, developed for habitat
classification within the NaturaSat software, can also be used in various research tasks or in nature
conservation practices, such as identifying ecosystem services and conservation value. The exact
maps of the habitats obtained within the project can improve many further vegetation and landscape
ecology studies.

Keywords: aerial photographs; biodiversity; curve evolution; image segmentation; landscape struc-
ture; natura 2000; satellite images; sentinel-2; vegetation

1. Introduction

Remote sensing has become one of the essential methods used to effectively and
directly acquire information on the Earth’s surface [1,2]. Together with standardized plots
and regular in situ measurements, remote sensing is a powerful monitoring engine [3,4],
playing an irreplaceable role in acquiring data and fulfilling its potential as an essential
tool for evaluating and implementing environmental policy [1]. In a changing world, with
increasing pressure on natural resources, land-cover maps and monitoring have reached
substantial importance for area planning and resource management [5].

Competent planning and decision making in biodiversity and ecosystem conservation,
restoration, and sustainable development are urgently needed. Remote sensing data and
ecological models can play a crucial role in supporting this need and safeguarding natural
assets [2]. The robustness and complexity of the obtained data in remote sensing indicate
their multi-source, multi-scale, high-dimensional, and dynamic-state characteristics. The
existing techniques and methods are limited to solve many problems that are a big data
challenge, such as difficulty processing and analyzing data in a reasonable time, identifying
the correct data to achieve the given task, finding a meaningful structure, etc. [6].
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Remote sensing is one of the most important tools in ecology and conservation, for
the effective monitoring of ecosystems in space and time [7]. Satellite remote sensing of
ecosystem functions could offer many opportunities to advance ecology and conservation,
including testing emerging theories and unveiling the processes shaping the impacts of
anthropogenic threats on biodiversity more rapidly [8]. Using satellite images for moni-
toring habitats and biotic dynamics has been highlighted in various categories of research
activities. There is enormous potential, due to the recent developments of various tech-
nologies (either hardware or software). Since the maintenance of biodiversity, based on
conserving semi-natural and natural habitats, is one of the targets of the European 2020 Bio-
diversity Strategy [3], developing reliable methods and tools, substituting time-consuming
expert knowledge and field work, is urgent. There are, of course, many challenges in
such methodologies, including mapping ecotone transitions between vegetation types or
the low resolution of the used satellite images. Remote-sensed habitat monitoring can
indicate core areas, important for key species and biodiversity patterns, and transitional
zones, important for ecosystem processes [9]. Digital mapping techniques provide accurate
maps that can also be used in climate models, to assess the sensitivity and feedback to
future climate change [10]. Mapping the landscape-level heterogeneity of the microclimate
advances our ability to study how organisms respond to climate variation, which has
important implications for understanding climate-change impacts on biodiversity and
ecosystems [11]. The accurate and rapid extraction from the image of vegetation cover
information enables the monitoring of vegetation changes in a timely manner, which is of
great significance for protecting biodiversity, maintaining social stability, and promoting
economic development [12]. Land-cover mapping requires a typology or classification
by which the more-or-less continuous variations in element composition are sorted into
discrete units [5], typically defined as habitats or plant communities (the syntaxa sensu
Braun-Blanquet approach [13]). The syntaxonomical approach is widely used among
vegetation scientists and ecologists. It provides a hierarchical system of vegetation units,
defined by species composition and the structure of all the vegetation layers, and can
be directly linked to EUNIS [14] or Natura 2000 habitats classifications. Assessing the
scale of habitats or communities is a huge challenge, due to their complicated character
and the co-occurrence of dominant species in various habitats [15]. Based on vegetation
variability, differences in species composition that arise from a different environment and
competition strategy between individual species can be further structured, due to varia-
tion in the vegetation phenology. It is a commonly used indicator, signaling vegetation
responses to global changes [16]. There are individual inconsistencies when comparing
field expert-based approaches, despite using the same mapping systems, materials, and
methods. The differences are usually larger at lower hierarchical levels in the mapping
systems and increase strongly with system complexity [5].

There is still a need to look for a more common concept that is widely applicable to the
most habitat types. The existing phytosociological databases could serve as a great source
of high-quality ground-based data, and their interconnection with remotely sensed data
will open new possibilities. Borre et al. [17] emphasized this need in a review regarding
the opportunities for remote sensing. These can be simplified into the following three main
data requirements on habitats: habitat distribution, change detection, and habitat quality.
There are different approaches for fulfilling the requirements; however, remote sensing and
the phytosociological approach still act as isolated data sources.

The developed NaturaSat software aims to integrate image-processing knowledge
and various techniques together with vegetation science, into one multipurpose tool
that is designed for performing facilities for all the requirements of habitat exploration
in one place. It provides direct access to multispectral Sentinel-2 data, provided by the
European Space Agency. It supports the use of these data with various vegetation databases,
in a user-friendly environment, for, e.g., vegetation scientists, fieldwork experts, and
nature conservationists.
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2. Materials and Methods

The NaturaSat software is implemented in C++. Application is developed for Win-
dows operating system based on a 64-bit platform. For the graphical user interface, a Qt
widget toolkit (in version 6.0.3 licensed under the LGPL v3 and GPL v3 open source license)
is used. The software consists of different modules, which represent various tools that can
be activated or inactivated in provided distributions.

Designed existing modules could be summarized as follows:

• Image filtering tool provides filtering methods based on linear, nonlinear and curva-
ture based diffusion.

• The semi-automatic segmentation tool provides the semi-automatic segmentation of
selected habitats in various types of images (satellite, airborne, UAV).

• Automatic segmentation tool provides automatic segmentation of selected habitats in
various types of images (satellite, airborne, UAV).

• The monitoring tool provides methods for measuring habitat quality and habitat area.

Intensive cooperation between botany field scientists, mathematicians, and software
developers has been ongoing during software development. The flowchart of development
phases is illustrated in Figure 1. New methods for classification based on deep learning
were developed and tested [18] and will be implemented into the software in the near
future, as the “classification tool” that performs the classification of selected habitats and
creates relevancy maps for chosen habitats. Together with the previously developed tools,
we will also present and discuss the classification. In this section, we briefly introduce
remotely sensed data sources used in the software (Section 2.1), implemented mathematical
models (Sections 2.2–2.4), and the methodology of field data sampling and verification
(Section 2.5). In the Results section, we describe verification accuracy and introduce some
practical examples of software applications.

1 
 

 Figure 1. The diagram of development and functionalities of the NaturaSat software.

2.1. Remotely Sensed Data Used in the NaturaSat Software

The NaturaSat software works with multispectral data from the Sentinel-2 satellite,
UAV, and airborne imagery and with every georeferenced picture format.

For the purpose of dynamic habitat monitoring, we implemented a functionality
(remote download module) that allows a user to download Sentinel-2 data directly from



Remote Sens. 2021, 13, 3381 4 of 19

our dedicated NaturaSat application. To access Sentinel-2 (both level-1C and level-2A/2Ap)
data repositories, we use OpenSearch API on the Copernicus Open Access Hub.

The content of the request query link depends on user input in the user application
interface. Since the NaturaSat project tasks are currently performed on data from the area
of Slovakia, we divided this area according to the predefined Sentinel-2 tiling grid. The
tiling grid contains approximately 56,500 tiles worldwide with defined code names, and 11
of them belong to the area of Slovakia (see Figure 2 top section). We use the code names for
the identification of the user-selected area. Each tile represents an area of 100 × 100 km2 in
ortho-images in UTM/WGS84 projection.
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Figure 2. User interface of the remote download module containing requested files with detailed information and pre-
view image.

A user can select one of the available tiles covering Slovakia and two dates defin-
ing a scope of data-sensing dates in the application interface. Since our segmentation
algorithms are designed for optical data of sufficient quality, the user is able to select
maximal cloud coverage (in %) and product type (all products, level-2A/2Ap or level-1C).
After the user’s selection of all parameters, an API request is constructed. This request
is sent to Copernicus Open Access Hub API, which returns the result as an XML file,
including the list of nodes of every product stored in the data hub archive that fulfills
the search query. An XML file is parsed, and results are shown to the user in the form
of a list of product filenames. When one of the files is selected by the user, the extended
information about the product is shown, e.g., percent coverage of clouds, snow, water,
etc. The returned XML result file contains a preview image request url for every file.
This url is used to show a quick preview of data to allow the user to see the quality of
the image before downloading. The user can choose a destination directory to store the
downloaded files. When the user clicks on the download button, all files with checked
checkbox controls are downloaded to this directory. The remote download module (see
Figure 2) works as a separate component of the NaturaSat application and does not block
any other module during the download process. This allows the user to download multiple
files while working with other application components. When the downloading process
is finished, the user obtains information about the successful finalization of the process.
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Consequently, the user can load the downloaded data to the NaturaSat application for
further processing.

2.2. Habitat Distribution

For assessing habitat distribution, two different approaches are commonly used—
object-based and pixel-based approaches—and NaturaSat software supports both. The
object-based approach is represented by segmentation methods where exact habitat bound-
aries are found semi-automatically by expert or automatically, starting from the georefer-
enced phytosociological relevé.

The main idea of our segmentation method is the usage of the suitable velocity vector
field, utilizing smoothed image information, which drives the evolving curve automatically
to the boundaries of segmented habitat. The vector field is constructed by using the pre-
smoothed image intensity gradient as an edge indicator. Its magnitude is an input of the
scalar edge detector function. Then the (negative) gradient of the edge detector function is
projected to the curve normal, and the overall curve motion is regularized by using the
local curvature of the evolving curve [19,20].

The NaturaSat software uses semi-automatic and automatic satellite image segmenta-
tion methods based on evolving planar curves [21,22]. Both methods represent efficient
and robust segmentation tools when an “initial estimate” of the desired area is available.
This is the case in Natura 2000 habitat segmentation, where the point-wise estimate of
habitat occurrence is available in vegetation databases [23,24]. Thus, developed software
tools allow focusing the Sentinel-2 image to the selected habitat occurrence data point,
e.g., phytosociological relevé, or to the user-defined area, and then allow the user to per-
form semi-automatic or automatic segmentation by evolving the initial curve, either in
the form of a straight line (semi-automatic segmentation) or in the form of a small circle
(automatic segmentation).

The final mathematical model is given by the corresponding nonlinear intrinsic partial
differential equation, which is discretized and solved numerically by the flowing finite
volume method [25,26].

2.2.1. Semi-Automatic Segmentation

In the case of the semi-automatic segmentation, the user clicks the mouse at some
correctly chosen point on the habitat boundary and drags the mouse along the expected
habitat boundary—the algorithm always connects the first clicked point with the last
mouse position, constructs the initial curve between them and in real-time adjusts this line
to the habitat border by using the numerical scheme [21,27]. When the user is satisfied
with the detected borderline, they click the mouse again, and that portion of segmentation
is finished. Then the user can iterate this process to improve the boundary curve, as is
illustrated in Figures 3 and 4 and video in Supplementary Material Video S1.

2.2.2. Automatic Segmentation

This software tool is based on a mathematical model and its implementation of the
time evolution of closed planar curves in the Lagrangian formulation. A detailed descrip-
tion of the mathematical model, numerical implementation, and numerical experiments
showing the behavior of the developed method are presented by Mikula et al. [22]. The
automatic segmentation could start from the user-defined initial curve (Figure 5, see also
Supplementary Material Video S2) or from the phytosociological relevé representing the
current habitat or plant community.
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2.3. Habitat Classification and Relevancy Maps

The pixel-based approach is represented by relevancy maps based on a new deep
learning method called natural numerical network (the method is presented in Mikula
et al. [18]). The vector of computed values in all optical bands (mean, maximal, minimal,
standard deviation) creates pixel characteristics that are used by the natural numerical
network to classify the pixel within a habitat with certain relevancy (for details [18]). The
method produces a so-called relevancy map in which the greyscale intensity of every pixel
represents habitat occurrence relevancy. This approach allows habitats to be detected in
degraded conditions (medium or low relevancy should show habitats with fewer diagnostic
species). It is also sensitive to transitional habitat types that have high relevancy values
for two different habitats. The case study presented here is based on training dataset
containing 30 segmented areas of 91E0 habitat, 29 areas of 91F0, 32 areas of 91G0 and
34 areas of 9110 habitats. The Sentinel-2 data from 9 September 2018, covering Western
Slovakia, were used for learning phase and computation of relevancy maps.

2.4. Distinguishing between Natural and Managed Habitats

In the case of forest habitats, there are some specific situations where the same tree
species forms priority Natura 2000 habitats (e.g., Populus sp. in 91E0 habitat), but are also
found as plantations. A new criterion, the relative high Laplacian (RHL), was developed
and implemented into NaturaSat software to detect structural differences between such
forests. Relative high Laplacian is given by the number of pixels where the Laplace
operator, applied to image intensity, is high. In our case, we compute discrete Laplacian as
the standard finite difference numerical approximation of the sum of second derivatives of
image intensity values in the pixel.

2.5. Testing and Validation of Image Segmentation

Two Natura 2000 habitats and plots (areas) suitable for testing and tuning parameters
of semi-automatic and automatic segmentation algorithms were selected, as follows: “91F0
Riparian mixed forests of Quercus robur, Ulmus laevis, and Ulmus minor, Fraxinus angusti-
folia or Fraxinus excelsior along the great rivers” and “4070 * Bushes with Pinus mugo and
Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)” sampled in the field during vege-
tation seasons 2018–2019. Also, various Sentinel-2 optical band combinations at various
dates were explored in order to find whether selected habitats are distinguishable in the
Sentinel-2 optical data. The results of semi-automatic and automatic segmentations were
compared visually and quantitatively with the GPS tracks obtained in the field.

For this quantitative comparison of two curves, we use the classical (maximal) Haus-
dorff distance and the so-called mean Hausdorff distance, which are general tools for
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computing the distance of curves, surfaces, and even more complicated geometrical contin-
uous or discrete objects [21,22].

2.6. Habitat Monitoring

Our Natura 2000 habitat-monitoring approaches are based on semi-automatic and au-
tomatic segmentation algorithms used to monitor habitat quality and area evolution, respec-
tively. The dynamic habitat quality monitoring used the Sentinel-2 image characteristics—
values in all optical bands (mean, maximal, minimal, standard deviation) together with
normalized difference vegetation index (NDVI) and RHL indexes.

2.6.1. Spatio-Temporal Change Monitoring

The method developed for dynamic area change monitoring in Sentinel-2 dynamic
data is based on the automatic segmentation method provided in different time periods.
The segmentation model parameters were tuned to get the best possible area segmentation
in the original data. Then we used the same model parameters for the segmentation in the
updated data to get a segmentation of the area of the same habitat in the updated data.
These two segmentations were quantitatively compared by means of Hausdorff distance,
perimeter, area, and isoperimetric ratio (shape index) values.

2.6.2. Habitat Quality Monitoring

The quality monitoring of habitats within NaturaSat software is based on comparing
optical band values (mean, maximal, minimal, standard deviation, and NDVI) inside the
same segmented area on different dates. During vegetation season 2019, localities with
recent on-going changes were explored. Mountain spruce forests affected by bark beetle
outbreak or clear-cuts were semi-automatically segmented. Grassland habitats affected
by succession were segmented as well. The optical band characteristics were computed
using NaturaSat software in the original data from 2016 and in the updated data from 2019.
These two datasets were compared by paired t-tests (in R-software implementation, [28])
to verify the significance of observed changes.

3. Results
3.1. Habitat Distribution

The “91F0 Riparian mixed forests of Quercus robur, Ulmus laevis, and Ulmus minor,
Fraxinus angustifolia or Fraxinus excelsior along the great rivers” habitat was selected due to
its highest importance at both the Slovak and European level. It is a Natura 2000 priority
habitat, and is endangered according to the red list of European habitats [29]. Despite
this fact, riparian forests are often intensively managed by clear-cuts and replaced by
monodominant stands of alien tree species (e.g., Canadian poplars). The riparian forests
are among the most fragmented forest habitats in Slovakia, which were widespread in the
alluvia of lowland rivers from the Neolithic era to the 12th century.

Forest areas with simple, as well as complicated, area shapes, with diverse borders,
were chosen, which were thus suitable for testing the ability and performance of the
developed segmentation methods. The forest fragments were surrounded by crop fields,
meadows, river branches, roads, and different forest types. Some of the chosen riparian
forests have a strict border, and some of them contain natural shrub edge (ecotone) zones.
During the vegetation season 2018, twenty-four of the most important localities of riparian
forests in Western Slovakia were visited by botanists, and their boundaries were tracked in
the field with a GPS device. In the case of problems in the field, mainly due to flooded parts
of forests where it was impossible to walk the entire border, some GPS tracks were corrected
in the Google Earth Pro software. Afterwards, all these areas were semi-automatically
or automatically segmented, and the mean and maximal Hausdorff distances of the GPS
tracks and segmentations are given in Table 1.
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Table 1. The list of 91F0 riparian mixed forests localities with the mean and maximal Hausdorff
distances of semi-automatically segmented and GPS-tracked boundaries.

Habitat Locality Code Mean Hausdorff Distance Maximal Hausdorff Distance

91F0 bogdalickyvrch1 8.3785 25.1905
91F0 bogdalickyvrch2 7.5773 27.8022
91F0 bogdalickyvrch3 6.7352 35.5152
91F0 bogdalickyvrch4 7.1754 36.9335
91F0 brestovany1 8.8597 28.5780
91F0 brestovany2 14.2629 83.2185
91F0 brestovany3 7.7355 24.6512
91F0 brestovany4 8.9412 26.6053
91F0 dedovejamy1 9.9970 86.1185
91F0 dedovejamy2 11.7609 53.6198
91F0 dedovejamy3 14.0657 57.6020
91F0 dedovejamy4 10.5434 39.9949
91F0 feldskyles 11.3289 60.6908
91F0 feldskyles2 14.0136 44.1078
91F0 suchohrad 5.4751 18.2485
91F0 suchohradsever 6.3606 25.7611
91F0 suchohradTP 20.4569 172.1070
91F0 suchohradzahradzou 14.9159 40.0650
91F0 vysokaprimorave 14.6520 56.1716
91F0 vysokaprimorave2 19.5480 213.7380
91F0 vysokaprimorave3 19.7037 95.0065
91F0 vysokaprimorave4 11.9635 62.0790
91F0 zavod1 12.8527 37.4885
91F0 zavod2 8.3211 39.3252
91F0 Average 11.4844 57.9424

As we can observe from Table 1, the mean Hausdorff distance is, on average, 11.48 m,
which is very close to the pixel resolution (10 m) of the Sentinel-2 data. This means that by
using the developed semi-automatic segmentation method, we can detect 91F0 * habitat
borders as accurately as the image resolution allows. The maximal Hausdorff distance is,
on average, about 58 m, which represents 5–6 pixels. The highest differences are found in
the areas with “ecotone zones”, where tree-dominated riparian forests are connected to
surrounding meadows or fields by shrub-dominated zones. During the field GPS tracking,
these zones were usually excluded from habitat areas, while, by segmentation, we included
them due to a similarity in the forest and “ecotone zone” colors.

The automatic segmentation of selected localities of the 91F0 habitat was consequently
compared with the semi-automatic segmentation and GPS tracks. The results are presented
in Figure 5 and Table 2. Two types of segmentation methods gave results with a mean
Hausdorff distance less than the pixel resolution of the Sentinel-2 data, which means that
automatic segmentation can effectively substitute semi-automatic segmentation, especially
in areas that are densely covered by phytosociological relevés, which could serve as
segmentation starting points.

Table 2. Examples of 91F0 habitat localities with the mean and maximal Hausdorff distances of automatically and semi-
automatically segmented curves and automatically segmented curves and GPS-tracked boundaries.

Automatic Versus Semi-Automatic Automatic Versus GPS Track

Habitat Locality Code Mean Hausdorff
Distance (m)

Max. Hausdorff
Distance (m)

Mean Hausdorff
Distance (m)

Max. Hausdorff
Distance (m)

91F0 suchohradzahradzou 6.8 27.2 12.4 39.2
91F0 moravskyjan 10.7 63.9 10.8 50.4
91F0 vysokaprimorave4 8.5 51.9 11.7 49.9
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The sites that are dominated by Pinus mugo represent habitats of European importance.
Pinus mugo is generally considered to be a heliophilous pioneer species, but it is often found
in extreme sites, to which it has been relegated by other competitors. This species creates a
conspicuous krummholz zone, above the tree line, in the Central European mountains. In
the past, it was affected by shepherds who eliminated the vegetation to expand pastures.

The boundaries of bushes with Pinus mugo were tracked in the field by the GPS device,
during the vegetation season 2018, in various mountain ranges in Slovakia—Malá Fatra
Mts, Západné Tatry Mts, Nízke Tatry Mts, Chočské vrchy Mts and Oravské Beskydy Mts.
The habitat usually forms large areas with diversified shapes, discontinued by avalanche
gullies, small mountain creeks, or glacially formed moraines. This fact implies that the field
mapping of habitat borders in rugged high-altitude terrain is very complicated and time
consuming. Using the satellite image segmentation methods is thus a very promising and
efficient way of monitoring this habitat. Samples of localities in the Western Tatra mountain
range, with borders given by the GPS tracking and segmentation, is shown in Figure 6. In
Table 3, we report the quantitative comparison of the GPS tracks and segmentation results.
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Figure 6. The locality with the highest maximal Hausdorff distance between semi-automatically segmented and GPS-tracked
curves among sites with Pinus mugo (ZT 18). On the north-west habitat border, we can observe the “ecotone zone” that was
included during field tracking (blue) and excluded by using of the semi-automatic segmentation (light-blue).

Table 3. The list of 4070 * bushes with Pinus mugo localities with the mean and maximal Hausdorff
distances of semi-automatically segmented and GPS-tracked area boundaries.

Habitat Locality Code Mean Hausdorff Distance Max. Hausdorff Distance

4070 choc20 19.1041 170.9960
4070 NT4 13.2219 83.2163
4070 NT5 14.3449 70.0201
4070 NT6 11.3362 51.2578
4070 NT8 14.7244 49.7035
4070 NT10 28.3386 336.1420
4070 orava13 10.6748 52.9471
4070 orava14 16.8741 116.0220
4070 ZT16 8.9677 86.7985
4070 ZT18 44.7946 413.2960
4070 MF1 3.6621 21.7807
4070 MF2 8.2804 88.0855
4070 MF3 11.3811 131.1500
4070 MF4 5.7333 20.6663
4070 MF5 15.3571 81.2460
4070 MF6 8.1688 59.4718
4070 MF7 6.7400 53.6128
4070 MF8 8.6118 79.3601
4070 Average 13.9064 109.2096
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As we can observe in Table 3, the average mean Hausdorff distance of the GPS tracked
and semi-automatically segmented curves of bushes with Pinus mugo areas is 13.9 m, which
is close to the Sentinel-2 optical data pixel resolution (10 m). The maximal Hausdorff
distances are bigger than those observed for the riparian forests (see Table 1). Bushes
with Pinus mugo grow in large areas, connected with the mountain spruce forests. Some
extreme values of the maximal Hausdorff distance, for the localities ZT18 and NT10, are
caused by the “ecotone zones”. The semi-automatic segmentation and GPS track curves
of such localities are shown in Figure 6. The “ecotone zones” between the sites that are
dominated by Pinus mugo and mountain spruce forests, often represent wide areas near
the timberline that represent a transition in life form dominance, based on macro-climatic
conditions. Timberline is a zone that is naturally very diverse, depending on the geo-
logical bedrock, relief type, exposition, wind conditions, and other factors reflecting all
environmental conditions. Such transition zones are usually hard to classify, even subjec-
tively by expert knowledge. Nevertheless, we see strong potential for the identification
of the 4070 * habitat, by using the segmentation of the Sentinel-2 optical data. It allows a
necessary simplification that helps determine the sharp edges in the images and avoid a
subjective bias.

3.2. Distinguishing between Natural and Managed Habitats

For testing the possibility of distinguishing between 91E0 floodplain forests and poplar
plantations, relative high Laplacian was calculated for six segmented polygons of 91E0
floodplain forests and six polygons of plantations (Figure 7). The values of the relative high
Laplacian were compared (t-test, R-software) and visualized for model localities (Figure 8)
and for the whole dataset, using a boxplot (Figure 9).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 7. Segments of poplar plantations (left) and Natura 2000 habitat 91E0 floodplain forests 
(right) in the area of Danube inland delta. 

 
Figure 8. Variability of the image intensity values inside natural forest area is high (left), which is expressed in high values 
of RHL, while in the plantation, (right) the image intensity is smoother, which is expressed in low values of RHL. 

Figure 7. Segments of poplar plantations (left) and Natura 2000 habitat 91E0 floodplain forests
(right) in the area of Danube inland delta.

3.3. Habitat Classification and Relevancy Maps

For a demonstration of a relevancy map, the Sentinel-2 data for Western Slovakia, with
the grid tile code 33UXP, and sampling date 10.9.2018, were selected. The relevancy map
was computed for the 91F0 habitat, and compared with semi-automatic and automatic
segmentation and the position of the phytosociological relevés representing this habitat.
The relevancy maps from two different locations are depicted on the right side in Figure 10.
White (bright) colors represent areas with a high relevancy of habitat classification and,
on the contrary, the black (dark) color represent areas with low or zero relevancy. All the
segmented habitat areas were identified by the relevancy map, as well as the locations of
phytosociological relevés.
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Figure 9. Comparison of relative high Laplacian value for plantations (p) and 91E0 habitats (s).
Boxplot graph represents median value (black line), first and third quartile (box), maximum and
minimum (whiskers).

3.4. Habitat Monitoring
3.4.1. Dynamic Area Change Monitoring

For the testing and application of the dynamic monitoring method, grasslands
(6510 habitat) in the Malé Karpaty-protected landscape area (PLA) from July 2015 (so-
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called original data) and August 2019 (called updated data), where significant changes
occurred due to succession (Figures 11 and 12), were chosen. We used automatic segmenta-
tion, as described in the Methods section. In Tables 4 and 5, we report the characteristics of
the final segmentation curves in the original and updated data, showing their significant
differences. We also report the Hausdorff distances of the final segmentation curves. We
observe that the comparison of the final segmentation curves, from the original and up-
dated data, enables us to indicate the abrupt changes in the habitat area and perimeter, and
thus this can serve as a feasible monitoring tool for the habitat state change.
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(0) probability. All pictures are standardly north oriented on upper side of the figure. The Sentinel-2 data from 9 September
2018, covering Western Slovakia, were used for learning phase and computation of relevancy maps.
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Figure 11. The example of grassland habitat segmentation. The top left image shows segmentation
(red) in the original data from 2015. The top right image shows segmentation (yellow) in the updated
data from 2019, where succession is visible. The bottom row compares visually the final segmented
areas illustrated on both original and updated data.
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Table 4. Characteristics of the final segmentation curves from Figure 11 final segmented areas,
showing their difference in area, perimeter, isoperimetric ratio and classical (HD) and mean (MHD)
Hausdorff distances of two segmentation curves.

2015 2019 Differences

Area [m2] 79,068.1 30,668.1 48,400.0
Perimeter [m] 1682.53 882.65 799.88

Isoperimetric ratio 0.350982 0.494664 0.143682
HD [m] 186.67

MHD [m] 61.61

Table 5. Characteristics of the final segmentation curves from Figure 12 final segmented areas
showing their difference in area, perimeter, isoperimetric ratio and classical (HD) and mean (MHD)
Hausdorff distances of two segmentation curves.

2015 2019 Differences

Area [m2] 94,188.9 42,565.2 51,623.7
Perimeter [m] 1978.64 1021.37 957.27

Isoperimetric ratio 0.302327 0.512739 0.210412
HD [m] 230.83

MHD [m] 74.79

3.4.2. Habitat Quality Monitoring

Two sets of optical band characteristics, computed using the NaturaSat software
(the first in the original data from 2016 and the second in the updated data from 2019),
for segmented areas, were compared by paired t-tests (in R-software implementation).
Significant changes were observed in the number of optical band characteristics. A list of
the standard deviation values of image intensity, marking their significance in the case of a
bark-beetle outbreak, clear-cut, and succession, is presented in Table 6. The selected optical
band characteristics reflect the significantly qualitative changes of habitats in the segmented
regions. The simplest was the detection of clear-cuts, followed by the bark-beetle outbreaks.

Table 6. A list of band characteristics used for the description of qualitative habitat changes. Charac-
teristics that changed significantly between original and updated data are marked by an X mark.

Band Characteristic
Bark Beetle Outbreak Clear-Cut Succession

Significance

B02-Blue_Std X . .
B03-Green_Std . X .
B04-Red_Std . . .

B05-Vegetation classification_Std . . .
B06-Vegetation classification_Std X X .
B07-Vegetation classification_Std . . .

B08-Near infrared_Std X . X
B09-Water vapour_Std . . X

B8A-Vegetation classification_Std . . .

4. Discussion

Our powerful unique software, NaturaSat, serves as the primary tool for implement-
ing new approaches into habitat mapping and monitoring [21,22,27]. This tool integrates
the knowledge of botany field scientists, mathematicians, and software developers, focus-
ing on habitat use and nature conservancy, with the Natura 2000 network as one of the
most important tools at the European level (habitats directive 92/43/EEC) [30,31]. Since
direct human impact, together with climate warming, has profound consequences on biodi-
versity at local to global scales [32], there is an urgent need to identify and monitor spatio-
temporal distribution, and the condition of habitats and important species populations,
continuously. These challenges are reflected in many recent studies, from various habitats—
peatlands [10,33]; wetlands [34]; hay meadows [35]. The Natura 2000 habitat [36–39] clas-
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sifications, based on satellite data, were used mostly for large-scale vegetation mapping on
the higher hierarchical level within individual habitat types. Habitats in the sense of Natura
2000 classification are complex vegetation units, consisting of different vegetation layers,
and are defined by their species composition; thus, their correct recognition is challenging.
The identification of some Natura 2000 habitats was possible when aerial photographs were
used [39]. On the contrary, many remote sensing images (aerial or satellite) of the target
vegetation types can have certain disadvantages, because of their potentially high cost,
long cycles, and low resolution [12]. Therefore, proper resolution, at the highest possible
level, is needed, depending on the intended goals.

Zlinszky et al. [39] tested airborne laser scanning as a source for mapping the conser-
vation status of habitats and developing an automated method that calculates the Natura
2000 conservation status at a 0.5 m raster resolution. The surface texture (roughness),
describing the vertical distribution of points within a neighborhood (related to vegetation
canopy structure [34]), together with the digital terrain model, and its openness rasters [36],
were calculated as a measure of the terrain texture, to enhance the linear features, sharpen
the edges, and locate the minima and maxima in the terrain. Feilhauer et al. [37] found out
that multispectral data may allow the combined mapping of discrete habitats and their local
variability. These examples demonstrate the potential of remote sensing data in habitat
exploration. Connecting these data to vegetation databases is a necessary subsequent step
that was achieved by our approach.

The fact that updated satellite data are more accessible than aerial photos, and they
are available for all parts of Europe and the world, makes our approach more applicable.
However, using aerial photographs or UAV images is also possible within the NaturaSat
software. Satellite images are sampled every five days, so there is a possibility to create a
time series and monitor the habitats continuously.

Our aim was to create universal tools for such analyses, where various types of remote
sensing data can be used, and a powerful deep learning method—natural numerical
networks—can, after the learning phase, classify any target habitat, plant community, or
phenomena, including invasive species spreading or biodiversity hotspots, and process
the results as a relevancy map. The well-known metrics of species richness, diversity, and
abundance are usually associated with habitat quality [40], and these are implemented in
the NaturaSat software, together with the new RHL metric. By applying new methods
of computation RHL within the images downloaded into the NaturaSat software, we can
identify the potential conservation status of the target area.

The future dynamic development of the software will be based on the inclusion of
new data for training datasets, verification in the field, and subsequent implementation of
trained networks and segmentation databases into the software, as illustrated in Figure 13.
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5. Conclusions

The NaturaSat software implements new powerful tools, such as the semi-automatic
and automatic segmentation methods [21,22], and natural numerical networks. It is robust
enough for vegetation scientists and nature conservationists to accurately extract target
units’ borders, even at the habitat level. The automatic segmentation method involves
minimal user intervention after parameter tuning, to achieve the desired accuracy. The
Sentinel-2 optical bands’ resolution is suitable for exploring the forest and grassland
habitats, with an accuracy close to the pixel resolution. Only the scarce small-scale habitats,
with an area smaller than 100–200 square meters, cannot be detected; however, it is scale
dependent, and thus, if there are UAV- or air-borne images used in the software, the limits
are rapidly pushed. The semi-automatic segmentation can often be more accurate than GPS
tracking by the fieldwork experts, since there is no influence of rugged relief and subjective
bias on ecotone areas. The phenology affects and—at the same time—helps to distinguish
between similar habitats (e.g., spring or autumnal aspect in the case of broadleaved forests).
The deep learning algorithm that was developed for habitat classification within the
NaturaSat software, can also be used in various botanical research tasks or in nature
conservation practices, such as the identification of ecosystem services and conservation
value [40]. The exact maps of the habitats obtained within the project can improve many
further vegetation and landscape ecology studies. The NaturaSAT software is recently
in the testing phase, and is available for academic users and nature conservationists
worldwide, for non-commercial use only. For non-commercial software usage, do not
hesitate to get in touch with the authors at mikula@math.sk or jozef.sibik@savba.sk.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173381/s1, Video S1: the semi-automatic segmentation process in the user interface of
the NaturaSat software; Video S2: the automatic segmentation process in the user interface of the
NaturaSat software.
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Agrillo, E.; et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 2016,
19, 173–180. [CrossRef]
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