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Abstract

We are presenting here a model for processing space–time image sequences and applying them to 3D echo–cardiography. The

non-linear evolutionary equations filter the sequence with keeping space–time coherent structures. They have been developed using

ideas of regularized Perona–Malik an-isotropic diffusion and geometrical diffusion of mean curvature flow type (Malladi–Sethian),

combined with Galilean invariant movie multi-scale analysis of Alvarez et al. A discretization of space–time filtering equations by

means of finite volume method is discussed in detail. Computational results in processing of 3D echo–cardiographic sequences

obtained by rotational acquisition technique and by real-time 3D echo volumetrics acquisition technique are presented. Quantitative

error estimation is also provided.
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1. Introduction

The aim of this contribution is to present a mathe-
matical model and numerical method in the processing of

three-dimensional (3D) image sequences. The proposed

model is applied to 3D and 3D+ time echo–cardiogra-

phy. The model used for space–time filtering is based on

partial differential equations (PDEs) approach, that is

PDEs of degenerate diffusion type are applied to initially

given image sequence. Non-linear PDEs for the pro-

cessing of this kind of data have been used also in [1–9].
Since the images are given on discrete grids, in this study

the nonlinear PDEs are discretized by semi-implicit finite

volume method to get a fast and stable solution.

Two-dimensional (2D) echo–cardiography is an

imaging modality frequently used in cardiology due to

its simplicity, lack of ionizing radiation, and a relative

low cost. However, 2D echo–cardiography allows visu-

alization of only tomographic planar sections of the

heart; thus to obtain a complete evaluation of the heart

anatomy and function, the physician must reassemble
mentally a 3D model from multiple 2D images. More-

over, 2D echo–cardiography relies on geometrical as-

sumptions for the determination of heart chamber

volumes and thus presents a considerable measurement

error, especially for the right ventricular and the atrial

volume determination [10]. Three-dimensional echo–

cardiography may avoid the need for geometrical as-

sumptions, thereby allowing accurate evaluation of the
size and shape of the chambers, even in the case of

cavities with irregular or distorted geometry. The correct

visualization and interpretation of 3D echo images is

often affected by the high amount of noise intrinsically

linked to the acquisition method. It is absolutely nec-

essary to submit the data to pre-processing to improve

their legibility from a clinical point of view. The appli-

cation of traditional pre-processing algorithms (moving
average, median, and Gaussian filtering) does not reduce

the noise superimposed to the image maintaining a good
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definition of the interfaces. The importance of noise
removal by non-linear filtering both for visualization

purposes and optical flow estimation has been also

outlined by several authors (see e.g., [11,12]). The pro-

cessing algorithm should be able to distinguish the noise

from the contours of the different cardiac structures by

using both spatial and temporal coherence.

In this paper, we will use two types of 3D echo–car-

diographic data sets to which our algorithms are applied
and tested. The first sequence has been obtained by

means of a rotational acquisition technique using the

TomTec Imaging System [13]. With this technique the

transducer undergoes a rotation around its main axis in

a propeller configuration. A series of tomographies

corresponding to the sections of a cone of biological

tissue has been acquired. The acquisition consists of 14

image-cubes representing a whole cardiac cycle of a real
patient. A volume of interest of 150� 150� 100 voxels

will be processed. The time interval between one cube

and the next one is 40ms. Figs. 2–5, 7–13 are related to

results on this data set. The quality of this 3D raw da-

taset is quite good. Nevertheless a remarkable amount

of noise is present in the sequence and thus it is a rea-

sonable testing example for the proposed methods.

The second type of processed data is given by real-
time 3D ultrasound echo-images. Real-time 3D echo

(RT3DE volumetrics) acquisition technique [14,15] is

characterized by a 43� 43 piezoelectric elements trans-

ducer with 2.5–3.5MHz frequency, 60� 60 degree an-

gular opening and 256 transmission lines (see Fig. 1).

There are 64� 64 pixels in each of 512 C-scan planes

and 2.097.152 voxels in every 3D frame. The main dif-

ference between RT3DE and 2D rotational acquisition
is that RT3DE can provide images of left ventricle

without ECG/respiratory gating, there is less acquisition

time and no processing time. RT3DE can also be used in

arrhythmia cases and no special training is required.

However, there is less resolution because of broadened

transmit pattern.

From a mathematical point of view, the input image

sequence, representing an acquisition of moving objects,
can be modelled by a real function u0ðx; hÞ, u0 : Xx
½0; T � ! R, where X � RN represents a spatial domain,

x ¼ ðx1; . . . ; xN Þ represents a spatial point and h a point in
the time interval ½0; T � in which acquisition is realized. In
practice, X is a rectangular domain, N ¼ 2 or 3 and, in

special applications, the time sequence can be periodically

prolonged from ½0; T � toR. The typical examplewhich can
be represented by such u0 is an ultrasound acquisition of
beating heart in 3D echo–cardiography (see numerical

examples in following sections).

The application of PDE to initially given (noisy)

image sequence can be understood as its embedding to

the so-called non-linear scale space [16–19]. The axioms

and fundamental properties of such embedding has been

given and studied in [16] and the notion of image multi-

scale analysis has been introduced. The multi-scale im-

age analysis associates with u0 a family uðt; x; hÞ of

smoothed-simplified images (in our case a family of

smoothed sequences) depending on an abstract param-

eter t, the scale. As has been proved in [16], if such

family fulfils basic assumptions—pyramidal structure,
regularity and local comparison principle—then

uðt; x; hÞ; u : ½0; Ts� � X � ½0; T � ! R can be represented

as unique viscosity solution (in the sense of [20]) of a

second-order (degenerate) parabolic partial differential

equation

ou
ot

¼ F ðt; u;Du;D2uÞ; ð1Þ

with the initial condition given by

uð0; x; #Þ ¼ u0ðx; #Þ; ð2Þ
where Du denotes a vector of first partial derivatives
with respect to all space and time variables x1; . . . ; xN , h,
byru we denote its spatial part, D2u denotes a matrix of
second-order derivatives with respect to all space and

time variables and F in (1) is a non-decreasing function

of the fourth argument.

The equations of (degenerate) parabolic type have a

smoothing property, so they are natural tools for filtering

(image simplification) by removing spurious structures,

e.g., a noise. However, the simplification should be

‘‘image oriented,’’ e.g., it should respect edges and not
blur them. Or, it should recognize motion of a structure

Fig. 1. Real-time 3D echo (RT3DE volumetrics) acquisition technique.
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in image sequences and consequently the smoothing
(diffusion) should respect the motion coherence in sub-

sequent frames. Such, or even more sophisticated re-

quirements related to geometrical characteristics of

image, bring strong non-linearity into the parabolic

PDEs (diffusion can depend on jruj—edge indicator) or
even degeneracy (diffusion can be stopped in points

which are ‘‘un-noisy’’ by motion field information).

Hence one can see that PDEs used for processing of
image sequences, or static frames of the sequence, must

cover complex situations and handle wide range of

phenomena. In the next sections, some models are pre-

sented which are suitable for such goals and review also

partial approaches for filtering of 2D and 3D images,

frames of the sequence.

In Section 2, some basic concepts of geometrical

diffusion of mean curvature flow type are introduced.
We discuss the main features related to image selective

smoothing and give references to works describing

computational methods based on finite element and fi-

nite volume approximations for solving numerically gi-

ven non-linear parabolic equations. Concerning details

of variational numerical methods applied in image

processing we refer to review paper [21]. Some compu-

tational experiments with medical images are also in-
cluded to illustrate application of the models.

In Section 3, we will present a model for space–time

filtering combining spatial diffusion equations from

Section 2 and motion coherence of moving objects in

time. In Section 4, we will discuss in detail numerical

methods based on finite volume approximation for

solving our space–time filtering equations. In Section 5,

we will present computational results obtained by such
schemes in filtering of artificial as well as echo–cardio-

graphic image sequences.

2. Geometrical diffusion for space filtering of 2D and 3D

images

In this section, a model of surface evolution used for
processing frames of the image sequence independently

of each other is considered. In the next chapter, such

spatial smoothing processes will be combined with mo-

tion coherence in entire image sequence. We will denote

v0ðxÞ ¼ uð0; x; h�Þ the frame of initially given image se-
quence at some moment h� 2 ½0; T �. In [1,2] an intrinsic
diffusion equation to 3D echo–cardiographic frames is

applied. We call it geometrical diffusion since it is related
to geometrical (or intrinsic) diffusion equations on

manifolds.

In rather general situations, the blood–cardiac muscle

interface corresponds to an iso-surface (iso-line in 2D)

of the grey-level image intensity function and hence it

forms a recognizable silhouette in the image. This phe-

nomenon is clearly visible in Fig. 2. To remove the un-

smoothness of the silhouette (in the original image or in

the pre-filtered by anisotropic diffusion image) caused by

errors in acquisition, it seems reasonable to move such

iso-surface (iso-curve) in direction of its normal vector

field with a velocity proportional to the mean curvature.

The motions of convex and concave pieces are opposite

due to the curvature sign, and the large fingers shrink
much faster than smoother parts due to the curvature

dependence of the flow. Thus, locally in scale, we can

obtain desirable smoothing of the silhouette.

This approach is nothing else than a curvature driven

evolution of iso-curve or iso-surface of the image. Such

problems are well known in a lot of applications related

to the so-called free-boundary problems. From a com-

putational point of view there are two main approaches
to solve numerically a curve or surface evolution gov-

erned by curvature. In the first, so-called Lagrangean

approach [22–25], the curve or surface itself is discret-

ized. Then a system of equations is derived (e.g., by

semi-implicit finite element or finite difference methods)

for the new position of discrete curve or surface repre-

sentation points. This system is solved to get new iso-

surface (iso-curve) representation. The Lagrangean
approach is a very efficient and computationally fast

method, but it can hardly handle the evolution through

singularities, splitting, and merging of the curves or

surfaces, respectively, during the evolution. In spite of

this, the so-called Eulerian approach implicitly handles

the curvature driven motion passing the problem to

higher dimensional space and solving evolutionary

equation for a graph time evolving level sets of which
correspond to an evolving curve or surface. The phase

field equations (see e.g., [26] and level set methods [27–31]

are approaches of that type. Especially Osher and Se-

thian proposed the level set equation for curvature de-

pendent motion

ot
ot

¼ jrtjr 
 rt
jrtj

� �
; ð3Þ

where tðt; xÞ is the unknown function defined in

QTs � ½0; Ts� � X. We assume that X � RN is a bounded

rectangular domain, ½0; Ts� being the scaling interval.

This model is well suited for image processing applica-

tions, since all geometrical information about image le-

vel lines or level surfaces is handled in once. The level set

Fig. 2. Two-dimensional cuts of 3D echo–cardiographic cube with

image of the human left ventricle.
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equation not only moves each level set of v with a ve-
locity proportional to its normal mean curvature field

but it also fulfills the so called morphological principle; if

v is a solution, then for any non-decreasing function /,
/ðvÞ is a solution as well. This contrast invariant prop-
erty has large significance in the theory of image pro-

cessing [16] (even if not in all application it is desirable,

because of its noise sensitivity). Such property also

means that all level sets move independently on each
other, they diffuse only intrinsically and there is no

diffusion across them in the normal direction. This idea

was used in [32], where equation

tt � gðjrGr � tjÞjrtjr 
 rt
jrtj

� �
¼ 0 ð4Þ

has been suggested for computational image and shape

analysis, where g : Rþ
0 ! Rþ is a non-increasing smooth

function, gð0Þ ¼ 1, gðsÞ ! 0 for s! 1. In Eq. (4)

Gr [ C1ðRN Þ is a smoothing kernel (e.g., Gauss func-
tion) with unit mass and tending to Dirac function as

r ! 0. The convolution in (4) is understood in the usual

sense

rGr � t ¼
Z
RN

rGrðx� nÞ~ttðnÞdn; ð5Þ

where ~tt is an extension of t to RN given by a periodic

reflection through the boundary of X. Eq. (4) is ac-
companied with zero Neumann boundary conditions

and initial condition

ot
om

¼ 0; on ½0; Ts� � oX; ð6Þ

tð0; xÞ ¼ t0 in X; t0 2 L1ðXÞ; ð7Þ
where m is unit normal vector to the boundary of X.
From a practical point of view, applying just the level

set equation (i.e., when g � 1) to the initial image yields

the intrinsic silhouettes smoothing [1,2]. On the other

hand, Eq. (4) can be used successively for image selective

smoothing with preserving edge positions. The function
gðsÞ depending on jrGr � tj is used to slow down the

motion of the silhouettes which are at the same time un-

spurious edges. The regions between them are smoothed

by the mean curvature flow. In case of geometrical dif-

fusion we again consider zero Neumann boundary

conditions on dX and initial condition given by pro-

cessed image t0. A 2D and 3D filtering algorithm has

been also proposed in [4] where the Eq. (3) has been
rewritten with respect to a Riemannian metric induced

by the image.

We will present an application of geometrical diffu-

sion to medical image processing. The level set Eq. (3) is

degenerate parabolic and hence rather complicated from

the numerical point of view. Its viscosity solution [33–

35] can be tracked numerically e.g., by the well-known

level set method based on a solution of first-order
Hamilton–Jacobi equation [27,28].

However, in curvature driven motion one can use
also another approach leading to usage of standard

numerical methods for solving parabolic PDEs, namely,

finite element or finite volume methods for discretization

in space and semi-implicit method in scale. The semi-

implicit schemes [9,35–42], where nonlinear terms of

equation are treated from the previous discrete scale step

and linear terms are considered on the current scale

level, have favourable stability and efficiency properties
and they converge to the weak solution of the parabolic

problem. Such approach is L /-stable and leads to

solving linear systems in every discrete scale level. For

space discretization either finite element method

[9,36,37,42], finite volume method [38–40] or finite dif-

ference method [35,41], can be used. Hence one can use

state-of-the-art methods of numerical linear algebra and

pre-conditioners. For details of implementation by
means of variational methods we refer e.g., to [21]. For

general overview of modelling and further numerical

approaches one can also consult recent books or paper

collections [43–46].

We will try to obtain a realistic—smooth shape of the

left ventricle of the heart. First, in Fig. 3 the smoothing

effect of geometrical diffusion (3) is presented. On the

left side the cuts of unfiltered iso-surfaces are plotted, on
the right the filtered ones are (both after binarization

with the same treshold). The extinction of small struc-

tures due to their high curvature and smoothing of the

important structures can be seen in the image. In Figs. 4

and 5, we visualize the level surfaces which represent the

Fig. 3. Two-dimensional cuts of result of 3D processing by geometrical

diffusion of mean curvature flow type.
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boundary of the volume containing the blood in two

discrete moments of cardiac cycle from the TomTec

testing data set (processing of 5th and 14th time steps of

sequence is presented). On the left side of the figures, the

unfiltered iso-surfaces are plotted. The computational

results are plotted on the right sides. In the presented

numerical experiments, we have computed 21 discrete
scale steps on Cray C92 and then stopped the geomet-

rical diffusion. For longer time-scale the diffusion tends

to shrink the structure. This shortcoming of the method

will be improved by considering space–time coherence

of the entire sequence given in the following section.

At the end of this section, let us mention a general

useful view to gradient dependent non-linear (geomet-

rical) diffusion equations. The non-linear diffusion term
r 
 ðgðjrujÞruÞ can be rewritten in 2D as

r 
 ðgðjrujÞruÞ ¼ gðjrujÞunn þ H 0ðjrujÞugg; ð8Þ
where HðsÞ ¼ sgðsÞ and n; g are tangential and orthog-
onal vectors to the level line, respectively. From this

form, one can simply see how diffusion works along and
across the image silhouettes with different choices of g.

There is always positive, but possibly slowed-down

(depending on the shape of g) diffusion along level lines.

Across level line there can be forward diffusion (when

H 0ðsÞ is positive), zero diffusion (e.g., in Rudin–Osher–
Fatemi model [47] dealing with total variation de-nois-

ing and also in the mean curvature flow equation in the

level set formulation) or backward diffusion (in the
original Perona–Malik model [17]).

3. Space–time multiscale filtering

A 3D space–time image sequence (e.g., in 3D echo–

cardiography) u0ðx; hÞ is a 4D image and we can apply a

general multiscale analysis model (1) and (2) to it. The
question is how to choose right-hand side of (1) with

the aim at extracting relevant information from the

sequence, filtering out the noise and enhancing moving

structures. To that goal, we would like to use an addi-

tional information (in comparison with static image

processing) given by motion coherence in the image

sequence. We will assume that certain objects acquired

at different times, and thus being in different frames of
the sequence, are formed by points that preserve their

intensity along the motion trajectory. Such objects are

called Lambertian structures. Moreover we will assume

that motion is Galilean locally in time, i.e., the motion

trajectories are smooth. Designing the model equations,

we will consider the following quantity [17,50] proposed

by Guichard [51]

cltðuÞ ¼ min
w1;w2

1

ðD#Þ2
ðjhru;w1 � w2ij

þ juðt; x� w1; #� D#Þ � uðt; x; #Þj
þ juðt; xþ w2; #þ D#Þ � uðt; x; #ÞjÞ; ð9Þ

where w1, w2 are arbitrary vectors in RN and Dh is the
increment in time. The scalar function cltðuÞ (the name
clt indicates the relation to the curvature of Lambertian

trajectory) will introduce a measure of coherence in time

for the moving structures. It consists of the sum of three

positive parts and we want to find the minimum in all

possible directions w1, w2. The last two terms in the sum
on the right-hand side of (11) are related to the differ-

ences in the intensities of end-points of candidate

Lambertian velocity vectors w1 and w2. To find the di-
rections of such vectors we have to look at the points

which have the closest intensity value to the intensity

uðt; x; hÞ in the previous frame (term juðt; x� w1; h � DhÞ
� uðt; x; hÞj) and in the next frame (term juðt; xþ w2;
þ DhÞ � uðt; x; hÞj). Those differences are scaled by the
factor 1=ðDhÞ2. Note that, if we find corresponding

Lambertian points both terms vanish. The first term in

the sum, namely jhru;w1 � w2ij=ðDhÞ2 corresponds to

Fig. 4. Ventricular shape extraction using geometrical diffusion.

Fig. 5. Ventricular shape extraction using geometrical diffusion.
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the so-called apparent acceleration, i.e. to the difference
between candidate Lambertian velocity vectors w1 and
w2 in the direction of ru. For details and more back-
ground from the optical flow point of view refer to

[16,48,49]. The quantity cltðuÞ is thus related to the

curvature of the space–time level curve passing through

the space–time point ðx; hÞ in the scale t. The value of

cltðuÞ vanishes for the Lambertian points that are in

Galilean motion. It is consistent with our purposes not
to alter such trajectories. On the other hand for the

noisy points there is no motion coherence and thus

cltðuÞ will be large there.
Concerning the space coherence, we assume that

distinguished structures are represented as uniform re-

gions of the image intensity function and that object

boundary forms an edge in the image. To construct

spatial diffusion process we will require specific behavior
on the edges, e.g., it is desirable not to blur them, to

keep their position as fixed as possible.

Another reasonable choice can be related to a

smoothing of the edges by intrinsic diffusion (for that

goal, flow by mean curvature can be used). There are

diffusion processes designed to respect such features (see

Section 2); we can choose Perona–Malik like anisotropic

diffusion [17], mean curvature flow of curves and sur-
faces in the level set fomulation, as introduced in chapter

2, models based on minimization of image total varia-

tion, etc.

To combine time coherence of moving objects with

their spatial localization we will consider the following

equation

ou
ot

¼ cltðuÞsdðuÞ; ð10Þ

where spatial diffusion is given either by the Perona–

Malik term, i.e.,

sdðuÞ ¼ r 
 ðgðjrujÞruÞ ð11Þ
or by level set like term, i.e.,

sdðuÞ ¼ jrujr 
 ru
jruj

� �
: ð12Þ

To prevent possible degeneracies we will regularize the

equations, and usually use function g as

gðsÞ ¼ 1

1þ Ks2 ð13Þ

with some constant K. To prevent ill-posedness of

equation in such case, we use spatial regularization by

smoothing kernel due to [35]. In case of Perona–Malik

spatial smoothing we have proposed the following
equation for the processing of image sequences [3]

ou
ot

¼ cltðuÞr 
 ðgðjrGr � ujÞruÞ ð14Þ

together with initial condition (2). The practical choice

of the kernel is N-dimensional Gauss function

GrðxÞ ¼
1

ð2
ffiffiffiffiffiffi
pr

p
ÞN
e�jxj2=4r: ð15Þ

Given (15), the term rGr � u is nothing else than the
gradient of the solution at time r of the linear heat

equation starting from u initially. Thus, in Eq. (14), the

spatial diffusion process is slowed down in the points in
which the Gaussian gradient rGr � u is large (i.e., on
edges) in spite of the regions with the constant signal

mean (there, the smoothing is close to usual linear dif-

fusion due to gð0Þ ¼ 1Þ. Eq. (14) preserves moving in
time structures as well as keeping their spatial edges.

In the second case (12), i.e., when we are interested in

the smoothing of moving object silhouette by intrinsic

diffusion we use regularization in the sense of Evans and
Spruck and thus consider the equation

ou
ot

¼ cltðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ jruj2

q
r 
 ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ jruj2
q

0
B@

1
CA; ð16Þ

where e is a small regularization parameter. Eq. (16) is
again coupled with initial condition (2). In both cases,

(14) and (16), we consider zero Neumann boundary

conditions in the spatial part of boundary and e.g., pe-

riodic boundary conditions in time boundary of the se-

quence.

In models (14) and (16), the change of image intensity
in scale, i.e., dujdt, is given by the right-hand side of (14)
or (16). There the spatial diffusion term is multiplied by

cltðuÞ. Thus, the diffusion process degenerates (is stop-
ped) in the Lambertian points that are in Galilean mo-

tion. This is the important difference from standard

selective smoothing processes for static images. We can

conclude that Eqs. (14) and (16) preserve moving in time

structures as well as keep (or slightly smooth) their
spatial edges. The features of the spatial non-linear se-

lective smoothing and the Guichard’s acceleration term

cltðuÞ are connected.
In the next section we will present discretization and

numerical solution of the partial differential Eqs. (14)

and (16) by means of a finite volume method. Then we

will discuss the solution of arising linear systems by

means of iterative methods and give computational re-
sults with real and artificial images.

4. Numerical algorithm

In this section, a method for numerical solution of

image sequence multiscale analysis Eqs. (14) and (16) is

described. First let us give some notations. Let our space–
time sequence consist ofmþ 1 frames. Let h ¼ Dh ¼ T=m
be a discrete time step of the sequence. Let us denote a

discrete scale step by s. Then by uij we denote the jth frame
of the sequence in ith discrete scale step, i.e.,

82 A. Sarti et al. / Journal of Biomedical Informatics 35 (2002) 77–91



uijðx1; x2; x3Þ ¼ uðis; x1; x2; x3; j#Þ: ð17Þ

The basic idea of our numerical method is to handle

terms in (14) or (16) in such a way as to obtain a linear

boundary value problem for uij. The reason is that such
equations can be solved by robust and efficient spatial

discretization techniques based on finite volume (FVM),

finite difference (FDM), or finite element methods

(FEM). To that goal, the nonlinearities of Eq. (16) are

treated using the previous scale step, while the linear
terms are handled implicitly. Such approach is called

semi-implicit approximation in scale. Then we provide

space–time discretization and, finally, our numerical

method leads to solving linear algebraic systems to up-

date each frame of the sequence in a new scale.

Let us discuss the discretization of the terms in (14) in

detail. From definition (9), we obtain a time-discrete

version of cltðuÞ considering current, previous and next
time frame of the sequence. So, we define

cltðuijÞ ¼ min
w1;w2

1

#2
jhruij;w1

�
� w2ij þ juij�1ðx� w1Þ

� uijðxÞj þ juijþ1ðxþ w2Þ � uijðxÞj


: ð18Þ

Now, we can write the semi-implicit scheme for solving

(14).

Let s and r be given outer and inner discrete scale

steps. For i ¼ 1; 2; . . . and for each frame j ¼ 0; . . . ;m,
we look for uij fulfilling

ur
j � ui�1j

s
¼ cltðui�1j Þr 
 gðjrGr � ui�1j jÞruij

� 

; ð19Þ

where the periodicity in time of the sequence is used for

j ¼ 0 and j ¼ m and the zero Neumann boundary con-

ditions are considered for spatial boundary X. Let us
mention that we can also use other conditions for up-

dating the first and last frame in the sequence, e.g., re-

flexive if we have given only one half of the periodic

cycle, or the first and last frame can serve as Dirichlet
data for computing of uij, j ¼ 1, j ¼ m� 1. Eq. (19)

is elliptic PDE in points where cltðui�1j Þ > 0 while it

degenerates to algebraic identity in points where

cltðui�1j Þ ¼ 0.

Given (15), we can realize the convolution, involved

in computing of diffusion coefficient gðjrGr � ui�1j jÞ, by
solving numerically the linear heat equation

ow
ot

¼ r 
 ðrwÞ ð20Þ

in time interval ½0; r� with the initial condition wðx; 0Þ
¼ ui�1j ðxÞ. Then we put ur

j :¼ wðx; rÞ. Numerically, we
solve the Eq. (20) implicitly in t with just one discrete

inner scale step with the length r. This way, (19) can be
rewritten into the couple

uij � ui�1j
s

¼ cltðui�1j Þr 
 gðjrur
j jÞruij

� 

; ð21Þ

where ur
j is the solution of

uij � ui�1j
r

¼ r 
 ðrur
j Þ j ¼ 0; . . . ;m; i ¼ 1; 2; . . . ð22Þ

Now we will discuss the solution of (21) and (22) on

given spatial discrete pixel/voxel structure. In discrete

settings, minw1;w2 in (18) is only evaluated for vectors

connecting pixel/voxel centers P also representing the
nodes of the computational grid (see also [49]. In prac-

tice, we only consider a certain (not too large) rectan-

gular neighbourhood centered in P. For space

discretization of (21) as well as (22) we use, in this work,

the so called finite (or control) volume method. This

method is widely used in the engineering and applied

mathematics community for numerical computations of

diffusion (convection–diffusion and conservation laws as
well) processes [48]. Next, we provide the discretization

of Eq. (21). Case (22) is left to readers due to simplicity.

Let the discrete image intensity values be given in

central points P of finite volumes corresponding to

voxels in 3D. Let the distance between two of such

points be h (we consider uniform 3D grid in this ex-

planation, but all considerations can be generalized to

nonuniform, nonrectangular 2D or 3D grids). Let us
denote the grid neighbours of P byW (west), E (east), S

(south), N (north), B (bottom), U (up) and the points

crossing the finite volume in the direction of neighbours

by w, e, s, n, b, and u. The finite volume around P then

can be written as

V ¼ ½w; e� � ½s; n� � ½b; u� � R3:

The finite volume method consists in stating the as-

sumptions on profiles of data and unknowns in various
terms of equation and then integrating the equation

through finite volume V. The general rule is used, in

each term we assume such profile of functions which is

sufficient to provide the differentiations if they are in-

volved. We can proceed in such a way, because the final

output consists just on values of unknown in discrete

points and we can take any interpolating profile of the

solution in between the grid points.
To simplify the notation, denote d � gðjrur

j jÞ. Let us
integrate Eq. (23) in finite volume V. We obtainZ e

w

Z n

s

Z u

b
uij dx1 dx2 dx3

¼ s
Z e

w

Z n

s

Z u

b
cltðui�1j Þ o

ox1
d
ouij
ox1

� ��

þ o

ox2
d
ouij
ox2

� �
þ o

ox3
d
ouij
ox3

� ��
dx1 dx2 dx3

þ
Z e

w

Z n

s

Z u

b
uij dx1 dx2 dx3: ð23Þ

Let cltðui�1j ÞðxÞ � cltðui�1j ÞðP Þ for all x 2 V , i.e., we as-
sume constant profile of this quantity in V. Further,
assume that diffusion fluxes through boundaries of V are
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constant on each side of volume V; of course, in such
case, they are given by the values in crossing points

mentioned above. Then, using Newton–Leibnitz for-

mula in first integral on the right-hand side of (23) we

obtainZ e

w

Z n

s

Z u

b
uij dx1 dx2 dx3

¼ scltðui�1j ÞðP Þh2 dðeÞ
ouijðeÞ
ox1

�
� dðwÞ

ouijðwÞ
ox1

þ dðnÞ
ouijðnÞ
ox2

� dðsÞ
ouijðsÞ
ox2

þ dðuÞ
ouijðuÞ
ox3

� dðbÞ
ouijðbÞ
ox1

�
þ
Z e

w

Z n

s

Z u

b
ui�1j dx1 dx2 dx3: ð24Þ

Approximating partial derivatives on the boundaries of
finite volume by central differences and approximating

integrals using values at central points, we obtain the

following difference equation holding in each grid pointP

� aW uijðW Þ � aSuijðSÞ � aBuijðBÞ � aPuijðP Þ
� aEuijðEÞ � aNuijðNÞ � aUuijðUÞ ¼ bP ; ð25Þ

where

aW ¼ s
h2
cltðui�1j ÞðP Þgðjrur

j jÞðwÞ;

aE ¼
s
h2
cltðui�1j ÞðPÞgðjrur

j jÞðeÞ;

aS ¼
s
h2
cltðui�1j ÞðP Þgðjrur

j jÞðsÞ;

aN ¼ s
h2
cltðui�1j ÞðP Þgðjrur

j jÞðnÞ;

aB ¼
s
h2
cltðui�1j ÞðP Þgðjrur

j jÞðbÞ;

aU ¼ s
h2
cltðui�1j ÞðP Þgðjrur

j jÞðuÞ;

aP ¼ aW þ aE þ aS þ aN þ aB þ aU þ 1;

bp ¼ ui�1j ðPÞ:

ð26Þ

Applying the zero Neumann boundary conditions to

boundary volumes, we can represent Eq. (25) in matrix

form

A�uuij ¼ b; ð27Þ

where �uuij represents the vector of unknown discrete
values of uij in the grid nodes. The coefficients of matrix
A depend on ur

j and u
i�1
j and thus they are recomputed

in each discrete frame and scale step. Because of the

dependence on ur
j , we have to solve inner Eq. (22). The

finite volume method for (22) leads to linear system with

the symmetric matrix which is same in each frame and

scale step. Hence we obtain the vector �uur
j i.e., values of

ur
j in grid points. Using those values, we compute the
approximate value of gðjrur

j jÞ for each crossing finite
volume boundary point w; e; . . . Finally, we arrange

matrix A. The system (27) is then solved by efficient

linear algebraic solver.

Using similar ideas as in the previous explanation we
obtain the discrete version of Eq. (16) as follows

aW ¼ s
h2
cltðui�1j ÞðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðwÞ;

�

aE¼
s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðeÞ;

�

aS ¼
s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðsÞ;

�

aN ¼
s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðnÞ;

�

aB¼
s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðbÞ;

�

aU ¼ s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðuÞ;

�

aP ¼
s
h2
cltðui�1j ÞðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðP Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrui�1j j2

q
ðpÞ;

�

aP ¼ aP þaEþaSþaN þaBþaU þ1 bP ¼ ui�1j ðPÞ:
ð28Þ

Again we end with the linear system of type (27).

Remark. By the construction of system (27)matrixA is

nonsymmetric, but strictly diagonally dominant and thus

invertible, so its unique solution always exists. Moreover,

the so called L /-stability condition is fulfilled for our
discrete solution. Namely, let a; b be real constants. If
a6 �uu0j 6 b, j ¼ 0; . . . ;m, then a6 �uuij6 b 8j ¼ 0; . . . ;m,
i ¼ 1; 2; . . . [3].

5. Discussion on numerical experiments

In this section we will present and discuss computa-
tional results obtained by approximation schemes given

in previous sections. First, we are dealing with a phan-

tom-like image sequence consisting of expanding,

slightly deforming and moving ellipse with an inner

structure in the form of four-petals. We add uniform,

impulsive (salt and pepper) and Gaussian noise to

frames of the image sequence. The original six-frame

sequence and its destroyed version are plotted in the first
two columns of Fig. 6. The reconstruction of any noisy

frame of the sequence by a standard filtering algorithm

(e.g., using commercial software) is a very difficult task

and no attempt was successful. The right column of Fig.

6 represents the results of non-linear multi-scale analysis

(14) applied to the noisy sequence after 10 discrete scale

steps of our algorithm. The similar successful result is

obtained using space–time filtering Eq. (16).
Next we have applied multiscale analysis models to

an in vivo acquired 3D echo–cardiographic sequence

obtained by means of a rotational acquisition technique

using the Tom-Tec Imaging System. In Figs. 7–10 (first

column), the left ventricular endo-cardium and the left

atrium of an entire unfiltered cardiac cycle has been
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visualized. The iso-surfaces corresponding to the inter-

face between cardiac muscle and blood have been

computed by the marching cubes method and visualized

by a Gouraud shading surface rendering. Figs. 7 and 8

consist of three sub-figures. For each row, in the left we

plot the echo-volume visualized using the original noisy

data, in the middle the result after three discrete scale

steps and on the right after nine discrete scale steps of
model (14). We have chosen s ¼ 0:2, r ¼ 0:0001, and
h ¼ 1=150. The next Figs. 9 and 10 are related to the

application of model (16). For these computations, we

have used parameters s ¼ 0:01, e ¼ 0:0001 and

h ¼ 1=150 and we look at five neighbourhood of each
voxel to recognize the Lambertian trajectories of moving

points. Again we plot original noisy data (left images)

and the results after three (middle images) and six (right
images) discrete scale steps of our algorithm for model

(16). As one can expect, the resulting shapes are a little

bit smoother than in Figs. 7 and 8 due to mean curva-

ture flow effect.

To evaluate the accuracy of the presented multiscale

analysis models, we set the following procedure to define

Fig. 6. Two-dimensional phantom: original (left), noisy (middle), and

processed (right) images.

Fig. 7. The multi-scale analysis of the first frame of 3D echo–cardio-

graphic image sequence by Eq. (14).

Fig. 8. The multi-scale analysis of the seventh frame of 3D echo–car-

diographic image sequence by Eq. (14).

Fig. 9. The multi-scale analysis of the seventh frame of 3D echo–car-

diographic image sequence by Eq. (16).

Fig. 10. The multi-scale analysis of the 13th frame of 3D-echo–car-

diographic image sequence by Eq. (16).
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and estimate the error. An external observer has man-

ually segmented the ventricular chamber by considering

every single slice l of a 3D unfiltered frame. We compute

the mean intensity value ~uu of the points corresponding
to the manual segmentation over all the slices and we

use ~uu to define the ‘‘closest’’ iso-surface to the manual
segmentation itself. In Fig. 11, a slice of a 3D frame with

the superimposition of ~uu iso-level curves is shown. In
Fig. 12, the same situation after nine discrete scale steps

of (14) is reproduced. The non-linear multi-scale anal-

ysis does not move significantly the position of the co-

herent boundaries as is shown in Fig. 13, where the

contour lines of the unfiltered and filtered images are

compared. At the same time the filtering of the non-

coherent structures is performed. Our goal now is to

estimate the mean distance between the manual seg-
mentation and the iso-line in both cases before and after

filtering. For each slice a distance function Dlðx; yÞ from
the iso-line is computed with level set methods, follow-

ing [29]. In Fig. 14 the distance function from the iso-

line of Fig. 13 is visualized. The mean distance between

the manual segmentation curve Cl and the iso-line is

defined as Dl ¼
R
Cl
Dlðx; yÞds=

R
Cl
ds, where s is the

arclength. In Fig. 15, both Cl and Dlðx; yÞ are visualized.
The distance error has been evaluated for every slice of

the 3D dataset. The global distance error is computed by

averaging the errors over the L slices, i.e.,

D ¼ 1

L

XL
l¼1
Dl:

With this procedure we estimated D ¼ 1:3 voxels for the
unfiltered image and D ¼ 0:8 voxels for the result of the
multiscale analysis. Such results give a quantitative

confirmation of the qualitative visual inspection, about

the ability of the method to keep the position of the
coherent structures. This quantitative evaluation has to

be considered a preliminary result and further quanti-

tative analysis applied to a statistically relevant number

of cases is necessary for a full clinical validation.

Fig. 11. The level contour line ~uu computed on the unfiltered slice

y ¼ 103. The gray-level image is visualized in the background.

Fig. 12. The level contour line ~uu computed on the slice y ¼ 103 after

nine discrete scale steps of filtering. The filtered image is shown in the

background.

Fig. 13. Comparison between the contour lines corresponding to the

unfiltered (dot) and filtered (dot-line) image. In the background, the

unfiltered image is shown. For clarity of representation only the sub-

region around the left and right ventricle is visualized.

Fig. 14. Distance function Dlðx; yÞ from the ~uu level set of the filtered
image (isoline of Fig. 14). To allow a better visualization the elevation

axis has been reversed (0 on the top) and the distance has been cut off

for Dlðx; yÞ > 10.

86 A. Sarti et al. / Journal of Biomedical Informatics 35 (2002) 77–91



Recently, the 3D+ time filtering method has been

applied to real-time 3D echo sequences with quite en-

couraging results. In Figs. 16–23 we present them for

several frames of the entire sequence. In Fig. 16, there

are 2D cuts of the subsequent cubes and in Figs. 17–23
we visualize level surfaces corresponding to un-filtered

and filtered left ventricular shapes during systole. We

have chosen five neighbourhood to compute cltðuÞ,
s ¼ 0:1, r ¼ 0:001, h ¼ 1=115, K ¼ 2 and the results are

plotted after 3 scale steps of the algorithm for Eq. (14).

6. Preconditioning and solving of linear systems

We will finish with a discussion related to solving
linear systems (27) which we shortly indicate as

Au ¼ b ð29Þ
by means of iterative techniques, focusing our attention

on the use of suitable preconditioners. A preconditioner

is a matrix used to accelerate the convergence of the

iterative methods, guaranteeing the same solution. The

original linear system (29) by the new system

Fig. 15. The manual segmentation curve Cl (dashed line) over-imposed
to the distance function Dlðx; yÞ (solid iso-contour lines). The thick
lines represent the zero level set of Dlðx; yÞ.

Fig. 16. Processing of RT3DE volumetrics. 2D slices taken from 11th

to 14th cubes of the sequence before and after 3D processing by model

(14).

Fig. 17. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from fifth cube of the sequence before (left) and after

(right) 3D processing by model (14).

Fig. 18. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from sixth cube of the sequence before (left) and after

(right) 3D processing by model (14).

Fig. 19. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from seventh cube of the sequence before (left) and

after (right) 3D processing by model (14).
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PAQQ�1u ¼ Pb; ð30Þ
where matrices P and Q are the left and right pre-con-

ditioners, respectively. Now we can simply apply an un-

preconditioned iterative process to the new system (30).

Instead of computing a matrix-vector multiplication

Av ¼ w at each iterative step, now we have to compute
also P�1w ¼ y (or solve the system Py ¼ w) and analo-
gously for Q. In devising a pre-conditioner, we are faced

by a choice between finding a matrix P that approxi-

mates A�1, so that only multiplication by P is needed, or

finding a matrix P�1 that approximates A. There are

three criteria for choosing an efficient pre-conditioner P:

the first criterion is that the pre-conditioner P must be

chosen so that the condition number of P�1 A is greatly
reduced, thus speeding up the rate of convergence.

The second consideration for a good pre-conditioner

is to choose matrix P so that the linear system Py ¼ w
can be easily solved. Third, since using a pre-conditioner

in an iterative method incurs some extra memory re-

quirement and cost, both initially for the set-up, and per

iteration for applying it, the choice for it is a compro-

mise between the cost of constructing and applying the
pre-conditioner, and the gain in convergence speed.

Certain pre-conditioners need little or no construction

phase at all, but for others, such as incomplete factor-

izations (ILU), there is substantial work involved.

For the 2D image sequences, good performance is

achieved also using existing pre-conditioners. In our

comparison, we have chosen the classical and most rel-

evant solvers, namely Gauss–Seidel method (GS), con-
jugate gradient method (CG), biconjugate gradient

stabilized method (BICGSTAB), transpose free quasi

minimal residual method (TFQMR), generalized mini-

mum residual method (GMRES). At a first investigation

we used for each method, when it is possible, the fol-

lowing well-known pre-conditioners: Right ILU(0) (zero

fill-in incomplete LU factorization), Left ILU(0), Right

MILU(0) (modified ILU(0)), Left MILU(0) and
ILUT(n) (ILU with n-fill in and thresholding). For de-

tails refer to [51] or [52]. In case of GMRES method, we

allow the restart when the dimension of Krylov sub-

space is 20. We stop the iterations when the Euclidean

norm of the actual residual rðkÞ ¼ b� AuiðkÞj satisfies

krðkÞk6 akrð0Þk
with tolerance parameter a ¼ 0:01 and rð0Þ representing
the initial residual. We start with uið0Þj ¼ 0. In the 2D

testing example (Table 1), we process a simple phantom

given by a moving noisy circle and for report, we choose

the time frame from the middle of the sequence. We used

s ¼ 0:1, r ¼ 0:001, and h ¼ 1=128. In the table, we print

Fig. 20. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from eighth cube of the sequence before (left) and after

(right) 3D processing by model (14).

Fig. 21. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from nineth cube of the sequence before (left) and after

(right) 3D processing by model (14).

Fig. 22. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from 10th cube of the sequence before (left) and after

(right) 3D processing by model (14).

Fig. 23. Processing of RT3DE volumetrics. Visualization of left ven-

tricular surface from 11th cube of the sequence before (left) and after

(right) 3D processing by model (14).
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the number of multiplications (matrix times vector) per-

formed until convergence is reached because this is the

most expensive step of the iterative procedure and this

number is independent of computer architecture.We also

report the CPU time in seconds (on SUN Sparc 10

workstation) for each complete iterative procedure. This

comparison is related also to paper [41] in which an ad-

ditive operator splitting (AOS) method is used for solving
the an-isotropic diffusion equation by a semi-implicit

technique. Such a method is direct and thus uses a fixed

number of operations. They report that, in general, the

AOS scheme is about three times faster than classical

Gauss–Seidel method with the tolerance a ¼ 0:01. From
our comparison, it is clear that any preconditioned iter-

ative method is about 10 times faster than Gauss–Seidel

procedure for matrices receiving from image multi-scale
analysis models. In the best case, using the GMRES

method, we have a speed-up of about 50.

The construction of the next pre-conditioner is based

on the concept that for diagonally dominantA the entries

in A�1 decay rapidly away from diagonal and a banded

pattern for P will produce a good approximate inverse.

The rows of the pre-conditioner are generated inde-

pendently, allowing a parallel computation of them. Let
pi denote the column of P

T. Then ideally we would like

to have

ATpi ¼ ei; ð31Þ
where ei is the ith column of the identity matrix. From
A, we determine some small list of indices I drawn from

f1; 2; . . . ;Ng, where N is equal to the number of un-

knowns, so that the variables and constraints in I have

the most impact on the variable i. Then we solve the

small system of equations

ATpi ¼ ei; ð32Þ
where the bar indicates that we delete all the rows and

columns except for those included in I.

Two possibilities are tested for the choice of I for

node i. We let I be i together with all indices of neigh-

bours of node i neglecting those, say j, so that

1. jaij � ajij6 thr1jaii � ajjj;
2. jaij þ ajij6 thr2jaii þ ajjj;
where thr1, thr2 are user-specified tolerances. The im-

portant observation is that the dimension of the small

systems does not exceed 7 in 3D computations and so

the solution of (32) can be computed in an explicit

manner.

After the small system, involving these rows and

columns is solved, we scatter the entries of the solution
�ppi back to their original coordinate positions in pi, and
we fill in the remaining positions of pi with zeros. Using
compressed sparse row technique for matrices, we only

have to store immediately the computed elements and
the I indices. As a final observation we may point out

that the small systems to be solved are principal sub-

matrices of A, that is a strictly diagonally dominant M-

matrix. So it is easy to verify that the pre-conditioner

can be computed in a stable manner.

In the testing of iterative solvers, we stop the itera-

tions by the same criterion as in 2D experimentations.

For every method, we print the number of multiplica-
tions (matrix times vector) performed until convergence

and also CPU time in seconds for each complete itera-

tive procedure. For the tests in 3D, we consider a system

arising from the multi-scale analysis of ultrasound image

sequence. We consider cubes consisting of 643 voxels

and we use for the pre-conditioner thr1 ¼ 0:05 (Table 2)
and thr2 ¼ 0:8 (Table 3). In that case, we observe a good
performance by BICGSTAB and GMRES with left pre-
conditioner providing computations on SUN Ultra 30.

Research projects on efficient iterative solvers and

pre-conditioners are in progress and particular attention

Table 1

Comparison of iterative solvers in one scale step of 2D+ time algorithm

No. Multip/CPU time GS CG BICGSTAB TFQMR GMRES

No Pre-con 265/25.39 94/6.25 98/7.14 204/17.72 114/19.28

Left ILU(0) 20/2.41 20/2.47 18/2.51 17/3.58

Right ILU(0) No conver 16/2.03 16/2.32 7/1.13

Left ILU(0) 16/1.95 20/2.48 22/3.05 15/3.02

Right MILU(0) 5/0.69 20/2.46 12/1.72 5/0.8

ILUT(5) — 10/1.57 8/1.11 3/0.51

Table 2

Comparison of iterative solvers with approximate inverse pre-condi-

tioner in the processing of one frame of 3D image sequence using

model (14)

No. Multip/CPU time BICGSTAB GMRES

No Pre-con 145/152.27 125/274.09

Left 8/8.60 9/14.63

Right 96/76.68 45/101.23

Table 3

Comparison of iterative solvers with approximate inverse pre-condi-

tioner in the processing of one frame of 3D image sequence using

model (16)

No. Multip/CPU time BICGSTAB GMRES

No Pre-con 145/152.27 125/274.09

Left 7/8.73 7/12.58

Right 121/118.22 64/149.85
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is devoted to the solution of very large dimension linear
systems, possibly ill-conditioned, by conjugate-gradient

methods and the choice of stopping iteration [53–55].

These are crucial tasks to obtain a fast, high quality

solution and restored image.

7. Conclusions

The processing of 3D echo–cardiographic sequences,

we have proposed uses spatial and temporal information

to filter out noise and to preserve the coherent space–

time structures. The PDE representing the model com-

bines the effect of the an-isotropic and geometrical

diffusion in space and the Galilean invariant movie

multi-scale analysis in time. In the limited number of

synthesized and real sequences that we have considered
the results are encouraging both from the qualitative

and quantitative point of view. In particular the

boundaries of the coherent structures are not moved

significantly while a remarkable reduction of the noise is

provided. A robust, efficient and stable numerical

scheme to solve the discretized PDE has been proposed

and a comparison among several iterative solvers has

been performed.
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