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Abstract We introduce semi-implicit complementary vol-
ume numerical scheme for solving the level set formulation
of Riemannian mean curvature flow problem arising in im-
age segmentation, edge detection, missing boundary com-
pletion and subjective contour extraction. The scheme is ro-
bust and efficient since it is linear, and it is stable in L∞ and
weighted W 1,1 sense without any restriction on a time step.
The computational results related to medical image segmen-
tation with partly missing boundaries and subjective con-
tours extraction are presented.

Keywords Partial differential equations · Nonlinear
diffusion · Riemannian mean curvature flow · Level set
formulation · Complementary volume method · Semi-
implicit scheme · Image segmentation · Edge detection ·
Subjective contours · Subjective surfaces · Medical imaging

1 Introduction

In this paper we introduce and study linear numerical
scheme for solving nonlinear degenerate diffusion equation
arising in image segmentation and edge detection, computer
and human vision. Our scheme is based on semi-implicit
approximation in time and on the so-called complementary
volume method in space. We study discretization of nonlin-
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ear degenerate diffusion equation of Riemannian mean cur-
vature flow type [4, 16, 22]

ut = |∇u|∇.

(
g(|∇Gσ ∗ I 0|) ∇u

|∇u|
)

, (1)

where u(t, x) is an unknown (segmentation) function de-
fined in QT ≡ [0, T ] × �, � ⊂ IRd is a bounded rectangu-
lar domain, [0, T ] is a time interval, and I 0 is a given image.
The equation is accompaniedwith zero Dirichlet boundary
condition and initial condition

u = 0 on [0, T ] × ∂�, (2)

u(0, x) = u0(x) in �. (3)

The assumptions on the data in (1)-(3) are as follows:

g : IR+
0 → IR+ is a decreasing function, g(

√
s)is smooth,

g(0) = 1, g(s) → 0 for s → ∞ [20], (4)

Gσ ∈ C∞(IRd) is a smoothing kernel (e.g. Gauss function),

with
∫

IRd
Gσ (x)dx = 1,

∫
IRd

|∇Gσ |dx ≤ Cσ , (5)

Gσ (x) → δx for σ → 0, δx is the Dirac measure at point x,

u0 ∈ L∞(�), (6)

and

∇Gσ ∗ I 0 =
∫

IRd
∇Gσ (x − ξ) Ĩ 0(ξ)dξ, (7)

where Ĩ 0 is extension of I 0 to IRd given by periodic reflec-
tion through boundary of �.

Equations of weigted mean curvature flow type have
been successively introduced to image segmentation and
edge detection by several groups in the last decade [4, 5,
16, 22–24]. Besides segmentation, the nonlinear PDEs re-
lated to mean curvature motion are often used also in image
filtration. e.g., the equation

ut − g(|∇Gσ ∗ u|)|∇u|∇.

( ∇u

|∇u|
)

= 0 (8)
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has been suggested in [2] for image selective smoothing
based on morphological principle and isophotes informa-
tion. In [7], the diffusion weighting term g(|∇Gσ ∗I 0|) of (1)
is changed to adaptively updated one g(|∇Gσ ∗u|), and such
model is again used for nonlinear image filtration. In partic-
ular case g ≡ 1, (1) and (8) reduce to the well-known level
set equation [19, 25] moving all level sets of u by the normal
mean curvature field. It is used in wide range of applications
related to front propagation and interphase motions in free
boundary problems; for a comprehensive overview we refer
to [26]. Study of the existence of unique viscosity solution
to all these types of degenerate parabolic equations is based
on [6, 8, 12].

In image filtration, the initial condition for Eq. (8) is
given by the image greylevel intensity I 0 itself, i.e. u0 = I 0.
Then the solution u(t, x) of (8) gives a family of scaled
(filtered, smoothed) versions of I 0(x). The parameter t is
understood as scale, and the process of nonlinear selec-
tive smoothing is called image multiscale analysis [1]. In
[13], the linear complementary volume method to solve im-
age selective smoothing Eq. (8) has been suggested and
studied.

In image segmentation and edge detection which we are
going to deal with in this paper, the initial condition u0(x)
represents an initial state of the so-called segmentation func-
tion u(t, x). The image I 0 determines the weight function g
for the mean curvature motion of level sets of the segmenta-
tion function. Equation (1) can be rewritten as

ut = g(|∇Gσ ∗ I 0|)|∇u|∇.

( ∇u

|∇u|
)

+∇g(|∇Gσ ∗ I 0|).∇u.

(9)

The vector field ∇g drives level sets of the segmentation
function u towards edges in the image [4, 16]. The second
order regularization term, first on the right hand side, fil-
ters the evolving segmentation function from stopping on
spurious edges [2]. Moreover, this degenerate diffusion term
close the edges with missing large gradient information as in
subjective contour case ([22]; see also numerical examples
in Sect. 3 of this paper).

In the above mentioned literature, one can find a dis-
cretization of (1) based on the form (9) and explicit schemes
with an upwinding for convective term are often used. Then
a stability restriction on the time stepping has to be imposed.
In this paper, we discretize the form (1) using semi-implicit
complementary volume method which gives unconditionally
stable scheme in L∞ and weighted W 1,1 sense without any
restriction on the time step. The scheme is linear at every
discrete time step, so one can get fast CPU times, either us-
ing preconditioned linear iterative solvers [13, 17, 21] or ap-
proximate additive operator splitting approach [28].

The method presented in this paper is based on the
results developed in [13]. However, one should also notice
important differences. Here, we study different field of
application, not the image smoothing but the image seg-
mentation. In spite of image smoothing where usually zero

Neumann boundary conditions are used, in image segmen-
tation Dirichlet boundary data are considered. The structure
of the models (1) and (8) is different. In (1) the weighting
term g is inside the divergence which brings new convective
phenomenon into the model important in segmentation
context. In spite of the previous methods dealing with (1),
we employ directly its divergence structure without going
to equivalent form (9), which is the main reason why the
semi-implicit co-volume method can be used efficiently
also for solving PDEs arising in image segmentation.

The rest of this paper is organized as follows. In Sect. 2
we present our discretization of (1) in the context of image
segmentation and we prove stability properties of such nu-
merical approximation. In Sect. 3, we present numerical ex-
periments in edge detection for objects with partly missing
boundaries, e.g. in extraction of subjective contours and seg-
mentation of echocardiographic images.

2 Linear semi-implicit complementary volume scheme

In order to discretize (1) we have chosen N ∈ IN and set a
uniform discrete time step τ = T

N . Then we replace the time
derivative in (1) by backward difference and the nonlinear
terms of equation are treated from the previous time step
while the linear ones are considered on the current time level
(for other semi-implicit approaches in image processing we
refer, e.g., to [3, 13, 15, 18, 28]. We denote

g0 := g(|∇Gσ ∗ I 0|), (10)

for which

g0 ≥ νσ > 0

holds due to smoothing properties of the convolution [2, 15].
Then we can formally write the semi-discrete in time dis-
cretization of (1):

Let N ∈, INτ = T
N and σ > 0 be fixed numbers, I 0 be a

given image and u0 be a given initial segmentation function.
Then, for n = 1, . . . N, we look for a function un, solution
of the equation

1

|∇un−1|
un − un−1

τ
= ∇.

(
g0 ∇un

|∇un−1|
)

. (11)

Since the denominators of (11) can vanish, we will regu-
larize them in the sense of Evans and Spruck [12]. Presize
formulation of the regularization and properties of such so-
lutions will be given bellow in a description of fully discrete
scheme.

In the segmentation tasks, a discrete image is usually
given on a rectangular structure of pixels. For such discrete
image, as the input of the segmentation method based on
(1) we have to compute at the beginning the parameter g0.
The input g0 represents the Perona-Malik function applied
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to (smoothed) gradient of the discrete image intensity. More-
over, at every discrete time step of the method (11) we have
to evaluate |∇un−1|, the absolute value of the solution gra-
dient at the previous time level. Since in both cases we work
with the gradient of the image I 0 and with the gradient of
the solution un−1, it is reasonable to put a triangulation onto
the image domain and then evaluate the gradients of their
piecewise linear representations on the triangulation. Such
approach gives constant values for the computed quantities
per triangles and thus it allows very simple construction of
linear systems to be solved. It is a key feature of the comple-
mentary volume [13, 27] and finite element (see e.g. [9–11]
methods for solving mean curvature flow problems. Since
the model contains an image information given by g0, we
use a specific triangulation respecting the pixel structure of
the image (solid lines in Fig. 1). The centers of pixels cor-
respond to the nodes of such triangulation. Then we con-
nect these nodes by a new rectangular mesh and further split
every new rectangle into two triangles (see dashed lines in
Fig. 1 representing our triangular grid). The computational
domain � in (1)–(3) is then the union of these triangles, i.e.,
the image domain minus outer half of every boundary pixel.
Of course, if one wants to segment only a part of the image
where the object to be segmented is located, the triagulation
is constructed only in a corresponding smaller part of the
image domain. Let us also note that it is not necessary to
consider only one orientation of triangles as in Fig. 1. From
practical point of view, we have good experience with an
averaging of computational results using both triangle ori-
entations.

In complementary volume method, together with a trian-
gulation T h (given, e.g., by the previous construction) also
the so-called dual mesh is used [27]. The dual mesh con-
sists of cells Vi (called also complentary volumes, control
volumes or co-volumes) associated with the i th inner node,
i = 1, . . . , M , of triangulation Th (we exclude boundary
nodes for which zero value is prescribed due to Dirichlet
boundary condition). The co-volume Vi is bounded by the
lines that bisect and are perpendicular to the edges emanat-
ing from the node. Let us note, that in our case the dual mesh
again corresponds to the pixel structure of the image, it cov-
ers all pixels besides the boundary ones.

We will denote the edge of Th connecting the i th node to
the j th by σi j and its length by hi j . We denote by Ei j the set
of simplices having σi j as an edge, i.e., Ei j = {T ∈ Th |σi j ⊂
T }. Let ei j denote the co-edge that is perpendicular bisector
of σi j . For each T ∈ Ei j let cT

i j be the length of the portion

of ei j that is in T , i.e., cT
i j = |ei j ∩ T |. For each node of Th

let Ci denote the set of nodes connected to the i th node by
an edge.

Given a triangulation Th , we define the set Vh of con-
tinuous piecewise linear functions fulfilling (2), i.e., Vh =
Vh(Th) := {v ∈ C0(�̄)|v|T ∈ P1 for all T ∈ Th, v|∂� = 0}.
Then |∇uh |, uh ∈ Vh has a constant value on every trian-
gle T ⊂ Th . We will denote that value by |∇uT |. For any
uh ∈ Vh we will use notation ui := uh(xi ) where xi is i th
node of triangulation. Let Ni be the set of simplices that have

Fig. 1 The image pixels (solid lines) corresponding to the dual mesh
for complementary volume method. Triangulation (dashed lines) for
the complementary volume method with nodes (round points) corre-
sponding to centers of pixels

the i th node as a vertex. Let u0
h = Ih(u0) ∈ Vh be the nodal

interpolant of u0. Let ε > 0. For any uh ∈ Vh we define

|∇uh |ε =
√

ε2 + |∇uh |2 (12)

and then for any T ⊂ Th

|∇uT |ε =
√

ε2 + |∇uT |2. (13)

With these notations we are ready to derive the fully dis-
crete complementary volume spatial discretization and to
state some of its properties. First we integrate (11) over a
co-volume Vi , i = 1, . . . , M ,
∫

Vi

un − un−1

|∇un−1|τ dx =
∫

Vi

∇.

(
g0 ∇un

|∇un−1|
)

dx, (14)

and then for the right hand side we use the divergence theo-
rem to get

∫
Vi

∇.

(
g0 ∇un

|∇un−1|
)

dx =
∑
j∈Ci

∫
ei j

g0

|∇un−1|
∂un

∂ν
ds. (15)

If un
h ∈ Vh and I σ

h (approximation of I σ ≡ Gσ ∗ I 0) are con-
tinuous piecewise linear functions on triangulation Th then
we can continue by

∑
j∈Ci

∫
ei j

g0∣∣∇un−1
h

∣∣
∂un

h

∂ν
ds

=
∑
j∈Ci


 ∑

T ∈Ei j

cT
i j

g(|∇ I σ
T |)∣∣∇un−1

T

∣∣

 un

j − un
i

hi j
. (16)
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Using the approach of [27], the left hand side of (14) is ap-
proximated by the term

|Vi |
(
un

i − un−1
i

)
τ
∣∣∇un−1

i

∣∣ (17)

where |∇un−1
i | denotes an approximation of the gradient of

un−1 in the co-volume Vi for which the weighted average is
chosen, i.e. for any uh ∈ Vh we define

|∇ui | =
∑

T ∈Ni

|T ∩ Vi |
|Vi | |∇uT | (18)

and the regularization is given by

|∇ui |ε =
∑

T ∈Ni

|T ∩ Vi |
|Vi | |∇uT |ε. (19)

Then we define coefficients

bn−1
i = |Vi |

|∇un−1
i |ε

, (20)

an−1
i j = 1

hi j

∑
T ∈Ei j

cT
i j

g(|∇ I σ
T |)∣∣∇un−1

T

∣∣
ε

. (21)

The coefficient (21) includes evaluation of |∇ I σ
T |. For that

goal, before the first time step, we use a strategy which is
natural for the complementary volume method (see also [3]).
Using the Gauss function (fundamental solution of the heat
equation) as smoothing kernel Gσ one can replace the term
Gσ ∗ I 0 by solving the linear heat equation for time σ with
initial datum given by I 0. This linear equation is solved nu-
merically at the same grid by just one implicit time step.
Thus we look for a function I σ which is solution of

I σ − I 0

σ
= 	I σ (22)

where 	 denotes Laplace operator. The discrete piecewise
linear approximation I σ

h on triangulation Th , is found by the
same approach as given in (14)–(17) applied to Eq. (22) with
zero Neumann conditions at the boundary of image domain.
On one side, the convolution with smoothing kernel repre-
sents a preliminary smoothing of the data. On the other hand,
it is a theoretical tool to have bounded gradients and thus
a strictly positive weighting coefficient g0. In practice, the
evaluation of gradients on discrete grid (e.g., on triagulation
described above) gives always bounded values. So one can
also avoid (22) if no preliminary denoising is needed and
work directly with I 0

h and with values |∇ I 0
T | in (21). Us-

ing (16) and (17) together with definitions (20), (21) we can
write the scheme.

Linear semi-implicit fully discrete complementary vol-
ume scheme for solving Eq. (1):
For n = 1, . . . , N we look for un

i , i = 1, . . . , M, satisfying

bn−1
i

(
un

i − un−1
i

) + τ
∑
j∈Ci

an−1
i j

(
un

i − un
j

) = 0. (23)

The solution (un
1, . . . , un

M ) to the linear system (23) will be
denoted by uε,n

h . We have the following assertion for uε,n
h

and also for a generalized solution of the scheme, i.e. for a
limit of uε,n

h when ε → 0. For uh ∈ Vh let ‖∇uh‖L1,g(�) =∫
�

g0
h |∇uh |dx , g0

h = g(|∇ I σ
h |) denote the weighted L1

norm of the gradient.

Theorem. There exists unique solution uε,n
h = (un

1, . . . , un
M )

of the scheme (23) for any ε > 0, n = 1, . . . , N. Moreover,
there exists a generalized solution of the scheme, i.e. a limit
un

h of a subsequence of uε,n
h for ε → 0 for which following

stability estimates hold∥∥un
h

∥∥
L∞(�)

≤ ‖u0
h‖L∞(�),∥∥∇un

h

∥∥
L1,g(�)

≤ ‖∇u0
h‖L1,g(�), 1 ≤ n ≤ N . (24)

Proof. The scheme (23) gives the linear system with a sym-
metric and diagonally dominant M-matrix which guarantee
its unique solution. Moreover, the positiveness of the diag-
onal and negativeness of the off-diagonal coefficients imply
fulfilling of the discrete minimum-maximum principle for
the scheme (23) which gives for any ε > 0∥∥uε,n

h

∥∥
L∞(�)

≤ ∥∥u0
h

∥∥
L∞(�)

, 1 ≤ n ≤ N . (25)

Since estimate (25) is independent on ε we can choose
convergent subsequence of uε,n

h as ε → 0. The limit un
h ∈ Vh

of this subsequence then clearly fulfills the first estimate of
the Theorem.

If we multiply (23) by un
i − un−1

i and sum it over all
nodes, we get

M∑
i=1

bn−1
i

(
un

i − un−1
i

)2

τ

+
M∑

i=1

∑
j∈Ci

an−1
i j

(
un

i − un
j

)(
un

i − un−1
i

) = 0. (26)

If Th is a two-dimensional mesh having triagles with in-
terior angles not exceeding π/2 and if u, v ∈ Vh , and w is
piecewise constant on Th , then

∫
�

w∇u.∇vdx =
M∑

i=1

( ∑
j∈Ci

αi j (w)(ui − u j )

)
vi , (27)

where αi j (w) = 1
hi j

∑
T ∈Ei j

wT cT
i j , wT denotes value of w in

T ∈ Th and M is number of nodes in triangulation Th (see
e.g. [27]). Since vi is zero for boundary nodes, we can re-
place M by M and using definition of an−1

i j we obtain

M∑
i=1

bn−1
i

(
un

i − un−1
i

)2

τ

+
∫

�

g0
h

∇uε,n
h .∇(

uε,n
h − un−1

h

)
|∇un−1

h |ε
dx = 0. (28)
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Then the second term is equal to
∫

�

g0
h

∇uε,n
h .∇(

uε,n
h − un−1

h

)
|∇un−1

h |ε
dx = 1

2

∫
�

g0
h

∣∣∇uε,n
h

∣∣2 − ∣∣∇un−1
h

∣∣2 + ∣∣∇uε,n
h − ∇un−1

h

∣∣2

∣∣∇un−1
h

∣∣
ε

dx

and∣∣∇uε,n
h − ∇un−1

h

∣∣2

= (
∣∣∇uε,n

h

∣∣ − ∣∣∇un−1
h

∣∣
ε
)2

+
(

2 − 2∇uε,n
h · ∇un−1

h∣∣∇uε,n
h

∣∣∣∣∇un−1
h

∣∣
ε

) ∣∣∇uε,n
h

∣∣∣∣∇un−1
h

∣∣
ε
− ε2.

If we denote ∇εv = (vx , vy, ε), and ∇0v = (vx , vy, 0),
where vx , vy denote partial derivatives of a function v, we
get from (28)

M∑
i=1

bn−1
i

(un
i − un−1

i )2

τ

+
∫

�

g0
h

(
∣∣∇uε,n

h

∣∣ − (∣∣∇un−1
h

∣∣
ε

)2

∣∣∇un−1
h

∣∣
ε

dx

+1

2

∫
�

g0
h

∣∣∣∣∣
∇0uε,n

h∣∣∇0uε,n
h

∣∣ − ∇εun−1
h∣∣∇εun−1
h

∣∣
∣∣∣∣∣
2 ∣∣∇uε,n

h

∣∣dx

+1

2

∫
�

g0
h

∣∣∇uε,n
h

∣∣2 − ∣∣∇un−1
h

∣∣2
ε
− (

∣∣∇uε,n
h

∣∣ − ∣∣∇un−1
h

∣∣
ε
)2∣∣∇un−1

h

∣∣
ε

dx

= 0.

Due to positiveness of the first three terms we have

1

2

∫
�

g0
h

2
∣∣∇uε,n

h

∣∣∣∣∇un−1
h

∣∣
ε
− 2

∣∣∇un−1
h

∣∣2
ε∣∣∇un−1

h

∣∣
ε

dx ≤ 0

which imply that∫
�

g0
h

∣∣∇uε,n
h

∣∣dx ≤
∫

�

g0
h

∣∣∇un−1
h

∣∣
ε
dx

=
∫

�

g0
h

√∣∣∇un−1
h

∣∣2 + ε2dx

≤
∫

�

g0
h

∣∣∇un−1
h

∣∣ dx + ε

∫
�

g0
h dx

≤
∫

�

g0
h

∣∣∇un−1
h

∣∣dx + ε|�| (29)

hold for any ε > 0. Let uε,n
h be the subsequence con-

verging to un
h as ε → 0 and the corresponding vector be

un
h = (un

h,1, un
h,2, . . . , un

h,M ). Then there exists a subse-
quence of the previous one for which |∇uε,n

T | → |∇un
T |,

∀T ∈ Th as ε → 0 and so ‖∇uε,n
h ‖L1,g(�) → ‖∇un

h‖L1,g(�)

for ε → 0. From (29) then follows the second estimate of
the Theorem.

Remark. In [27], Walkington used the following ”implicit”
nonlinear semi-discretization in time

1

|∇un| + |∇un−1|
un − un−1

τ
−∇.

( ∇un

|∇un| + |∇un−1|
)

= 0

(30)

for the mean curvature flow in the level set formulation.
There, the averaging of gradient term from previous and cur-
rent time step is considred in denominators. Such scheme
after co-volume spatial discretization leads to L∞ and W 1,1

estimates as proven in [27]; our work has been inspired by
that paper. Similarly to the mean curvature motion, for the
equation (1) a decay of weighted total variation is the basic
property. To see it, one can multiply the equation by a test
function v, integrate it over �, then take v = ut and use
d
dt |∇u| = ∇u

|∇u|∇ut . One gets

∫
�

(ut )
2

|∇u| dx + d

dt

∫
�

g0|∇u|dx = 0,

which means that the weighted L1 norm of the gradient is
decreasing in time. As pointed out in [27], the numerical ap-
proximations should also respect this fact. The ”implicit” ap-
proach by Walkington would give such property also for the
solution to equation (1), but such a scheme would yield non-
linear algebraic systems in discrete time steps. Newton’s like
methods have no guarantee to converge [27] and other pos-
sibilities like fixed point nonlinear iterations are very slow.
Our linear scheme seems to be optimal regarding stability
properties and efficiency of computations.

Remark. The statement (27) indicates the relation between
co-volume and (linear) finite element methods. In fact, for
the triangulation and the co-volumes considered here (see
Fig. 1) one can easily compare the methods. The finite el-
ement method with standard linear Lagrangean bases func-
tions gives the stiffness matrix exactly corresponding to the
second term of (23). Of course, the consistent finite element
mass matrix is nondiagonal, and not with five nonzero en-
tries in a row, but with seven. Using row-mass-lumping one
can diagonalize it and on the diagonal get expression with
the same structure as the first term of (23), but with

bn−1
i = |Vi | |∇un−1

i |ε

where

|∇ui |ε =
∑

T ∈Ni

|T ∩ Ti |
|Ti |

1

|∇uT |ε , Ti =
⋃

T ∈Ni

T .

It is clear that also such scheme fulfills our stability esti-
mates and it can be worth to apply the scheme also compu-
tationally.
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Fig. 2 Image with subjective contours (left) and initial state of the segmentation function (right).

Fig. 3 Level lines and 3D graph of the segmentation function after 10 time steps

Fig. 4 Level lines and 3D graph of the segmentation function after 50 time steps

3 Discussion on numerical results

This section is devoted to discussion on numerical experi-
ments computed by the semi-implicit complementary vol-
ume scheme (23). In the presented computations we have
chosen g(s) = 1

1+K s2 with constant K = 0.1, the regular-

ization parameter ε = 10−5 for the first experiment (Fig. 2
left) and ε = 10−2 for the second experiment (Fig. 8 left),
the convolution is omitted (i.e., we work directly with dis-
crete image I 0

h ), time step τ = 0.001 and the space step h

is given as 1
n1 , where n1, n2 are numbers of pixels in verti-

cal and horizontal directions. It means, we embed the image
into a rectangle [−0.5 n2

n1 , 0.5 n2
n1 ]×[−0.5, 0.5]. We start with

simple initial segmentation function given as a peak centered
at origin [23], as plotted in Figs. 2 and 8 right. In Figs. 2 and
8 left we present two testing images for which we want to
complete contours and close the missing boundaries (sub-
jective contours of the classic triangle of Kanizsa in the first
case, and inner and outer boundary of human left ventricle
in echocardiographic image in the second case).
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Fig. 5 Level lines and 3D graph of the segmentation function after 200 time steps

Fig. 6 Level lines and 3D graph of the segmentation function after 500 time steps

Fig. 7 Image together with extracted subjective contour

The phenomenon of contours that appear in the ab-
sence of physical gradients has aroused considerable interest
among psychologists and computer vision scientists. Psy-
chologists suggested a number of images that strongly re-
quires image completion to detect the objects. In Fig. 2,
the solid triangle in the center of the figure appears to have
well defined contours, even in completely homogeneous ar-
eas. Kanizsa called the contours without gradient ”subjective
contours” [14], because the missed boundaries are provided
by the visual system of the subject. We apply our algorithm

in order to extract the solid triangle and complete the bound-
aries.

For the first experiment we have given image with 234×
227 pixels. In the next subsequent figures we plot level lines
(in the left) and 3D graphs (in the right) of the evolving seg-
mentation function. The figures show the accumulation of
level lines to edges (with closing of missing parts by lin-
ear segments) and the shock formations in corresponding
3D graphs. In our approach, the segmentation is a piece-
wise constant approximation of the image. To achieve the
piecewise constant graph, an initial surface depending on
the point of view is evolved with a mean curvature flow with
respect to the Riemannian metric given by the image fea-
tures, cf. [22]. During the evolution, the initial surface is at-
tracted by the existing boundaries and steepens. The surface
evolves towards the piecewise constant solution by continu-
ation and closing of the boundary fragments and the filling in
the homogeneous regions. A solid object is delineated as a
constant surface bounded by existing and recovered shape
boundaries. The theoretical basis of the method has been
presented in [23] and its extension to 3D image completion
has been discussed in [24]. In Fig. 7 we plot the level line
closing the subjective contour (of the ”first level triangle”),
which is the final state of the segmentation. From compu-
tations also nicely developed boundary of the ”second level
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Fig. 8 Echocardiographic image (left) and initial state of the segmentation function (right)

Fig. 9 Level lines and 3D graph of the segmentation function after 50 time steps

Fig. 10 Level lines and 3D graph of the segmentation function after 500 time steps

triangle” can be observed for long period of time. The time
can be understood as a scale for a multiscale edge detection
process.

The second testing image is an in vivo acquired echocar-
diography of a left ventricle and we apply the segmentation
algorithm to extract endocardiac and epicardiac boundaries.
The dimension of the image is 117 × 117 pixels. In Fig. 11
we plot two level lines, one close to maximum of the seg-
mentation function, the second close to its minimum, which
show inner and outer ventricular boundary.

Concerning CPU times, one step of the semi-implicit
scheme takes about 0.25 sec for usual image sizes (256 ×
256) at standard Linux PCs (2.4GHz). We run computations
till the change in segmentation function is bellow certain
treshold. For two presented experiments 500 steps were
enough and we show results of this multiscale sequence.
However, practically same results one can get with even big-
ger time step (τ = 0.01) with only 50 semi-implicit steps.
Of course, one can use also explicit version of the co-volume
scheme (23) or some other explicit approach to solve (1).
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Fig. 11 Echocardiographic image together with extracted inner and
outer boundaries of the left ventricle

Then due to stability constrain, e.g., for our first image one
has to consider τ = 0.000001 which would lead to unre-
alistic number of steps to achieve multiscale segmentation
sequence. Although the explicit scheme does not solve any
system, for nonlinear problems as (1), the construction of
coefficients like (20)–(21) is necessary at every time step
which is time consuming itself. Thus the global CPU time
for such scheme is much bigger than for the semi-implicit
one.
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