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Abstract

Nowadays, 3D echocardiography is a well-known technique in medical diagnosis. Inexpensive echocardio-
graphic acquisition devices are applied to scan 2D slices rotated along a prescribed direction. Then the discrete
3D image information is given on a cylindrical grid. Usually, this original discrete image intensity function
is interpolated to a uniform rectangular grid and then numerical schemes for 3D image processing operations
(e.g. nonlinear smoothing) in the uniform rectangular geometry are used. However, due to the generally large
amount of noise present in echocardiographic images, the interpolation step can yield undesirable results. In
this paper, we avoid this step and suggest a 3D $nite volume method for image selective smoothing directly
in the cylindrical image geometry. Speci$cally, we study a semi-implicit 3D cylindrical $nite volume scheme
for solving a Perona-Malik-type nonlinear di7usion equation and apply the scheme to 3D cylindrical echocar-
diographic images. The L∞-stability and convergence of the scheme to the weak solution of the regularized
Perona-Malik equation is proved.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the end of the 1980s, nonlinear di7usion equations have been used for processing 2D and
3D images. After the pioneering work of Perona and Malik [17], who modi$ed the linear heat
equation [23,11] to a nonlinear di7usion equation, which preserves edges, there has been a great
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Fig. 1. The echocardiographic acquisition device.

deal of interest in the application and analysis of such equations [1]. One of the most important
application is medical image processing.

For example, due to its noninvasive character and ability to view anatomical structures, 3D medical
ultrasound (e.g. echocardiography) has become an important modality in diagnosis, assessment and
management of a large number of diseases. Nevertheless, ultrasound imaging su7ers from limitations
that prevent its full potentiality. The inexpensive echocardiographic real-time acquisition devices now
in common clinical use yield images with poor resolution and a large amount of noise [5,7]. Using a
nonlinear di7usion equation of Perona-Malik-type [17] is computationally challenging. Our approach
uses the structure of 2D slices acquired along nonaligned rotating planes by the echocardiographic
acquisition device (see Figs. 1 and 2). We avoid the interpolation of very noisy data to obtain
a regular cartesian lattice [2] and carry out image selective smoothing in the given discrete 3D
cylindrical structure. Let us note that also more general 4D (3D+time) echocardiographic image
anisotropic $ltering [19] and 3D/4D segmentation models [14] can be realized in cylindrical geometry
using ideas of this paper, allowing computational time gain, more detailed surface rendering and 3D
volume analysis/display. This will be discussed in forthcoming work.

In this paper, we consider the following Perona-Malik-type nonlinear PDE [3] suggested by CattIe
et al. for image selective smoothing

ut −∇:(g(|∇G� ∗ u|)∇u) = 0: (1)

Here, u(t; x) is an unknown function de$ned in QT ≡ [0; T ] × �, where I = [0; T ] is the so-called
scaling interval and � is a cylindrical domain. Any horizontal cut of � is shown in Fig. 3. Due to
the natural image processing constraint to conserve a mass of the image intensity [20], Eq. (1) is
accompanied by zero Neumann boundary condition

9u
9� = 0 on I × 9�; (2)

where � is the unit normal vector to the boundary of �. The initial condition

u(0; x) = u0(x) in � (3)
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Fig. 2. A schematic picture of acquisition; original rotational data information given in discrete cuttings of cone is in
every rotating plane just supplemented by black color to have rotating rectangular 2D slices which give together discrete
3D cylindrical geometry.

Fig. 3. The horizontal cut of $nite volume cylindrical grid.
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is given by the available contamined image u0. We assume that

g : R+
0 → R+ is a nonincreasing function; g(

√
s) is smooth; (4)

g(0) = 1; and g(s) → 0 as s→ ∞;

G� ∈C∞(Rd) is a smoothing kernel; e:g:; the Gauss function; (5)

G�(x) → �x as �→ 0; �x is the Dirac function at the point x;

u0 ∈L∞(�); (6)

and

∇G� ∗ u=
∫
Rd

∇G�(x − �)ũ(�) d�; (7)

where ũ is an extension of u by 0 from � to R3.
Eq. (1) represents a modi$cation of the original Perona-Malik model [17,10]

ut −∇:(g(|∇u|)∇u) = 0; (8)

also called anisotropic di9usion in the computer vision community. Perona and Malik introduced
Eq. (8) in the context of image smoothing and edge enhancement. The equation selectively di7uses
the image in the regions where the signal has small variance in intensity, but not in regions where
the signal changes its intensity. This di7usion process is governed by the shape of the di7usion
coeNcient given by the function g in (4) and by its dependence on ∇u, which is understood as
an edge indicator [17]. Since g → 0 for large gradients, the di7usion is strongly slowed down at
edges, while away from edges it provides averaging of pixel intensities as in the linear case. For
practical choices of g (e.g. g(s)=1=(1+ s2); g(s)=e−s2), the original Perona-Malik equation behaves
locally like the backward heat equation. Thus, in spite of its nonnegative di7usivity, the Perona-Malik
model exhibits simultaneously forward and backward di7usion areas. As a consequence, the classical
theory of existence and uniqueness does not apply anymore, and it seems to be unlikely that there
exists a unique smooth solution [3,10]. Nevertheless, because of its visually impressive results, the
Perona-Malik idea has triggered numerous modi$cations. By means of temporal or spatial regulari-
zation, nonlinear di7usion $lters were proposed which are more robust against noise [3,4,15,21,22].
The nonlinear $lter of CattIe et al. in [3] is a well-investigate representative. These authors replace
the di7usivity g(|∇u|) of the Perona-Malik model by g(|∇u�|) with u� := G� ∗ u and established
existence, uniqueness and regularity of the solution for �¿ 0. Further improvements were achieved
by anisotropic di7usion models which smooth preferently along edges. This may be accomplished
by using a di7usion tensor instead of a scalar di7usivity or by convolving the image with anisotropic
Gaussian [4,15,21,22].

In Section 2 we introduce semi-implicit $nite volume scheme for solving regularized Perona-Malik
equation (1) in 3D cylindrical geometry and prove its convergence to the weak solution of the
problem. In Section 3 we present numerical experiments computed by the scheme especially in the
case of 3D echocardiography.
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2. The numerical method

Assume that there are l rotating 2D slices with m× n discrete points, where m is the horizontal
and n the vertical dimension, respectively. Usually m is even, i.e., the slices do not have common
intersecting discrete point. We embed this discrete structure into the $nite volume mesh in such
a way that every discrete point is a representative inner “central” point of 3D $nite volume. A
horizontal cut of such a mesh is depicted in Fig. 3 for l= 4 and m= 10. In the $gure, the circular
points represent the acquisition nodes, while dashed lines give the structure of our $nite volumes
around these points. In Fig. 3 one can also see a dual grid given by solid lines which connect the
representative points of the $nite volumes.

Let Th be such a $nite volume mesh of �. For every pair (p; q)∈T2
h with p �= q, we denote

their common interface by epq, i.e., epq = Qp∩ Qq, which is supposed to be included in a hypersurface
of R3 not intersecting either p or q. In our case, a horizontal cut of epq is either a straight line or
an arc. Let m(epq) denote the measure of epq, and npq(x) the unit vector normal to epq at the point
x∈ epq oriented from p to q. We denote by E the set of pairs of adjacent control volumes, de$ned
by E = {(p; q)∈T2

h ; p �= q; m(epq) �= 0}. We also use the notation N (p) = {q; (p; q)∈E}. Let
xp; p∈Th denote the representative point of the $nite volume p, �pq the co-edge of the interface
epq, i.e., the part of the dual grid connecting xp and xq (this is again either a straight line or an arc)
and xpq the point of intersection of epq and �pq. Let �(p) denote the diameter of the control volume
p;m(p) the measure in R3 of the control volume p; 9p its boundary and let h=maxp∈Th�(p).
In order to derive a discrete $nite volume numerical method in cylindrical geometry, we start by

the semi-discretization in scale of the problem given by (1). Choosing N ∈N, we obtain the length
of the uniform discrete scale step k = T=N . We replace the scale derivative in (1) by a backward
di7erence. The value of the nonlinear term of the equation is from the previous scale level while the
linear terms are considered at the current scale level—this makes the method semi-implicit [9,8,20].
We obtain for every n= 1; : : : ; N the equation

un − un−1

k
−∇:(g(|∇G� ∗ un−1|)∇un) = 0 (9)

for the (unknown) function un, which approximates the image intensity at the nth discrete scale step
tn = nk.
Let us denote by Qunp the representative value of un for the 3D $nite volume p. In order to derive

a spatial discretization, we integrate (9) over a $nite volume p∫
p

un − un−1

k
dx =

∫
p
∇:(g(|∇G� ∗ un−1|)∇un) dx: (10)

Using the divergence theorem on the right-hand side, we obtain∫
p
∇:(g(|∇G� ∗ un−1|)∇un) dx

=
∫
9p
g(|∇G� ∗ un−1|) 9u

n

9� ds=
∑
q∈N (p)

∫
epq

g(|∇G� ∗ un−1|) 9u
n

9� ds:

Then, by means of Qup, we approximate the normal derivative along the boundary of p, namely
9un=9� ≈ ( Qunq− Qunp)=m(�pq) along epq. The value of the di7usion coeNcient along epq is approximated
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by its value at the point xpq. Since the dual grid and the boundary of $nite volumes contain curvilinear
parts, there is a di7erence between standard “polygonal” $nite volume method described in [6,13]
and the method presented in this paper. Our approach follows [16] - Section 4.6.2.
A linear semi-implicit fully discrete :nite volume scheme: For each n = 1; : : : ; N , we determine

Qunp; p∈Th, that satis$es

m(p)
k

Qunp +
∑
q∈N (p)

g�;n−1
pq

m(epq)
m(�pq)

( Qunp − Qunq) =
m(p)
k

Qun−1
p ; (11)

starting with a given discrete image

Qu0p =
1
m(p)

∫
p
u0(x) dx; p∈Th; (12)

which is understood to be a piecewise constant approximation of a continuous image intensity u0.
In (11),

g�;n−1
pq = g(|∇G� ∗ ũh; k(xpq; tn−1)|); (13)

where ũh; k is an extension by 0 outside of � of the piecewise constant function Quh;k de$ned as
follows

Quh;k(x; t) =
N∑
n=0

∑
p∈Th

Qunp�{x∈p}�{tn−1¡t6tn}; (14)

with the Boolean function

�{A} =

{
1 if A is true;

0 otherwise:

We now restrict our attention to the speci$c situation depicted in Fig. 3 and derive coeNcients
of the scheme for the 3D cylindrical case. De$ne indices i = 1; : : : ; n1; j = 1; : : : ; n2; k = 1; : : : ; n3
in radial, angular and vertical directions of the cylindrical coordinate system. In our case n1 =m=2,
n2 = 2l, n3 = n, and we de$ne h1 = 1=n1, h2 = 2$=n2, h3 = 1=n3. The measure of the $nite volume
p corresponding to the triple (i; j; k) is given by m(p) = mijk = ((2i − 1)=2)h21h2h3. Let Qunijk ,
for the moment, denote the corresponding value Qunp. We de$ne Wijk ; Eijk ; Sijk ; Nijk ; Bijk ; Tijk using
the transmission coeNcients g�;n−1

pq (m(epq)=m(�pq)) at the sides of the $nite volume p = (i; j; k);
i = 1; : : : ; n1; j = 1; : : : ; n2; k = 1; : : : ; n3 by

Wijk = g�;n−1
pq (i − 1)h2h3; q= (i − 1; j; k);

Eijk = g�;n−1
pq ih2h3; En1jk = 0;

Sijk = g�;n−1
pq

h3
2i−1
2 h2
; q= (i; j − 1; k);

Nijk = g�;n−1
pq

h3
2i−1
2 h2
; q= (i; j + 1; k);

Bijk = g�;n−1
pq

2i−1
2
h21h2
h3
; q= (i; j; k − 1);

Tijk = g�;n−1
pq

2i−1
2
h21h2
h3
; q= (i; j; k + 1):

(15)
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We also introduce diagonal coeNcients Cijk and right-hand sides Fijk

Cijk =
mijk
k +Wijk + Eijk + Sijk + Nijk + Bijk + Tijk ;

Fijk =
mijk
k Qun−1
ijk : (16)

Finally, with these de$nitions we can write one row of the linear system (11) in the form

Cijk Qunijk −Wijk Quni−1jk − Eijk Quni+1jk − Sijk Qunij−1k

−Nijk Qunij+1k − Bijk Qunijk−1 − Tijk Qunijk+1 = Fijk :

It is easy that L∞-stability property

min
p∈Th

Qu0p6 min
p∈Th

Qunp6max
p∈Th

Qunp6max
p∈Th

Qu0p; 16 n6N; (17)

can be shown. This property is important in image processing [20]. In order to show (17), we
express scheme (11) in the form

Qunp +
k
m(p)

∑
q∈N (p)

g�;n−1
pq

m(epq)
m(�pq)

( Qunp − Qunq ) = Qun−1
p : (18)

Let maxr∈Th Qunr be achieved at the node p. Then the second term on the left-hand side of (18)
is nonnegative and thus Qunp6 Qun−1

p 6maxr∈Th Qun−1
r , which gives the result for max. The relation

for min is derived in a similar way. The structure of (11) shows that the matrix of the system
is a symmetric, diagonally dominant M -matrix. Therefore, the system has a unique solution and
preconditioned iterative linear solvers [18] or additive operator splitting schemes [20] can be used
eNciently.

Remark. Using the Gauss function G� = G�(x) = 1
(2
√
$�)N e

−|x|2=4� as the smoothing kernel, one can

replace the term G� ∗ un−1 by solving the linear heat equation for time � with the initial condition
given by un−1. This linear equation can be solved numerically at the same 3D cylindrical grid by
one implicit step with length � (the only di7erence is that g�;n−1

pq ≡ 1 in all above coeNcients).
Using that result we evaluate approximately g�;n−1

pq in points xpq and use these values in (11).

2.1. De�nition. A weak solution of the regularized Perona-Malik problem (1)–(3) is a function
u∈L2(I; V ), where V is the Sobolev space H 1(�), satisfying the identity∫ T

0

∫
�
u
9’
9t (x; t) dx dt +

∫
�
u0(x)’(x; 0) dx −

∫ T

0

∫
�
g(|∇G� ∗ u|)∇u∇’ dx dt = 0 (19)

for all ’∈/, there / is the space of smooth test functions

/ = {’∈C2;1( Q� × [0; T ]);∇’:̃n= 0 on 9� × (0; T ); ’(·; T ) = 0}: (20)

2.2. Theorem. The sequence Quh;k given by scheme (11) converges strongly in L2(QT ) to the unique
weak solution u of (1)–(3) as h; k → 0.

Proof. We follow the convergence proof in [13] and outline only modi$cation required for the
cylindrical case. The structure of scheme (11) is the same as in [13]. Therefore, we get a priori
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estimates of the discrete solutions, which are fundamental for the convergence proof. Thus, there is
a positive constant C, independent of h and k, such that

(i) max06n6N
∑
p∈Th( Qu

n
p)

2m(p)6C,

(ii)
∑N
n=1 k

∑
(p;q)∈E

m(epq)
m(�pq)

( Qunp − Qunq)
26C.

Di7erently from [13], we do not work with polygonal but curvilinear $nite volumes. We must take
this fact into account. Let �∈Rd be a given vector. For all (p; q)∈E, let �pq(x)= �=|�|:npq(x). For
all x∈�� = {x∈�; [x; x + �]∈�}, we let the function E(x; p; q) be de$ned by

E(x; p; q) =




1 if the segment [x; x + �] intersects in a point ypq interface epq; p

and q; and �pq(ypq)¿ 0;

0 otherwise:

For any t ∈ (0; T ) there exists n∈N, such that (n − 1)k ¡ t6 nk. Then for almost all x∈��, we
can see that

Quh;k(x + �; t)− Quh;k(x; t) = Qunp(x+�) − Qunp(x) =
∑

(p;q)∈E
E(x; p; q)( Qunq − Qunp);

where p(x)∈Th and x∈p. By the Cauchy-Schwarz inequality, we obtain

( Quh;k(x + �; t)− Quh;k(x; t))2

6


 ∑

(p;q)∈E
E(x; p; q)�pq(xpq)m(�pq)





 ∑

(p;q)∈E
E(x; p; q)

( Qunq − Qunp)
2

�pq(xpq)m(�pq)


 : (21)

Geometrical arguments show that �pq(xpq)m(�pq) = �=|�|:npq(xpq)m(�pq) = c�=|�|:(xq − xp), where
c= 1 if �pq is a straight line and c= ($=n2)=sin( $n2 ) if �pq is an arc. Since we have always at least
two intersecting slices in the grid, n2¿ 4 and c6 $=2

√
2 = C. Then again by the Cauchy-Schwarz

inequality∑
(p;q)∈E

E(x; p; q)�pq(xpq)m(�pq)6C
�
|�| :(xp(x+�) − xp(x))6C|xp(x+�) − xp(x)|6C(2h+ |�|):

Now, we integrate relation (21) on �� × (0; T )∫
��×(0;T )

( Quh;k(x + �; t)− Quh;k(x; t))2 dx dt

6C(2h+ |�|)
N∑
n=1

k
∑

(p;q)∈E

( Qunq − Qunp)
2

�pq(xpq)m(�pq)

∫
��

E(x; p; q) dx; (22)

and again by the geometrical argument∫
��

E(x; p; q) dx6m(epq)�:npq(xpq) = m(epq)
�
|�| :npq(xpq)|�|= m(epq)|�|�pq(xpq);



K. Mikula, F. Sgallari / Journal of Computational and Applied Mathematics 161 (2003) 119–132 127

we obtain∫
��×(0;T )

( Quh;k(x + �; t)− Quh;k(x; t))2 dx dt

6C(2h+ |�|)|�|
N∑
n=1

k
∑

(p;q)∈E

m(epq)
m(�pq)

( Qunq − Qunp)
2: (23)

Finally, using the a priori estimate (ii) we $nd that for any vector �∈Rd there is a positive constant
C, such that∫

��×(0;T )
( Quh;k(x + �; t)− Quh;k(x; t))2 dx dt6C|�|(|�|+ 2h): (24)

Inequality (24) is called the space translate estimate in the $nite volume methods. In the same way
as in [13], we obtain the time translate estimate, i.e., there is a positive constant C, such that for
all s∈ (0; T ),∫

�×(0;T−s)
( Quh;k(x; t + s)− Quh;k(x; t))2 dx dt6Cs: (25)

Using extension by 0 of Quh;k outside � and the discrete trace inequality (see [6,13]), we can extend
(24) in the following way:∫

�×(0;T )
( Quh;k(x + �; t)− Quh;k(x; t))2 dx dt6C|�|: (26)

Estimates (26) and (25) are suNcient to use following well-known Kolmogorov’s relative compact-
ness criterion in L2(QT ) (see e.g. [12]):
The set K ⊂ L2(QT ) is relatively compact if and only if

(i) K is bounded, i.e., there exists a constant C¿ 0 such that ‖f‖6C for every f∈K ;
(ii) K is mean equicontinuous, i.e., for every 5¿ 0, there exists �¿ 0, such that∫

QT

(f(x + 6)− f(x))2 dx¡ 52

for each f∈K and 6 with |6|¡�.
Since ∫

QT

( Quh;k(x + �; t + s)− Quh;k(x; t))2 dx dt

6 2
∫
QT

( Quh;k(x + �; t + s)− Quh;k(x; t + s))2 dx dt + 2
∫
QT

( Quh;k(x; t + s)− Quh;k(x; t))2 dx dt

using a priori estimate (i) and estimates (26) and (25), by the Kolmogorov compactness criterion,
we have that there exists function u∈L2(QT ) such that for some subsequence of Quh;k

Quh;k → u in L2(QT ) as h; k → 0:
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Moreover, using (24) we $nd that this limit function is in L2(I; V ) [6]. Therefore, u is a good
candidate to be a weak solution of (1)–(3). To show that this is the case, let ’∈C∞

0 (QT ), 5¿ 0
and ’(x; t) = 0 if |x − 9�|¡5. Let 0¡ |�|¡5. Then by the Cauchy-Schwarz inequality∫

�×(0;T )

Quh;k(x + �; t)− Quh;k(x; t)
|�| ’(x; t) dx dt6

√
C|�|(|�|+ h)

|�| ‖’‖L2(QT ):

For the limit function u we have∫
�×(0;T )

u(x + �; t)− u(x; t)
|�| ’(x; t) dx dt6

√
C‖’‖L2(QT ):

On the other hand, by a changing of the variables y = x + �, we get∫
�×(0;T )

u(x + �; t)− u(x; t)
|�| ’(x; t) dx dt

=
∫
�×(0;T )

u(y; t)
|�| ’(y − �; t) dy dt −

∫
�×(0;T )

u(y; t)
|�| ’(y; t) dy dt

=−
∫
�×(0;T )

’(y; t)− ’(y − �; t)
|�| u(y; t) dy dt

6C‖’‖L2(QT ): (27)

Let �= !ei, where ei is ith coordinate vector, and let !→ 0. Then

−
∫
�×(0;T )

9’(x; t)
9xi

u(x; t) dx dt6C‖’‖L2(QT ); ∀’∈C∞
0 (QT ):

Thus u has generalized spatial derivatives in L2(QT ), so it is in L2(I; V ).
The last step is to prove that u ful$lls the weak identity (19) from De$nition 2.1, and thus it is a

weak solution of the regularized Perona-Malik problem. Since such a solution is unique due to [4],
not only a subsequence of Quh;k but the whole sequence will converge to u. To show convergence, we
follow discussion of [13], Section 3.3, with particular attention to only one step, which is di7erent
in cylindrical case. In [13, proof of Lemma 3.8], we should get an estimate

J =
∣∣∣∣’(xq; tn)− ’(xp; tn)m(�pq)

−∇’(xpq; tn):npq(xpq)
∣∣∣∣6Ch (28)

for any smooth function ’∈/. It is clearly true when �pq is a straight line, so we only consider
the case when �pq is an arc. Then∫

�pq

9’
9T ds= ’(xq)− ’(xp);

where T is the unit tangent vector to the curve �pq. By the mean-value theorem, there is a point
9∈ �pq, such that

∇’(9):T (9) = ’(xq; tn)− ’(xp; tn)
m(�pq)

:
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Fig. 4. Horizontal cut of arti$cially given noisy initial data (left) and its perfect reconstruction (right).

Since T (xpq) = npq(xpq), we have

J =
∣∣∣∣’(xq; tn)− ’(xp; tn)m(�pq)

−∇’(9):T (9) +∇’(9):T (9)−∇’(xpq):T (xpq)
∣∣∣∣

= |∇’(9):(T (9)− T (xpq)) + (∇’(9)−∇’(xpq)):T (xpq)|
6 |∇’(9)| |T (9)− T (xpq)|+ |∇’(9)−∇’(xpq)| |T (xpq)|6Ch

due to the smoothness of ’ and the fact that |T (9)− T (xpq)|6 $=h26Ch for any 9∈ �pq.

3. Numerical experiments

In the $rst experiment, we consider an arti$cial example, in which the double valued radially
symmetric intensity function is perturbed by additive noise. The initial noisy function and the result
after application of 100 scale steps of scheme (11) is shown in Fig. 4. The reconstructed image
perfectly corresponds to original data. We use the function

g(s) =
1

1 + Ks2
(29)

with K = 2.
Next we applied the method to real 3D cylindrical echocardiographic images given by 60 rotating

slices with 240 × 200 pixels. We have n1 = 120, n2 = 120 and n3 = 200. One can see in Fig. 5,
which displays a horizontal 2D cut of data in the center of cylinder (front view (left) and top view
(right)), how noisy the original data is. Fig. 6 shows results after 2 and 10 steps of the algorithm
with K=1. In order not to conserve undesirable edges (speckle noise) a smaller value of K , K=0:1,
is used for the di7usivity in the angular direction. Results are shown in Fig. 7 after the same number
of scale steps.
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Fig. 5. Horizontal cut of 3D cylindrical echocardiographic data, front view (left), top view (right).

Fig. 6. Smoothing of the data after 2 (left) and 10 (right) scale steps of the algorithm.

In Fig. 8 we show visualization of the ventricular volume using original noisy data (left) and
data after nonlinear smoothing by our algorithm (right). One can clearly see necessity of nonlinear
$ltering, to gain an understanding of the 3D ventricular shape.
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Fig. 7. Smoothing of the data after 2 (left) and 10 (right) scale steps of the algorithm with stronger di7usion in angular
direction.

Fig. 8. Ventricular boundary visualized before (left) and after (right) nonlinear image smoothing.
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