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Abstract. A new simple Lagrangian method with favorable stability and efficiency
properties for computing general plane curve evolutions is presented. The method
is based on the flowing finite volume discretization of the intrinsic partial differential
equation for updating the position vector of evolving family of plane curves. A curve
can be evolved in the normal direction by a combination of fourth order terms related
to the intrinsic Laplacian of the curvature, second order terms related to the curva-
ture, first order terms related to anisotropy and by a given external velocity field. The
evolution is numerically stabilized by an asymptotically uniform tangential redistri-
bution of grid points yielding the first order intrinsic advective terms in the governing
system of equations. By using a semi-implicit in time discretization it can be numer-
ically approximated by a solution to linear penta-diagonal systems of equations (in
presence of the fourth order terms) or tri-diagonal systems (in the case of the second
order terms). Various numerical experiments of plane curve evolutions, including, in
particular, nonlinear, anisotropic and regularized backward curvature flows, surface
diffusion and Willmore flows, are presented and discussed.
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1 Introduction

The main purpose of this paper is to propose a simple, fast and stable Lagrangian method
for computing evolution of closed smooth embedded plane curves driven by a normal
velocity of the form β(∂2

s k,k,ν,x) which may depend on the intrinsic Laplacian ∂2
s k of the
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curvature k, on the curvature k itself, on the tangential angle ν and the curve position
vector x. We shall restrict our attention to the following form of the normal velocity:

β=− δ ∂2
s k+b(k,ν)+F(x). (1.1)

Here δ≥ 0 is a constant and b = b(k,ν) is a smooth function satisfying b(0,.)= 0. If δ > 0
then there is no constraint on the monotonicity of b with respect to k. On the other hand,
if δ = 0, then we shall assume the function b is strictly increasing with respect to the
curvature.

There are many interesting evolutionary models in various applied fields of science,
technology and engineering that can be described by geometric Eq. (1.1). For example,
putting δ=0 we obtain the normal velocity β=b(k,ν)+F(x) representing the well-known
anisotropic mean curvature flow arising in the motion of material interfaces during so-
lidification and in affine invariant shape analysis (see e.g. [1, 9, 10, 15, 16, 22, 23, 32]). The
term F(x) represents an external driving force, like e.g., a given velocity field projected to
the normal vector of a curve, or any other constant or scalar function depending on the
current curve position. It drives the curve in the inner (if F(x)>0) or outer (if F(x)<0)
normal direction. In the case δ = 1 two well-known examples arise when studying a
motion of the so-called elastic curves. It is the surface diffusion, in the case b = 0, and
the Willmore flow where b =− 1

2 k3. The surface diffusion is often used in computational
fluid dynamics and material sciences, where the encompassing area of interface should
be preserved. The case when b=− 1

2k3 arises from the model of the Euler-Bernoulli elastic
rod – an important problem in structural mechanics [6, 11, 12]. The evolutionary models
having the normal velocity of the form (1.1) are often adopted in image segmentation
where elastic and geodesic curves are used in order to find image objects in an automatic
way [7,19,20,27,29]. By our method we are able to handle a regularized backward mean
curvature flow in which b is a decreasing function of the curvature k like e.g. b(k,ν)=−k.
We regularize the backward mean curvature flow by adding a small fourth order diffu-
sion term 0<δ≪1. To our knowledge, first experiments of this kind are presented in this
paper.

The main idea of our approach is based on accompanying the geometric equation (1.1)
by a stabilizing tangential velocity and in rewriting it into a form of intrinsic an partial dif-
ferential equation (PDE) for the curve position vector. The resulting PDE contains fourth,
second and first order spatial differential terms that are approximated by means of the
flowing finite volume method [25]. For time discretization we follow semi-implicit ap-
proach leading to a solution to a linear system of equations at each time level. That can be
done efficiently, and, due to tangential stabilization, we hope that this direct Lagrangian
method can be considered as an efficient counterpart to the well-known level-set based
methods for description of the curve evolution discussed in [13, 14, 17, 30, 31, 33].

The paper is organized as follows: in the next section we derive the intrinsic PDE for
description of a family of plane curves. Then we present our numerical approximation
scheme. Finally, we discuss various numerical experiments showing applicability of our
approach.
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2 Governing equations

An immersed regular plane curve Γ can be parameterized by a smooth function x:S1→R
2,

i.e. Γ={x(u),u∈S1} having a strictly positive local length term g= |∂ux|>0. Taking into
account periodic boundary conditions at u = 0,1 we can identify the circle S1 with the
interval [0,1]. The unit arc-length parameterization is denoted by s. Clearly, ds = gdu.
For the tangent vector we have ~T=∂sx and we can choose the unit inward normal vector
~N such that det(~T,~N) = 1. The tangential angle ν = arg(~T), ~T = (cosν,sinν)⊤ and ~N =
(−sinν,cosν)⊤.

Let a regular smooth initial curve Γ0 = Image(x0) = {x0(u),u ∈ [0,1]} be given. We
shall represent a family of plane curves Γt=Image (x(.,t))={x(u,t),u∈[0,1]} that evolves
according to the geometric Eq. (1.1) by its position vector x satisfying the following equa-
tion:

∂tx= β~N+α~T . (2.1)

It is well-known that the presence of any tangential velocity functional α in (2.1) has no
impact on the shape of evolving curves. However, it may help to redistribute points along
the curve. As a consequence, it can significantly stabilize numerical computations. The
reader is referred to papers [2, 3, 5, 8, 18, 21, 24–28, 34, 35] for detailed discussion on how
a suitable tangential stabilization can prevent a numerical solution from forming various
undesired singularities. We will specify our choice of a tangential velocity α later. Since

∂4
s x =∂3

s
~T =∂2

s (k~N)=∂2
s k~N+2∂sk∂s ~N+k∂2

s
~N =∂2

s k~N−2(∂sk)k~T−k∂s(k~T)

=∂2
s k~N−3k(∂sk)~T−k2∂s~T =∂2

s k~N−
3

2
∂s(k2)∂sx−k2∂2

s x,

we have

(−∂2
s k)~N =−∂4

s x−k2∂2
s x−

3

2
∂s(k2)∂sx. (2.2)

Let us define the following auxiliary functions:

φ(k,ν)=−δk2+c(k,ν), c(k,ν)=b(k,ν)/k (2.3)

and

v(k,ν)=
3

2
δ ∂s(k2)+∂sφ(k,ν)−α. (2.4)

Since the function b is assumed to be smooth and b(0,ν)=0 the function c(k,ν)=b(k,ν)/k
is smooth as well. Using the Frenet formulae we obtain b(k,ν)~N=c(k,ν)∂2

s x and φ(k,ν)∂2
s x=

∂s(φ(k,ν)∂s x)−∂sφ(k,ν) ∂sx. Hence, for the normal velocity β of the form (1.1) we end up
with the following higher-order intrinsic PDE for the position vector x= x(s,t):

∂tx+v(k,ν)∂s x=δ(−∂4
s x)+∂s(φ(k,ν)∂s x)+F(x)~N(ν). (2.5)

Numerical approximation of a solution x to the above PDE forms the basis of our direct
Lagrangian approach.
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It is known (see e.g. [25]) that a family of plane curves Γt=Image(x(.,t)),t∈[0,T), that
evolves according to (2.1) can be also represented by a solution to the following system
of intrinsic parabolic-ordinary differential equations:

∂tk=∂2
s β+α∂sk+k2β, (2.6)

∂tν=∂sβ+αk, (2.7)

∂tg=−gkβ+g∂s α. (2.8)

In [26–28] the system (2.6)-(2.8) was solved numerically for the curvature k, tangent angle
ν and the local length g. Knowing these quantities one can reconstruct the curve evolu-
tion. Asymptotically uniform redistributions for the second order flows with driving
force (see [26]) and for the fourth order flows (see [28]) were also proposed.

In this paper we follow a different approach when compared to [26, 28]. It is much
faster and simpler from computational point of view. We do not solve the system (2.6)-
(2.8), but the position vector Eq. (2.5) is directly numerically discretized. On the other
hand, from the analytical point of view, the system (2.6)-(2.8) describes evolution of use-
ful geometric quantities that can be utilized in designing proper tangential velocities for
stabilization of numerical computations. For example, in the case of convex curves, it
is sufficient to solve just Eq. (2.6) on the fixed parameter interval given by the range of
ν. Then no grid point redistribution is necessary [22, 23]. Eq. (2.7) was used recently in
designing the tangential velocities corresponding to the so-called crystalline curvature
flow, where ∂tν = 0 (c.f. [34, 35]). In [26] the authors proposed and analyzed a new type
of tangential redistribution referred to as the asymptotically uniform grid points redistribu-
tion. Here we follow a similar idea but adopt it in a rather different way. More precisely,
in order to compute the corresponding tangential velocity α (depending on the curva-
ture,tangential angle and local length) we use information from a solution to (2.5) only,
i.e. we do not solve the system (2.6)-(2.8).

We will see that such a simple and straightforward approach yields a stable, fast and
precise solution to our problem. The corresponding numerical scheme is efficiently sta-
bilized by an appropriate choice of the tangential velocity term α in (2.4). Let us note that
other known tangential velocities, like the one preserving relative local length [18,21,25],
locally diffusive redistribution [8, 27, 28], crystalline curvature redistribution [35] or cur-
vature adjusted redistribution [4, 34] can be also incorporated straightforwardly to the
numerical scheme by corresponding change of the term α entering Eq. (2.4).

Let us briefly outline the basic idea behind the asymptotically uniform grid points

redistribution. Let us denote by Lt =
∫

Γt ds =
∫ 1

0 g(u,t)du the length of an evolving curve
Γt. Integrating equation (2.8) along the curve and taking into account periodicity of α at
u=0,1 we obtain

dL

dt
+〈kβ〉Γ L=0, (2.9)

where 〈kβ〉Γ = 1
L

∫

Γ
kβds denotes the curve average of the quantity kβ over a curve Γ.
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When designing the tangential velocity α, it is worth to study the time evolution of
the quantity g/L. From a numerical point of view it corresponds to the local grid point
distances divided by the averaged local distance L/n, where n is the number of grid
points. We refer the reader to content of the next section for details. In that sense, it
represents a deviation of local grid point distances from being uniformly distributed.
Moreover, if we define the quantity θ = ln(g/L) and we take into account equations (2.8)
and (2.9) we conclude

∂tθ+kβ−〈kβ〉Γ =∂sα. (2.10)

From (2.10) we can observe that, by an appropriate choice of ∂sα, we can control behavior
of θ and, subsequently, of the ratio g/L also. Our choice of α is based on the following
particular setup (see [26])

∂sα= kβ−〈kβ〉Γ +
(

e−θ−1
)

ω(t) (2.11)

where ω∈L1
loc([0,Tmax)) and Tmax is the maximal existence time of evolving curve.

The most simple choice ω(t)≡0 yields ∂tθ =0. Hence

g(u,t)

Lt
=

g(u,0)

L0
for any u∈S1, t∈ [0,Tmax),

and we obtain the so-called tangential redistribution preserving the relative local length
(cf. [18, 21, 25]). On the other hand, assuming

∫ Tmax

0
ω(τ)dτ =+∞ (2.12)

then, by inserting (2.11) into (2.10) and solving the corresponding ordinary differential
equation ∂tθ =

(

e−θ−1
)

ω(t), we obtain θ(u,t)→0 as t→Tmax and hence

g(u,t)

Lt
→1 as t→Tmax uniformly w.r. to u∈ [0,1].

It means that redistribution of grid points along a curve becomes asymptotically uniform as
t approaches the maximal time of existence Tmax. In the case when the family {Γt,t∈[0,T)}
shrinks to a point as t → Tmax, in order to fulfill (2.12), one can choose ω(t) = κ2〈kβ〉Γt

where κ2>0 is a positive constant. By (2.9) we have
∫ t

0 ω(τ)dτ=−κ2

∫ t
0 lnLτdτ=κ2(lnL0−

lnLt)→+∞ as t→Tmax because limt→Tmax Lt = 0. On the other hand, if the length Lt is
always away from zero and Tmax =+∞ one can take ω(t)=κ1, where κ1 >0 is a positive
constant. Summarizing, a suitable choice of the tangential velocity functional α that helps
to redistribute grid points uniformly along the evolved curve (in any case of shrinking,
expanding or reaching an equilibrium curve shape) is given by a solution to the equation

∂sα= kβ−〈kβ〉Γ +(L/g−1)ω, ω =κ1+κ2〈kβ〉Γ , α(0,t)=0, (2.13)
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where κ1,κ2 ≥ 0,κ1+κ2 > 0, are given constants. In all computations to follow in Section
4, we choose κ2 =0 which is sufficient when the computations end up before an eventual
extinction of a curve. By the boundary condition imposed on α(0,t) we prescribe the
motion of the point x(0,t) in the normal direction only. Therefore, the tangential velocity
term α is determined uniquely.

It is worth to note that the speed of relaxation of the quantity θ=ln(g/L) is controlled
by the constant κ1>0. We typically take κ1=O(1) in all our computations. More precisely,
in experiments presented in section 4 we take κ1 ∈ [3,10]. This is due to the fact that
the speed of the tangential velocity α defined as in (2.13) is increasing with respect to
the parameter κ1. Therefore choosing considerably larger values of κ1 would make the
governing Eq. (2.5) strongly convective dominant which may yield a necessity of small
time steps in our numerical scheme.

3 Numerical approximation scheme

A family of plane curves that evolves according to (1.1) is numerically represented by

a family of ”flowing” discrete plane points x
j
i where the index i = 1,...,n, denotes space

discretization and the index j = 0,...,m, stands for a discrete time stepping. Assuming
a uniform division of the time interval [0,T] with a time step τ = T

m and a uniform di-
vision of the fixed parameterization interval [0,1] with a step h = 1/n, a discrete point

x
j
i corresponds to x(ih, jτ). Due to periodic boundary conditions and smoothness of the

evolved curve we have used the additional points defined by x
j
−1=x

j
n−1, x

j
0=x

j
n, x

j
n+1=x

j
1,

x
j
n+2 = x

j
2. The tangential velocity of a flowing node x

j
i is denoted by α

j
i .

The system of difference equations corresponding to (2.13) and (2.5) will be con-
structed at each discrete time step jτ by using the flowing finite volume method pro-

posed in [25]. First we solve (2.13) for the tangential velocities α
j
i and then Eq. (2.5) for

the position vectors x
j
i ,i =−1,...,n+2. Remaining quantities involved in (2.13) and (2.5),

as the curvature, tangential angle, local and total length of the curve are computed from
the curve position vector xj−1 from the previous time step j−1.

In order to build our numerical scheme we construct the so-called flowing finite volume

[x
j
i−1,x

j
i ] and also corresponding flowing dual volumes [x̃

j
i , x̃

j
i+1] where x̃

j
i =(x

j
i−1+x

j
i)/2.

Then the approximate local lengths of flowing finite volumes r
j
i , curvatures k

j
i and tan-

gential angles ν
j
i are given by piecewise constant values in the flowing finite volumes.

Similarly, the other quantities α
j
i , x

j
i and approximate lengths of dual volumes q

j
i are con-

sidered as piecewise constant in flowing dual volumes.

Let a discrete representation of the evolving curve be given at time level j−1 by dis-
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crete points x
j−1
i ,i=−1,...,n+2. At every new time level j we compute

r
j
i = |Ri|, Ri =(Ri1 ,Ri2)= x

j−1
i −x

j−1
i−1 , i=0,...,n+2, q

j
i =

1

2

(

r
j
i +r

j
i+1

)

,

k
j
i =

1

2r
j
i

sgn(det(Ri−1,Ri+1))arccos

(

Ri+1.Ri−1

r
j
i+1r

j
i−1

)

,i=1,...,n, k
j
0 = k

j
n, k

j
n+1 = k

j
1 ,

ν
j
0 = arccos(R01

/r
j
0), if R02 ≥0, ν

j
0 =2π−arccos(R01

/r
j
0), if R02 <0,

ν
j
i = ν

j
i−1+r

j
i k

j
i, i=1,...,n, ν

j
n+1 =ν

j
1+2π ,

β
j
i =

δ

r
j
i

(

k
j
i−k

j
i−1

q
j
i−1

−
k

j
i+1−k

j
i

q
j
i

)

+b(k
j
i ,ν

j
i )+

F(x
j−1
i )+F(x

j−1
i−1)

2
,i=1,...,n,

Lj =
n

∑
l=1

r
j
l , Bj =

1

Lj

n

∑
l=1

r
j
lk

j
l β

j
l .

In order to compute the tangential velocity α we integrate (2.13) over the time varying
flowing finite volume [xi−1,xi],

xi
∫

xi−1

∂sαds=

xi
∫

xi−1

kβ−〈kβ〉Γ +(L/g−1)ωds.

Hereafter we use the notation
xi
∫

xi−1

ψds for integral of the quantity ψ over the curve arc

x̂i−1,xi. Hence at any time level t we have the relation for approximation of the difference
αi−αi−1

αi−αi−1≈ ri(kiβi−〈kβ〉Γ)+(hL−ri)ω .

Taking into account discrete time stepping in the previous relation we obtain the follow-
ing expression for up-dated values of the tangential velocity at the j-th time level:

α
j
i =α

j
i−1+r

j
i(k

j
i β

j
i−Bj)+(hLj−r

j
i)ω, i=1,...,n, α

j
0 =0. (3.1)

After computing tangential velocities we update diffusion and advection terms using

φ
j
i =−δ(k

j
i)

2+c(k
j
i ,ν

j
i ), i=1,...,n+1,

v
j
i =

3δ

2

(k
j
i+1)

2−(k
j
i)

2

q
j
i

+
φ

j
i+1−φ

j
i

q
j
i

−α
j
i , i=1,...,n.
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In order to compute the curve position vector xj at a new time level we integrate (2.5)
over the time varying flowing dual volume [x̃i, x̃i+1],

x̃i+1
∫

x̃i

∂tx+v(k,ν)∂s xds=

x̃i+1
∫

x̃i

−δ∂4
s x+∂s(φ(k,ν)∂s x)+F(x)~N(ν)ds.

Notice that the advective term v(k,ν) contains the tangential velocity α and partial deriva-
tives of functions of k and ν. They can be approximated by constant difference quotients
in flowing dual volumes. Therefore we can write

qi
dxi

dt
+vi(x̃i+1− x̃i)=

[

−δ∂3
s x+φ(k,ν)∂s x

]x̃i+1

x̃i
+q

j
i F(xi)~N ((νi+νi+1)/2) . (3.2)

Denote by ∂k
s xi and ∂k

s x̃i the approximation of the k-th arc-length derivative ∂k
s x at points

xi and x̃i, respectively. The differences at points x̃i, x̃i+1 in the above boundary integral
terms are then naturally approximated by

φ(k,ν)∂s x̃i+1−φ(k,ν)∂s x̃i ≈φ
j
i+1

x
j
i+1−x

j
i

r
j
i+1

−φ
j
i

x
j
i−x

j
i−1

r
j
i

.

The third order terms appearing in the boundary integral in (3.2) can be approximated as
follows:

∂3
s x̃i+1−∂3

s x̃i≈
∂2

s xi+1−∂2
s xi

ri+1
−

∂2
s xi−∂2

s xi−1

ri

≈
1

ri+1

(

∂s x̃i+2−∂s x̃i+1

qi+1
−

∂s x̃i+1−∂s x̃i

qi

)

−
1

ri

(

∂s x̃i+1−∂s x̃i

qi
−

∂s x̃i−∂s x̃i−1

qi−1

)

≈

(

x
j
i+2−x

j
i+1

r
j
i+1q

j
i+1r

j
i+2

−
x

j
i+1−x

j
i

r
j
i+1q

j
i+1r

j
i+1

)

−

(

x
j
i+1−x

j
i

r
j
i+1q

j
ir

j
i+1

−
x

j
i−x

j
i−1

r
j
i+1q

j
ir

j
i

)

−

(

x
j
i+1−x

j
i

r
j
iq

j
ir

j
i+1

−
x

j
i−x

j
i−1

r
j
iq

j
ir

j
i

)

+

(

x
j
i−x

j
i−1

r
j
iq

j
i−1r

j
i

−
x

j
i−1−x

j
i−2

r
j
iq

j
i−1r

j
i−1

)

.

The left hand side of (3.2) is approximated by means of backward time differences and by
a central finite difference approximation of the advective term (up-wind technique can
be also easily incorporated). We obtain

qi
dxi

dt
+vi(x̃i+1− x̃i)≈q

j
i

x
j
i−x

j−1
i

τ
+v

j
i

x
j
i+1−x

j
i−1

2
.

Taking into account information from the previous time step j−1 in the driving term F~N,

multiplying the third order terms approximation by −δ and putting all unknowns x
j
l ,
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l = i−2,.. .,i+2 with their coefficients to the left hand side, we obtain a linear system of
equations for updating the discrete position vector xj of the evolved curve Γjτ :

A
j
i x

j
i−2+B

j
i x

j
i−1+C

j
i x

j
i +D

j
i x

j
i+1+E

j
i x

j
i+2 =F

j
i

for i=1,...,n, subject to periodic boundary conditions x
j
−1=x

j
n−1, x

j
0=x

j
n, x

j
n+1=x

j
1, x

j
n+2=

x
j
2 where

A
j
i =

δ

r
j
iq

j
i−1r

j
i−1

, E
j
i =

δ

r
j
i+1q

j
i+1r

j
i+2

,

B
j
i =−δ

(

1

r
j
iq

j
i−1r

j
i−1

+
1

(r
j
i)

2q
j
i−1

+
1

(r
j
i)

2q
j
i

+
1

r
j
iq

j
ir

j
i+1

)

−
φ

j
i

r
j
i

−
v

j
i

2
,

D
j
i =−δ

(

1

r
j
iq

j
ir

j
i+1

+
1

(r
j
i+1)

2q
j
i

+
1

(r
j
i+1)

2q
j
i+1

+
1

r
j
i+1q

j
i+1r

j
i+2

)

−
φ

j
i+1

r
j
i+1

+
v

j
i

2
,

C
j
i =

q
j
i

τ
−(A

j
i +B

j
i +D

j
i +E

j
i ),

F
j
i =

q
j
i

τ
x

j−1
i +q

j
i F(x

j−1
i )~N

(

ν
j
i +ν

j
i+1

2

)

.

The previous system is penta-diagonal if δ > 0 and tri-diagonal in the case δ = 0. In the
latter case when δ = 0, the monotonicity assumption on the function b guarantees the
strict diagonal dominance of the tri-diagonal system matrix. In both cases, it is solved
efficiently by means of the Gauss-Seidel iterative method or by its well-known succes-
sive over relaxation version SOR. We start the iterates from the previous time step vector
xj−1 and, in practice, when using our asymptotically uniform tangential redistribution
(AUTR), there are just few number of SOR iterations needed in order to achieve the solver
accuracy goal. The iterative process is stopped when a difference of subsequent iterates
in the maximum norm is less than the prescribed tolerance, e.g. TOL = 10−10. Based
on our practical experience, it should be also noted that the number of SOR iterations
(corresponding to well-conditioning of an iteration matrix) is strongly lowered by such
a proper choice of the tangential velocity. Consequently, it speeds up computations sig-
nificantly making thus our numerical scheme fast and efficient. Computational times are
reported in next section. In some examples of evolution of curves with high variation
in the curvature or in checking the experimental order of convergence (see e.g. Fig. 7 or
Tables 1 and 2) we typically use small time steps τ≈h2 or even τ≈h4 (in some nontrivial
cases of the fourth order flows). Nevertheless, taking larger time steps τ leads to satisfac-
tory numerical results as it can be seen from other experiments presented in this paper.
We observed neither occurrences of accumulation of grid points nor spurious numerical
oscillations.
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a)

b)

Figure 1: Affine invariant shrinking evolution of an initial ellipse (b = k1/3,δ= 0,F = 0); a) with asymptotically
uniform redistribution (κ1 =3); b) without redistribution. Numerical parameters n =100,τ=0.001. Time steps
j=0,200,··· ,1400 are plotted using lines and grid points, while time steps j=100,300,··· , up to j=1500 a); and
j=1100 b) are plotted using lines.

4 Discussion on numerical experiments

In the first numerical experiments we show a stabilizing effect of our scheme due to
asymptotically uniform tangential redistribution (AUTR) for the case of selfsimilar affine
invariant shrinking evolution of an initial ellipse with half-axes ratio 3:1 (Fig. 1a). When
the grid points are moving only in the normal direction, the numerical computation col-
lapses soon because of merging of grid points and spurious swallow-tails creation in the
left and right end of the ellipse (Fig. 1b). In Fig. 2 we present an anisotropic curve short-
ening evolution of an ellipse computed again with help of the asymptotically uniform
tangential redistribution. In all numerical experiments parameters of computations are
shown in figure captions.

Again starting from an initial ellipse with half-axes ratio 1:3 we numerically compute
its evolution by the surface diffusion. Fig. 3a shows the result with and Fig. 3b without
asymptotically uniform tangential redistribution (AUTR). In Tables 1 and 2 we show how
precisely the encompassed area is preserved (which is one of the analytical properties of
surface diffusion flow with δ =1 and b =0) during the evolution. The main observation
here is the fact that when using AUTR we obtain significantly lower error and the method
with AUTR has approximately the second order of accuracy which is not the case for
computations without AUTR. In these experiments we used coupling τ≈h2, cf. [9–11,27,
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Figure 2: Anisotropic shrinking evolution of an initial ellipse with AUTR; b =(1−0.9cos(4ν−π))k,δ=0,F =0.
Numerical and AUTR parameters: n = 100,τ = 0.001, κ1 = 3. Time steps j = 0,200,··· ,1400 are plotted using
lines and grid points, while time steps j=100,300,··· ,1500 are plotted using lines.

a) b)

Figure 3: Surface diffusion flow (δ=1,b=0,F=0) of an initial ellipse with a) and without tangential redistribution
b). Numerical and redistribution parameters: n = 100, τ = 0.001, κ1 = 10. Time steps j = 0,400,··· ,2000 are
plotted using lines and grid points, while time steps j=200,600,··· ,1800 are plotted using lines.

Table 1: An ellipse evolving by the surface diffusion using AUTR, same parameters as in Fig. 3a. We report
errors in area evolution, experimental order of convergence (EOC) in this quantity and computational time
(CPU) for refined discretization parameters.

n τ # of steps area error EOC CPU (sec)

25 0.016 125 0.0774 0.02
50 0.004 500 0.0202 1.93 0.43
100 0.001 2000 0.0052 1.89 2.94
200 0.00025 8000 0.0014 1.91 40.21
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Table 2: An ellipse evolving by the surface diffusion without tangential redistribution, same parameters as in
Fig. 3b. Same quantities as above are reported.

n τ # of steps area error EOC CPU (sec)

25 0.016 125 0.2922 0.11
50 0.004 500 0.1056 1.46 4.66
100 0.001 2000 0.0320 1.72 198
200 0.00025 8000 0.0155 1.04 1741

28], the exact area at any time moment is Ae =3π and the area error is computed as

‖ǫm
n ‖=

( m

∑
j=1

(Aj−Ae)
2 τ

)
1
2

, (4.1)

where Aj= 1
2 ∑

n
i=1det(x

j
i ,x

j
i−x

j
i−1) gives the encompassed area of the polygonal computed

curve at the j−th time step.

In Tables 1 and 2 we also report computational times achieved on a standard 2.2GHz
laptop. They justify why the method with AUTR is refereed to as a fast method. For stan-
dard curve resolutions, with 100 or 200 grid points, we get that one time step takes 0.0014
respectively 0.0050 second. Such fast CPU times are obtained due to tangential redistribu-
tion which not only stabilized the computations but also improve cyclic penta-diagonal
iteration matrix properties in the SOR iterative method (the relaxation parameter was set
to 1.6). Such CPU times are obtained also in further experiments presented in this sec-
tion. Of course, one has to multiply them by the number of time steps which may lead
to overall long computations when computing long time behaviors of curve evolutions
shown e.g. in Fig. 8.

The next set of experiments is focused on the backward mean curvature flow with
expanding constant force. The flow is regularized by various strengths of the Willmore
flow. Starting with an initial ellipse with half-axes ratio 3:1 we can observe that in the
case of a strong regularization the backward mean curvature flow is dominated by the
elastic relaxation due to the Willmore surface energy (see Fig. 4a). On the other hand,
if we decrease the fourth order regularization by taking smaller values of the parameter
δ>0, the nonconvex parts formed during evolution are attenuated (see Fig. 4b) and even
curve selfintersections may occur (see Figs. 5 and 6) as it can be expected in the backward
in time diffusion process.

In Fig. 5 we also show an important role of AUTR in such nontrivial experiments.
The asymptotically uniform tangential redistribution keeps very good curve resolution
even in cases of several subsequent curve selfintersections. On the other hand, if we
consider for example the well-known redistribution preserving the relative local length
[18, 21, 25], obtained by taking ω =0 in (2.11) and (3.1) then this method is not capable to
handle this situations properly. If we consider δ=0.01 the backward diffusion effects are
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a) b)

Figure 4: Backward mean curvature flow with negative external force regularized by the Willmore surface energy
(b=−k− 1

2 δk3,F=−1). a) a strong regularization effect with δ=1; b) a weak regularization δ=0.1. Numerical
and AUTR parameters: n=100, τ=0.001, κ1 =10. In subfigure a) the time steps j=0,400,··· ,2000 are plotted
using lines and grid points, while time steps j=200,600,··· ,1800 are plotted only with lines. In subfigure b) the
time steps j=0,200,··· ,1800 are plotted.

strongly dominating. In Fig. 6 we can observe very fast shape ”enrichment” soon after
even a nonconvexification of the evolving curve. It is worth to note that such experiments
would be impossible without incorporating the tangential stabilization into the direct
Lagrangian computational approach.

The last set of experiments is devoted to evolution of an initial spiral given by

x1(u)= acosb, x2(u)= asinb,

a=0.5 e−1− 1
2 sin(2πu)−0.025cos(2πu), b=10 arctan(1+0.5sin(2πu)),

plotted in Fig. 8d. Again the presence of the tangential redistribution (AUTR) has a sta-
bilizing effect on all numerical computations. Without redistribution a parametric ap-
proach collapses soon. The evolution by the mean curvature and surface diffusion is
shown in Fig. 7a and Fig. 7b. The backward curve diffusion regularized by a different
strength of the Willmore flow is presented in Fig. 8a-c.

5 Conclusions

A new direct Lagrangian method stabilized by a suitable tangential redistribution has
been presented for the case of general plane curve evolution models. An evolved curve
is driven in the normal direction by a combination of the fourth order terms related to the
intrinsic Laplacian of curvature, second order terms related to the curvature, first order
terms related to anisotropy and tangential redistribution and by a given external velocity
field. We showed how a proper choice of a tangential velocity can stabilize and speed up
computations. Nontrivial numerical experiments justified applicability and numerical
stability of the approximation scheme in the anisotropic mean curvature flow, surface
diffusion and the Willmore flow and even in the case of backward curve diffusion slightly



14

Figure 5: Comparison of continuation of the evolution from Figure 4 b) computed with AUTR (upper row) and
with redistribution preserving relative local length (bottom row), respectively. In both cases we show time steps
j=2000 (left) and j=2200 (right).

Figure 6: Regularized backward curvature driven flow with b=−k− 1
2 δk3,F=−1 and even weaker regularization

with δ=0.01. Redistribution parameter: κ1 =10 and numerical parameters: n=400,τ =0.0001, are used. Time
steps j=0,1000,2000,3000 are plotted.
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a) b)

Figure 7: a) mean curvature flow with b(k,ν)= k,δ=0,F=0; b) surface diffusion flow with b =0,δ=1,F=0 of

an initial spiral. Numerical and AUTR parameters: n = 100,κ1 = 10 and τ = 10−6 a) and τ = 10−10 b). Time

steps j∈{0,1,2,3,4,5,6,6.5}×104 a) and j∈{0,1,5,10,20,40,60,80,100}×104 b) are plotted.

regularized by the fourth order terms. Further study of the scheme from the numerical
analysis point of view as well as derivation of analytical quantities to which the numerical
results can be compared in the above mentioned models will be the objective of our future
research.
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