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Abstract. We present a method that can be used for designing truss struc-

tures representing either minimal surface shapes or general free-form shapes.
The structures are designed so that they meet some specific criteria concern-

ing their aesthetic properties and especially the lengths of the truss elements.

We explain a technique for tangential redistribution of points on evolving sur-
faces that allows to obtain equally sized truss elements in selected subsets

of the structure. This technique is applied to surfaces evolving by their mean

curvature yielding constructions that approximate minimal surface shapes. Af-
terwards, we show how to remesh static free-form surfaces.

1. Introduction. Truss structures have become an important element in modern
architecture. They appear either as stand-alone constructions or as a part of com-
bined structures such as thin-shell structures. Very often, their role is not purely
mechanical but they also contribute to the visual impression of the whole construc-
tion. Designing them requires meeting a number of criteria such as mechanical
stability, good aesthetic properties and optimal cost of manufacturing [16].

Algorithmic design of truss structures has become one of the most interesting
challenges of modern architecture. Some of the most used methods are force density
method [15] and its various extensions and modifications, surface stress density
method [5] or dynamic relaxation method [1].

Our paper proposes a novel method for triangular truss structure design that
provides results of a good aesthetic quality and, moreover, it allows to optimize
the manufacturing expenses. The main idea lies in viewing the truss structure as
a triangulation of a surface and using a surface remeshing technique. From the
manufacturing point of view, the main object of interest are the lengths of the
trusses. In order to minimize the costs, the construction should contain as many
equally sized truss elements as possible. Moreover, the designer should have the
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possibility to set the lengths of the trusses to minimize the amount of waste. Though
some related work has been done [10, 12], algorithms focused on the lengths of truss
elements are not numerous. Our method is based on the length-oriented tangential
redistribution of points on evolving surfaces in R3 [3, 6] that allows to control
distances between selected points on a surface as it evolves by a given vector field.
This is achieved by letting the points move along the surface by an appropriately
chosen tangential velocity field. After a simple adjustment, this technique can be
used also for remeshing of discretized surfaces that do not evolve.

Besides that, we show how we can obtain optimized truss structures representing
minimal surfaces given only the boundary curve of the construction. So far, there
are only a few algorithms able to produce structures that provably consistently
approximate minimal surfaces [2, 13]. In our work, we apply the mean curvature
flow model enriched with a tangential movement term. To our knowledge, this
procedure has not been previously applied to the problem of truss structure design.
The mean curvature flow equation is solved numerically by a finite volume scheme
that uses the cotangent discretization of the Laplace-Beltrami operator [4, 14]. The
tangential velocity is obtained by solving an ordinary differential equation that is
approximated by the finite difference approach.

Figure 1. Examples of truss structures. Left, a truss struc-
ture as a part of a free-form shell structure (The Great
Court of the British Museum, photo by Andrew Dunn,
http://www.andrewdunnphoto.com/). Right, a truss structure as
a stand-alone architectural element (Montréal Biosphère, photo by
Colocho, http://fr.wikipedia.org/wiki/Utilisateur:Colocho).

2. The truss structure design. From now on, we will consider only truss struc-
tures that can be viewed as a wireframe of a smooth surface Σ ⊂ R3. This is a com-
mon procedure in modern architecture – first, a smooth free-form shape is designed
and only afterwards its possible realization using truss and shell elements is sought.
Let Σ be obtained by an embedding S : M → R3, where M is a two-dimensional
Riemannian manifold with or without boundary. In the following sections, we show
how to deal with two types of situations.
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1. We are given a discretized surface – a discrete representation of a shape de-
signed by an architect. Our task is to adjust the mesh in order to meet some
specific criteria while keeping its original number of nodes and connectivity.
Though moving the node points will modify the wireframe, we want to keep
this error as small as possible – we are supposed to represent the same original
surface. In the continuous setting, such movement of points can be modelled
by the equation

∂tS = vT ,

where S is now considered to be a time dependent embedding, S : M ×
〈0, Ts〉 → R3, vT : M × 〈0, Ts〉 → TΣ is a vector field tangential to Σ (TΣ
represents the tangential space of Σ) and vT�∂M is tangential to ∂Σ.

2. We do not explicitly know the shape of the surface but we know it has to
satisfy some specific condition. The corresponding shape can be found as a
solution of an evolution equation of the form

∂tS = v,

where the smooth map v : M × 〈0, Ts〉 → R3 represents a general velocity in
R3. Our goal is to find the shape of the surface and an appropriate discrete
representation at the same time. Though it is possible to modify the mesh
once the evolution has finished, in practice it is often more convenient to
adjust the mesh on the run as thus we can also improve the quality of the
mesh with respect to our numerical method. In order to achieve this, we can
add a specifically designed tangential vector field to our evolution model, that
means we obtain a modified model,

∂tS = v + vT .

A typical example of surfaces that can be found by solving an evolution
equation are minimal surfaces. These are popular due to their interesting
shapes, practical properties (roofs that do not hold water) and minimization
of material consumption. Mathematically, minimal surfaces are surfaces of
zero mean curvature and thus can be obtained, for a given boundary curve
Γ = S(∂M), by solving the equation

∂tS = HN,

where H is the mean curvature of S and N is a unit normal to Σ. This
equation has to be accompanied by the boundary condition

∂tS = 0 on ∂M.

3. Tangential redistribution of points along curves on evolving surfaces.
We will now explain how to deal with the more general case of truss structure design,
that means the case when we design the shape of the construction by solving an
evolution equation. We will formulate all our results in a continuous setting and
afterwards we will show how to apply them to the discrete case.

Since our object of interest are the lengths of the truss elements, we want to be
able to control distances between selected points on the evolving surface. In the
continuous setting, we will focus on selected curves on the surface and redistribute
points along these curves in the course of the evolution.

We will extend the ideas of Mikula and Ševčovič [7, 8] and Mikula and Urbán
[9] concerning redistribution of points on a single evolving 2D or 3D curve. Let
δ : R ⊃ I → M be a smooth parametric curve on M . Push-forwarding δ along
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S, we obtain a smooth time dependent parametric curve γ : I × 〈0, Ts〉 → Σ. Its
evolution is governed by the same vector field as the evolution of S, that means

∂tγ = v.

If we want to achieve some specific distribution of points on the curve, we have to
add a velocity term w that is tangential to the curve and appropriately designed
according to our goal. Thus we have

∂tγ = v + w.

The overall velocity v + w can be decomposed in three orthogonal components,
namely

∂tγ = β1N1 + β2N2 + αT, (1)

where the vectors N1 and N2 are two orthogonal unit normals to γ and T is the
unit tangent vector to γ,

T =
∂uγ

‖∂uγ‖
= ∂sγ,

with s denoting the arc-length of γ and u ∈ I representing the parameter corre-
sponding to the parametric curve γ(·, t). The parameters β1, β2 : I × 〈0, Ts〉 → R
are the normal speeds and α : I × 〈0, Ts〉 → R is the tangential speed,

β1 = v ·N1,

β2 = v ·N2,

α = v · T + w · T.
The normal vectors can be chosen as, for example, N1 = N , N being a unit normal
to S, and N2 = T ×N1.

Equally sized line elements in a discrete representation of S can be easily obtained
once we have a uniform parametrization of γ. That means we want to achieve

l = c,

where l = ‖γu‖ is the length density of γ and c is a positive constant. A dimension-
less equivalent of this condition is

l

L
= c,

where L is the length of γ,

L =

∫
I

l du.

If we assume that the domain of γ is I = 〈0, 1〉, we get c = 1 and we can write the
condition for our evolution process as

lim
t→∞

l

L
= 1. (2)

This condition is satisfied if l
L is a solution of the equation

∂t

(
l

L

)
= 1− l

L
.

Since in applications it is convenient to be able to control the speed of redistribution,
we will use the equation enriched with the redistribution speed parameter ω : I ×
〈0, Ts〉 → R+,

∂t

(
l

L

)
= ω

(
1− l

L

)
. (3)
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In order to be able to extract some condition for the tangential speed α from (3), we
need to know how the length density and the global length evolve in the evolution
process given by (1). We can deduce [3]

∂tl = l∂sα− l(β1k1 + β2k2), (4)

∂tL = −
∫ L

0

(β1k1 + β2k2) ds− α(0, ·)− α(L, ·), (5)

where k1 and k2 are the projections of the curvature vector κ = ∂sT to the directions
ofN1 andN2 (k1 = κ·N1, k2 = κ·N2). Let us now suppose that α(0, ·) = α(L, ·) = 0;
this setting will be used in all experiments employing this type of redistribution.
Equations (3), (4) and (5) lead to a condition for the arc-length derivative of α

∂sα = β1k1 + β2k2 −
1

L

∫ L

0

(β1k1 + β2k2) ds+ ω

(
L

l
− 1

)
.

Now, α is actually the sum

α = αv + αw,

where αv represents the tangential movement induced by the given velocity v and
αw represents our intentional tangential redistribution. Therefore, the speed of our
redistribution will satisfy

∂sαw = −∂sαv + β1k1 + β2k2 −
1

L

∫ L

0

(β1k1 + β2k2) ds+ ω

(
L

l
− 1

)
. (6)

It is often not enough just to obtain a group of truss elements of the same length
but actually we want to set the length to some specific value. Therefore it can be
useful if we have the possibility to prescribe also the limit length of the curve γ,
L∞. In that case, since ∂tL∞ = 0, we get a more simple condition

∂sα = β1k1 + β2k2 + ω

(
L∞
l
− 1

)
and further

∂sαw = −∂sαv + β1k1 + β2k2 + ω

(
L∞
l
− 1

)
. (7)

In this case, we do not assume α(0, ·) = 0 or α(L, ·) = 0, so the whole curve can
stretch or shrink in the tangential direction. In the part devoted to results and
experiments, we will show how to take advantage of this possibility.

Being able to redistribute points on a single curve, we can apply our technique
to the truss structure design. The truss structure is a network of truss elements
that is much more complicated than a single discrete curve. One way to deal with
this situation is to identify a network of discrete curves in the structure and move
the node points along these curves. In the smooth setting, let us imagine a set of
smooth curves γk, k = 1 . . . nc on our surface. These curves can have intersections
but with the limitation that each node point must be the intersection point of
exactly two curves and the tangent vectors to the two intersecting curves must be
linearly independent. Networks with these properties can be usually found in truss
structures as their subsets. Restricting ourselves to a subset of our structure with
the given properties is usually not too limiting since, many times, it is anyway
impossible to impose some specific condition on all truss elements in the structure
(for example, it is generally not possible to require all trusses to have the same
length).
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Now, if we compute the tangential velocity wk for each curve γk, the question
is how to set the velocity at the intersection points. Let Pijt be an intersection
point of the curves γi(·, t) and γj(·, t), i.e. Pijt = S(Xij , t) = γi(zip, t) = γj(zjq, t),
Xij ∈ M . Let the tangential velocities at γi(zip, t) and γj(zjq, t) be wi(zip, t) =
αw,i(zip, t)Ti(zip, t) and wj(zjq, t) = αw,j(zjq, t)Tj(zjq, t). Then we set the surface
tangential velocity vT at Pijt to

vT (Xij , t) =
wi(zip, t) + wj(zjq, t)

2
(8)

Since Ti(zip, t) and Tj(zjq, t) are linearly independent, the left hand side of this
equation will be zero only if the tangential velocities corresponding to the intersect-
ing curves will be both zero. This will happen once all of the following conditions
are satisfied.

1. S is not evolving anymore, that means v = 0. For example, if v = HN , the
evolution stops when S is a minimal surface.

2. Both curves γi(·, t) and γj(·, t) are uniformly parametrized and, if we use (7),
they have the prescribed global length.

3. αw,i(0, t) = 0, αw,j(0, t) = 0, that means the curves are not stretching or
moving around the surface.

The equilibrium state of the whole system can be characterized analogously.

1. S is not evolving by the velocity field v, that means v = 0.
2. All curves γi(·, t) are uniformly parametrized and, if required, they have the

prescribed global length.
3. αw,i(0, t) = 0.

Remark 1. For the sake of correctness, let us remark that we have defined the
tangential velocity vT in the node points of the network and in the other points of
the curves γk, we take vT = wk. To make the velocity field smooth, we can apply,
for example, a mollifier. Also, we did not specify what the value of vT will be in
the points of the surface that do not belong to any of the curves. Since this does
not really matter once we apply our method to the discrete case, we can consider
an arbitrary smooth extension in our continuous formulation.

4. Constructions representing minimal surfaces. As we have already men-
tioned in Section 2, a minimal surface is defined as a surface of zero mean curvature
and as such it is the steady state of the evolution equation

∂tS = HN. (9)

Here we consider

H = κ1 + κ2,

where κ1 and κ2 are the principal curvatures of S. The equation (9) can be alter-
natively rewritten in terms of the Laplace-Beltrami operator

∂tS = ∆SS, (10)

where ∆SS represents the Laplace-Beltrami operator with respect to the metric gS
induced by the map S as the pull-back of the Euclidean metric in R3 along S. If
the equations (9) or (10) are applied to a closed surface, they lead to shrinking of
the surface and smoothing of its mean curvature function. If they are accompanied
by the boundary condition

∂tS = 0 on ∂M, (11)
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the evolution converges to a minimal surface corresponding to the prescribed bound-
ary curve Γ = S(∂M). This surface is generally not unique but it was proved, for
example, that if Γ is a regular analytic Jordan curve in R3 whose total curvature is
no more than 4π, then there is a unique minimal surface that has Γ as its boundary.
This surface is an embedded disk and it is area-minimizing [11]. Many constructions
have a boundary that satisfies this condition. Since we want to obtain a construction
with optimized truss lengths, we will use the mean curvature flow model enriched
with the tangential velocity term

∂tS = ∆SS + vT . (12)

We chose the version with the Laplace-Beltrami operator due to the discretization
method that we are going to use.

4.1. Time discretization. The time discretization is semi-implicit, since it allows
us to keep the favorable stability properties of the implicit approach while having
to solve only a linear system in each time step. The model (12) is approximated as

Sn − Sn−1

τ
= ∆Sn−1Sn + vn−1

T , (13)

where τ is the time discretization interval and the index n represents the n-th time
slice of a map. In case of the Laplace-Beltrami operator, the index Sn−1 indicates
that we consider the operator corresponding to the metric gSn−1 induced by the
map Sn−1.

4.2. Space discretization. The space discretization of (13) is based on a trian-
gular approximation of Σ. In order to obtain such an approximation, we consider
a triangulation of M – a simplicial complex homeomorphic to M . The correspond-
ing homeomorphism induces a triangular structure on M consisting of vertices Mi,
i = 1 . . . nv, edges ej , j = 1 . . . ne, and triangles Tk, k = 1 . . . nt; these elements are
obtained as the images of the 0,1 and 2-simplices, respectively. Now we apply the
finite volume approach. To this end, we decompose M into nv polygonal control
volumes Vi with the point Mi lying inside Vi. This decomposition is based on the
barycentric subdivision of the triangles Tp.

First, let Mi be an inner node of the triangulation (Figure 2). Then it is the
common vertex of m mesh triangles T1, . . . , Tm and m edges e1, . . . , em, where ep
connects Mi with its neighbor Mip (for simplicity, we temporarily use local index-
ing). The triangle Tp admits a barycentric coordinate system – each point of the
triangle can be expressed as P = λ1Mi+λ2Mip +λ3Mip+1

, where λ1 +λ2 +λ3 = 1.
Let Bp be the barycenter of Tp and Cp the center of ep, p = 1 . . .m, and let
the barycentric subdivision of Tp be constructed using these points. The control
volume Vi corresponding to Mi is then constructed as the union of the triangles
Vp,1 = MiCpBp and Vp,2 = MiBpCp+1 for p = 1 . . .m, where we set Cm+1 = C1.
Each triangle contains two control volume edges σp,1 = CpBp, σp,2 = BpCp+1.

The manifold M can be embedded in R3 in a way that respects its triangular
structure. Such an embedding S̄n will be a piecewise linear approximation of Sn.
To define it, we set S̄n(Mi) = Sn(Mi). Then, for any triangle Tp with vertices Mi,
Mip , Mip+1 , we set

S̄n(λ1Mi + λ2Mip + λ3Mip+1) = λ1S
n(Mi) + λ2S

n(Mip) + λ3S
n(Mip+1).

Defining S̄n in this way, Σ̄n = S̄n(M) is a polyhedron with vertices S̄n(Mi) =
Sn(Mi) = Sni , edges ēnj = S̄n(ej) and triangular faces T̄ np = S̄n(Tp). The embedding
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S̄n induces a metric gn on M which, in turn, induces a measure µn on M . We will
use the notation νnp,1, νnp,2 for the outward unit normals to S̄n(σp,1) and S̄n(σp,2)

in the plane of T̄ np . Further, θnp,1 and θnp,2 will denote the angles of Tp adjacent to
Mip and Mip+1

, respectively, measured in the metric gn.
If Mi is a boundary node with m neighboring mesh triangles, it has m + 1

neighboring edges e1, . . . , em+1 and the point Mi is one of the vertices of the control
volume Vi (Figure 3). However, the discretization of the Laplace-Beltrami operator
is not necessary in the boundary points due to the boundary condition. Actually,
we need only the area of the corresponding control volume.

Mi

MipMip+1

CpCp+1 Bp

e
p

e p
+
1

σp,
1

σ
p,2

S̄n(Mi)

νn
p,1

νn
p,2

T̄ n
p

θnp,1

θnp,2

Figure 2. The discretization mesh – a sample control volume cor-
responding to an inner node. Left, discretization of the abstract
manifold M . Right, discretization of the embedded surface Σn =
Sn(M).

Mi

Figure 3. The control volume corresponding to a boundary node.

Now, we integrate (13) over Vi with respect to the measure µSn−1 induced by
the metric gSn−1 . We get∫

Vi

Sn − Sn−1

τ
dµSn−1 =

∫
Vi

∆Sn−1Sn dµSn−1 +

∫
Vi

vn−1
T dµSn−1 . (14)

The time derivative term is simply approximated as∫
Vi

Sn − Sn−1

τ
dµSn−1 ≈ µn−1(Vi)

Sni − S
n−1
i

τ
. (15)

Next, we will explain the approximation of the two terms on the right hand side of
(14).
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4.2.1. Discretization of the Laplace-Beltrami operator. The Laplace-Beltrami oper-
ator is approximated by the cotangent scheme [4, 14]. Since it is a widely used
method, we will just sketch the first fundamental steps of the procedure.

First, we apply the divergence theorem to obtain∫
Vi

∆Sn−1Sn dµSn−1 =

∫
∂Vi

∇Sn−1Sn · νn−1
i dHµSn−1 ,

where νn−1
i represents the outward unit normal to Sn−1(∂Vi) and ∇Sn−1 is the

gradient corresponding to the metric gSn−1 . Now, we use the approximation Sn ≈
S̄n and hence∫

∂Vi

∇Sn−1Sn · νn−1
i dHµSn−1 ≈

m∑
p=1

∑
q=1,2

∫
σp,q

∇n−1 S̄
n · νn−1

p,q dHµn−1 .

Here, ∇n−1 denotes the gradient corresponding to the metric gn−1. The fact that
the gradient of S̄n is constant on Tp implies that [4]∑
q=1,2

∫
σp,q

∇n−1S̄
n·νn−1

p,q dHµn−1 =
1

2

(
cot θn−1

p,2 (Snip − S
n
i ) + cot θn−1

p,1 (Snip+1
− Sni )

)
.

Finally, this leads to the approximation∫
Vi

∆Sn−1Sn dµn−1 ≈ 1

2

m∑
p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Sni − Snip), (16)

where θn−1
i,0,1 = θn−1

i,m,1. Now we included the full global indexing, since this approxi-
mation is directly used for composing the linear system representing the discretized
problem.

4.2.2. Discretization of the tangential velocity term. Let us suppose that we have
a set of discrete curves – polygonal lines – consisting of edges of the triangulated
surface Σ̄n. We will describe the procedure for one chosen polygonal line Γ̄, the
discretization of a smooth curve Γ ⊂ Σn, Γ = Im(γ), γ being a parametric curve,
γ : 〈0, 1〉 → Σn. The node points of Γ̄ will be denoted by Γj , j = 0 . . . np. We have
Γj = Snij = γ(uj) for some ij ∈ {1, . . . , nv}. Since Γ̄ is one-dimensional, its node

points can be ordered, for example, by the number of segments separating them
from a boundary point Γ0. Let us suppose that the index j respects this order.

The redistribution velocity w(uj) at Γj is computed as

w(uj) = αw(uj)T (uj). (17)

Now, T (uj) is approximated as

T (0) ≈ T0 =
Γ1 − Γ0

h0
,

T (uj) ≈ Tj =

Γj+1−Γj

hj
+

Γj−Γj−1

hj−1

2
, j = 1 . . . np − 1,

T (1) ≈ Tnp
=

Γnp
− Γnp−1

hnp−1
,

(18)

where

hj = ‖Γj+1 − Γj‖.
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The approximation αw,j of the tangential speed αw(uj) is obtained by discretizing
(6) or (7). We use

∂sαw(uj) ≈
αw,j+1 − αw,j

hj
(19)

and αw,0 = αw(0). The arc-length derivative ∂sαv can be approximated in the same
way, however, in this case we have αv = 0. Further, in order to discretize k1 and
k2, we need to approximate the curvature vector κ = ∂sT and the normal vectors
N1 and N2. Here, we use

κ(uj) ≈ κj =
Tj+1 − Tj
hj+hj−1

2

(20)

for j = 1 . . . np − 1. In the first and the last point, we can set

κ0 =
T1 − T0

h0
,

κnp
=

Tnp
− Tnp−1

hnp−1
,

if we need to approximate the curvature there. The normal vector N1 is set to be
equal to a unit normal N to the surface. The point Γj is the common vertex of m
triangular faces T̄ n1 , . . . , T̄ nm . If NT ,p is the outward unit normal to the p-th triangle,
then the outward unit normal to Σ at Γj is approximated as

N1(uj) ≈ N1,j =
1

m

m∑
p=1

NT ,p. (21)

Then we set
N2(uj) ≈ N2,j = Tj ×N1,j (22)

and
k1(uj) ≈ k1,j = κj ·N1,j ,
k2(uj) ≈ k2,j = κj ·N2,j .

(23)

The length L of Γ is approximated straightforwardly by the length of Γ̄,

L ≈ L̄ =

np−1∑
j=0

hj . (24)

From this follows the approximation of the average value of β̃ = β1k1 + β2k2,

1

L

∫ L

0

β̃ ds ≈ 1

L̄

np−1∑
j=0

β̃j + β̃j+1

2
hj . (25)

Here, since β = ∆SS, we have

β1,j = Ij ·N1,j ,
β2,j = Ij ·N2,j ,

(26)

where

Ij =
1

2µn(Vij )

m∑
p=1

(
cot θnij ,p−1,1 + cot θnij ,p,2

)
(Snij − S

n
ij,p).

Finally, assuming uj = j 1
np

, the length density l(uj) = ‖γu(uj)‖ can be discretized
as

l(uj) ≈ lj =
hj
1
np

= nphj . (27)
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Summarizing (18)–(27), we obtain the approximation of (6),

αnw,j = αnw,j−1 + hnj β̃
n
j −

hnj
L̄

np−1∑
j=0

β̃nj + β̃nj+1

2
hnj + ωnj

(
L̄

np
− hnj

)
(28)

as well as the approximation of (7),

αnw,j = αnw,j−1 + hnj β̃
n
j + ωnj

(
L∞
np
− hnj

)
. (29)

Finally, the integral of the tangential velocity term in (14) is approximated as∫
Vi

vn−1
T dµSn−1 ≈ µn−1(Vi)v

n−1
T,i , (30)

where vn−1
T,i is obtained from (17) or (8).

4.3. Results. Now we are ready to test our method and try to generate some truss
structures. However, first of all, we present a test example intended to examine the
experimental order of convergence of the proposed numerical scheme. The evolving
surface is a sphere with the initial radius r(0) = 1. In this case, we know that the
analytical solution of (9) is a sphere with radius

r(t) =
√

1− 4t.

Our sphere was discretized non-uniformly and we used four levels of discretization
with respect to the size of the grid elements (Figure 4). First, we ran a test with no
tangential movement of points (Table 1). Then we investigated how the tangential
redistribution affects the error and order of convergence (Table 2 and 3). We used
the redistribution given by (6) with ω = 10.0 and ω = 100.0. The curves that
were used for redistribution were the parallels and the meridians of the sphere. A
few steps of the evolution process with redistribution are shown in Figure 5. The
error in the sphere radius was measured in the L2 norm (over space and time) and
we used the coupling τ ∼ h2, where h characterizes the size of the mesh elements.
The stopping time was Ts = 0.06. We can see that the model with redistribution
gives a slightly smaller error than the model with no redistribution for ω = 10.0.
For ω = 100.0, the error is bigger due to the approximation of the tangential
movement direction. For such a fast redistribution, the approximation error starts
to manifest itself with a certain deviation of the points from the surface, where they
were originally situated. However, this error is not large and the second order of
convergence is preserved.

Figure 4. The discretization of the sphere, from left to right nv =
26, 114, 482, 1986.
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nV τ L2 error EOC
26 0.01 3.6622e-3

114 0.0025 1.9804e-3 0.8870
482 0.000625 6.9700e-4 1.5065

1986 0.00015625 1.7627e-4 1.9834

Table 1. The experimental order of convergence for the case with
no tangential redistribution.

nV τ L2 error EOC
26 0.01 4.0553e-3

114 0.0025 1.9045e-3 1.0904
482 0.000625 6.4756e-4 1.5563

1986 0.00015625 1.6564e-4 1.9670

Table 2. The experimental order of convergence for the case with
tangential redistribution given by (6), ω = 10.0.

nV τ L2 error EOC
26 0.01 1.8484e-2

114 0.0025 3.6808e-3 2.3282
482 0.000625 8.8305e-4 2.0594

1986 0.00015625 2.1603e-5 2.0314

Table 3. The experimental order of convergence for the case with
tangential redistribution given by (6), ω = 100.0.

Now we can demonstrate how our method works when used for truss structure
design. In the first example, we generated a structure representing the minimal
surface for the boundary curve Γ = Im(γ) consisting of four segments,

γ1(z) = (0.1(2z − 1)2 − 0.1, z, 0.05 sin(2πz) + 0.1πz), z ∈ 〈0, 1〉
γ2(z) = (z, 0, 0), z ∈ 〈0, 1〉
γ3(z) = (1, z, 0.3 sin(πz)), z ∈ 〈0, 1〉
γ4(z) = (z, 1, 0.1π − 0.1πz), z ∈ 〈0, 1〉.

The initial condition was set to S(·, 0) = (0, 0, 0) everywhere except the boundary
(Figure 6). The computation was run for 800 time steps with τ = 6.25 · 10−3. As
the surface was evolving, the node points were redistributed according to (6). This
means that at the end of the evolution, we wanted each curve from the selected
network of curves to have equally distributed node points. In reality, due to the
numerical error and since the equal node distribution is a limit state for t → ∞,
the line segments may differ in length. In order to minimize the error, we set the
redistribution speed to ω = 800.0, which means that the redistribution was very
fast. In this way, we achieved equal distribution of node points up to an error
no larger than the admissible tolerance ≈1‰ of the truss length. The network
of curves that were used for redistribution is highlighted in Figure 7. The same
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Figure 5. Evolution of the sphere with tangential redistribution
given by (6), ω = 100.0. The pictures show the sphere at time
steps 0, 5, 20, 60. The points are redistributed along the parallels
and the meridians.

figure shows also the resulting truss structure from a top view. Another view of the
structure is shown in Figure 8. We can see that we obtained an aesthetic structure.
From the manufacturing point of view, the type of redistribution that we used can
be suitable for long narrow structures (for example roofs of airports) that contain
long curves consisting of many truss elements. In such cases, the equal distribution
of node points on the individual curves can help to optimize the manufacturing
process.

Figure 6. Example 1. Two different views of the initial condition.
Left, an axonometric projection, right, a perspective projection.
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Figure 7. Example1. Asymptotically uniform redistribution of
points on the individual curves. The figure shows the computed
triangulated minimal surface in a perspective projection, top view.
The curves included in the redistribution process are highlighted
on the right picture.

Figure 8. Example 1. The computed triangulated minimal sur-
face in an axonometric projection.

The second example is intended to test the other type of redistribution given by
(7). This time, the boundary of the structure was given by

γ1(z) = (0.05(2z − 1)2 − 0.05, z, 0.25 sin(πz)), z ∈ 〈0, 1〉
γ2(z) = (z, 0, 0), z ∈ 〈0, 1〉
γ3(z) = (1− 0.05(2z − 1)2 + 0.05, z, 0.25 sin(πz)), z ∈ 〈0, 1〉
γ4(z) = (z, 1, 0), z ∈ 〈0, 1〉.

In this case, we want the structure to contain as many equally sized truss elements
as possible. Since now we are allowed to set the overall length of each curve in
the network, in the discrete case it means that we are free to set the length of a
single truss element. The curves that were used for redistribution are the ”diag-
onal” curves, more precisely their parts between the second and the last but one
point. The points were also redistributed on the boundary curves. Again, the re-
distribution speed was set to ω = 800.0 and we performed 800 time steps with
τ = 6.25 · 10−3. In order to compute αw for one of the curves, we need to set its
value in the second point of the curve. For the sake of symmetry, we allowed the
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second point to move – at the end, we want the first and the last segment of the
curve to have the same length. This requirement implies

αnw,1 = hn0 (βn1,1k
n
1,1 + βn2,1k

n
2,1) + ωn1

(
hnnp−1 − hn0

)
. (31)

The resulting structure will depend on how we choose the limit lengths of the
truss elements. Figure 9 and 10 show four structures obtained by four different
length settings. Figure 9 also depicts the truss elements that are equally sized at
the end of the evolution. Though the node points are also redistributed on the
boundary curves, the lengths of the elements there are different from the lengths
in the highlighted part (they are only equal within the corresponding curve). The
structures all contain 438 elements and among them 200 equally sized, which means
we have 45.66% equally sized trusses. This ratio would grow with increasing number
of elements; the limit ratio is 2/3 of the total number of elements (two out of three
triangle sides would be equal for almost all triangles). To provide some quantitative
evaluation of the achieved results, we complete the presented output by Table 4.
This table concerns the 200 (approximately) equally sized truss elements. For each
structure from Figure 9 and 10, it lists the prescribed truss length and then the
maximal, minimal and average length at the end of the computation.

Figure 9. Example 2. The pictures represent four different struc-
tures approximating the same minimal surface. The structures dif-
fer in the length prescribed for the truss elements. The highlighted
red elements are all equally sized.
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Figure 10. Example 2. The structures from Figure 9 in an ax-
onometric view.

structure No. prescribed maximal minimal average
1 0.105 0.105079 0.104889 0.105001
2 0.1 0.100124 0.099969 0.100010
3 0.1 0.100167 0.099883 0.100010
4 0.088 0.088266 0.087968 0.088023

Table 4. Basic quantitative characteristics of the truss lengths for
the four structures shown in Figure 9 and 10. The structures are
numbered in the order top-left, top-right, bottom-left, bottom-
right.

5. General truss structures. The redistribution method described in Section 3
does not necessarily require an evolution of the surface. In case when β1 = β2 =
αv = 0, the equations (6) and (7) are reduced to simple relations

∂sαw = ω

(
L

l
− 1

)
(32)

and

∂sαw = ω

(
L∞
l
− 1

)
. (33)

These can be used to adjust the lengths of truss elements in a general free-form
structure with one additional step added to our procedure. As we can see in Table
3, the tangential redistribution can cause deviation of node points from the original
surface. While the evolution by mean curvature tends to somewhat correct this
error – the surface modified by redistribution is still dragged to the minimal surface
shape – when we deal with a static surface, we have no mechanism to compensate
the error in the tangential direction approximation. Therefore, in each time step,
we perform the redistribution followed by a projection of the shifted points to the
original triangulated surface. The projection is done simply by finding the nearest
point on the original surface for each of the updated node points. Of course, this
could cause degeneration of some triangles, since the projection is not injective.
However, in most reasonable structures, this will not be the case.

To illustrate the performance of our method, we present two examples of free-
form truss structures that we generated. The initial surfaces were constructed as
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Bézier surfaces given by 9× 5 control points, the triangulation was obtained simply
from a uniform triangulation of the parameter domain. In both examples, we use
the redistribution given by (33) with ω = 1500.0. This time it was enough to
perform 150 time steps with τ = 3.125 · 10−3. The results can be seen in Figures
11, 12, 13 and 14.

Finally, we would like to mention that in all examples dealing with truss struc-
tures, the evolution straightforwardly converged to the equilibrium state described
in Section 3.

Figure 11. Remeshing of a static surface. Top, the initial surface.
Bottom, the surface after remeshing. The segments with the same
given length are highlighted.

Figure 12. Remeshing of a static surface, an axonometric view of
the surface from Figure 11, bottom.
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