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Abstract We present a method for 3D image segmentation based on the Lagrangian
approach. The segmentation model is a 3D analogue of the geodesic active con-
tour model [1] and it contains an additional tangential movement term that allows
us to control the quality of the mesh during the evolution process. The model is
discretized by the finite volume approach. Segmentation of zebrafish cell images is
shown to illustrate the performance of the method.

1 Introduction

A large number of existing 3D image segmentation techniques are based on PDE
models representing evolution of 2D surfaces in 3D. Most of them use the level set
approach due to its favorable properties with respect to possible topological changes.
The other alternative is the Lagrangian approach that directly evolves a 2D surface
without viewing it as an isosurface of a three-dimensional function. Because of its
two-dimensional character, this technique offers a possibility to obtain faster algo-
rithms. However, even if we do not have to deal with any topological changes in the
course of the computation, a Lagrangian method can face the problem of mesh de-
terioration as a discretized surface evolves. Therefore, in order to successfully apply
such methods, we need to have at disposal a mechanism for controlling the quality
of the surface discretization during the computation.

Our paper presents a Lagrangian method for 3D image segmentation that allows
to adjust the mesh quality along with the surface evolution. The segmentation model
contains two normal movement components – one is given by the gradient of an im-
age edge detector function and the other one depends on the edge detector itself and
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the mean curvature of the evolving surface. An additional tangential velocity term
is added in order to be able to redistribute the mesh points during the evolution.
The corresponding PDE is discretized by a finite volume technique and the redis-
tribution is designed so that all control volumes have the same area for t → ∞. The
performance of the method is illustrated by examples using microscope images of
zebrafish cells.

2 The segmentation model

Let I : R3 ⊃ Ω → R be an image intensity function. There are several possibilities
how to detect the edges in the image; one of them is to use the edge detector function
e : Ω → R of the form

e(x,y,z) =
1

1+K‖∇I(x,y,z)‖2 (1)

where K is a positive real constant.
Now let X be a two-dimensional Riemannian sphere with metric gX and F : X→

Ω ×〈0, ts〉 its time-dependent embedding in Ω . The image of F t = F(·, t) will be
denoted by St . The surface S0 will represent the initial estimate of the surface of
the segmented object and Sts will be the result of the segmentation procedure that
should be as close to the actual surface of the segmented object as possible. We let
F evolve by the 3D analogue of the geodesic active contour model [1],

∂tF = a(∇e ·N)N +be∆gF F (2)

where N is a unit normal to S and ∆gF F denotes the Laplace-Beltrami operator
with respect to the metric gF induced on X by F . It is known that ∆gF F is equal
to the mean curvature vector of F . As we can see from (1), the curvature term is
dominant in regions with low intensity changes where e is close to 1 and its gradient
is close to 0. On the contrary, the gradient of e becomes significant near the edges
where e decreases and approaches 0 for large values of K and ‖∇I(x,y,z)‖. The
parameters a ∈ R+, b ∈ R+ are added to control the influence of the two terms on
the segmentation process.

In order to be able to redistribute the mesh points along the surface during the
evolution, we enrich (2) with a tangential velocity term. The new model reads

∂tF = a(∇e ·N)N +be∆gF F + vT = vN + vT (3)

where vT is a tangential vector field on S and vN denotes the normal component of
the evolution, vN = a(∇e ·N)N +be∆gF F .

In our case, we use an area-oriented tangential redistribution [6] derived from the
evolution of the induced metric gF . Both metrics gX and gF induce measures on X ;
let us denote them by µX and µF . The Radon-Nikodým derivative G = ∂ µF

∂ µX
is called
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the area density of F . It evolves along with F as [3]

∂tG = (vN ·h+divgF wT )G (4)

where h is the mean curvature vector of F , wT is a vector field on X obtained as the
pull-back of vT along F and divgF denotes the divergence with respect to the metric
gF . From this follows the evolution of the area of S,

∂tA =
∫

X
(vN ·h+divgF wT ) dµF =

∫
X

vN ·hdµF . (5)

The embedding F t is called area uniform with respect to gX if its area density Gt

is constant. Our redistribution method is based on the requirement Gt−→t→∞ C that
is equivalent to the practically more convenient dimensionless condition

Gt

At −→t→∞
C.

This can be achieved, for example, if G
A satisfies

∂t

(
G
A

)
= ω

(
C− G

A

)
(6)

where ω ∈R+×〈0, ts〉 represents the redistribution speed. Since we know how both
G and A evolve, the combination of (4) and (5) with (6) implies that wT has to satisfy

divgF wT = vN ·h−
1
A

∫
X

vN ·hdµF +ω

(
C

A
G
−1
)
. (7)

Since this condition does not uniquely determine wT , we suppose, in addition, that
wT is a gradient field, that means wT = ∇gF ψ , ψ : X×〈0, ts〉 → R. Thus we obtain

∆gF ψ = vN ·h−
1
A

∫
X

vN ·hdµF +ω

(
C

A
G
−1
)

(8)

that yields a unique solution if we prescribe the value of ψ in one point of X .

3 Numerical approximation of the segmentation model

The time discretization of our segmentation model (3) is semi-implicit,

Fn−Fn−1

τ
= a

(
∇e ·Nn−1)Nn−1 +be∆gFn−1 Fn + vn−1

T . (9)

The space discretization is based on the finite volume approach and it includes
two meshes – the mesh discretizing the surface Sn and the voxel grid of the image
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used to approximate e and ∇e. First, let us consider a triangulation of X which
is a simplicial complex homeomorphic to X . The corresponding homeomorphism
induces a triangular structure on X consisting of vertices Xi, i = 1 . . .nv, edges e j,
j = 1 . . .ne, and triangles Tk, k = 1 . . .nt .

Now we construct the control volume mesh (Figure 1). The point Xi is the com-
mon vertex of m mesh triangles T1, . . . ,Tm and m edges e1, . . . ,em, where ep con-
nects Xi with its neighbor Xip (we use local indexing for simplicity). The triangle Tp
admits a barycentric coordinate system – each point of the triangle can be expressed
as P = λ1Xi + λ2Xip + λ3Xip+1 where λ1 + λ2 + λ3 = 1. Let Bp be the barycenter
of Tp and Cp the center of ep, p = 1 . . .m, and let the barycentric subdivision of
Tp be constructed using these points. The control volume Vi corresponding to Xi
is constructed as the union of the triangles Vp,1 = MiCpBp and Vp,2 = MiBpCp+1
for p = 1 . . .m where we set Cm+1 =C1. Each triangle contains two control volume
edges σp,1 =CpBp, σp,2 = BpCp+1.

The manifold X can be embedded in R3 by F̄n, a piecewise linear approximation
of Fn. First, we set F̄n(Xi) = Fn(Xi). Then, for any triangle Tp with vertices Xi, Xip ,
Xip+1 , we set F̄n(λ1Xi + λ2Xip + λ3Xip+1) = λ1Fn(Xi) + λ2Fn(Xip) + λ3Fn(Xip+1).
The embedding F̄n induces a metric gn on X which induces a measure µn on X .

The surface S̄n = F̄n(X) is a polyhedron with vertices F̄n(Xi) = Fn(Xi) = Fn
i ,

edges ēn
j = F̄n(e j) and triangular faces T̄ n

p = F̄n(Tp). The approximation of the
unit normal to Sn at Fn

i is denoted by Nn
i . We will use the notation νn

p,1, νn
p,2 for the

outward unit normals to F̄n(σp,1) and F̄n(σp,2) in the plane of T̄ n
p . Further, θ n

p,1 and
θ n

p,2 will represent the angles of Tp adjacent to Xip and Xip+1 , respectively, measured
in the metric gn.

Xi

XipXip+1

CpCp+1 Bp

e
p

e p+
1

ep,p+1

σ p,1
σp,2

Nn
i

F̄n(Xi)

νn
p,1

νn
p,2

T̄p
θ n

p,1

θ n
p,2

Fig. 1 The surface discretization mesh. Left, the triangulation of the topological sphere X . Right,
the corresponding approximation of the embedded surface Fn(X).

Integrating (9) over Vi, we obtain∫
Vi

Fn−Fn−1

τ
dµFn−1 =

∫
Vi

a
(
∇e ·Nn−1)Nn−1 dµFn−1 +

∫
Vi

be∆gFn−1 Fn dµFn−1

+
∫

Vi

vn−1
T dµFn−1 . (10)

The term on the left hand side can be approximated simply by
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Vi

Fn−Fn−1

τ
dµFn−1 ≈ µ

n(Vi)
Fn

i −Fn−1
i

τ
. (11)

In order to approximate ‖∇I‖, e and ∇e, we use the voxel structure of the image I.
Let us suppose that the voxels are cubes with side length h. The voxel with coordi-
nates x ∈ N, y ∈ N, z ∈ N will be denoted by Pj, j = (x,y,z). Since X is embedded
in the image domain Ω , the voxel coordinates corresponding to Fn

i are obtained
simply by rounding its coordinates. The representative value of I and e in Pj will be
denoted by I j and e j. Further, v1, v2 and v3 are the standard basis vectors in R3. The
6 voxel faces will be represented by F±p

j , p = 1,2,3.
First, let us construct the approximation of ∇I in the barycenter c±p

j of F±p
j . The

derivative in the direction of vp is discretized by

D±pI j =±
(
I j±vp − I j

)
/h.

For the other two directions vq, q 6= p, we will use the values of I in the centers of
the voxel edges F±p,±q

j ; we denote them by I j± 1
2 vp± 1

2 vq
. Then we use

D±p,qI j =
I j± 1

2 vp+
1
2 vq
− I j± 1

2 vp− 1
2 vq

h
, I j± 1

2 vp± 1
2 vq

=
I j+ I j±vp+ I j±vq+ I j±vp±vq

4
.

Finally, we take

Q±p
j =

(
(D±pI j)

2 + ∑
p 6=q

(D±p,qI j)
2

)
, ‖∇I(x,y,z)‖2 ≈

(
3

∑
p=1

(Q+p
j +Q−p

j )

)
/6.

(12)
The gradient of e is computed analogously.

Now, the surface normal at Fn
i is approximated by the arithmetic mean of the

normals to all triangles containing Fn
i . This completes the approximation of the first

term on the right hand side of (10). As for the second term, we use∫
Vi

be∆gFn−1 Fn dµFn−1 ≈ biei
1
2

m

∑
p=1

(
cotθ

n−1
i,p−1,1 + cotθ

n−1
i,p,2

)
(Fn

i −Fn
ip) (13)

where we used the cotangent scheme [4] to discretize the Laplace-Beltrami operator.
The value ei is the value of e in the voxel containing Fn

i . We consider θ
n−1
i,0,1 = θ

n−1
i,m,1.

The last term to discretize is the integral of the tangential velocity. Since wn
T is a

gradient field, the following version of the Stokes theorem applies [2, 6]∫
Vi

vn−1
T dµFn−1 =

∫
∂Vi

ψ
n−1

ν
n−1
i dHµFn−1 −

∫
Vi

ψ
n−1hn−1 dµFn−1 .

This yields the approximation
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Vi

vn−1
T dµFn−1 ≈

m

∑
p=1

(
‖σi,p,1‖n−1ψ

n−1
i,p,1ν

n−1
i,p,1 +‖σi,p,2‖n−1ψ

n−1
i,p,2ν

n−1
i,p,2

)
−µ

n−1(Vi)ψ
n−1
i hn−1

i

(14)

where ‖ · ‖n−1 denotes the length computed by the metric gn−1 and ψ
n−1
i,p,1, ψ

n−1
i,p,2 are

the values of ψn−1 in the midpoints of σi,p,1 and σi,p,2. They are obtained from the
values of ψn−1 in the vertices Xi by linear interpolation.

The function ψ is computed from (8) where, again, we use the cotangent scheme
to discretize the Laplace-Beltrami operator of ψn−1. This scheme is also used to
approximate the mean curvature vector h, namely

hn−1
i =

1
µn−1(Vi)

m

∑
p=1

(
cotθ

n−1
i,p−1,1 + cotθ

n−1
i,p,2

)
(Fn

i −Fn
ip). (15)

The area of Sn−1 is approximated by

An−1 =
nv

∑
i=1

µ
n−1(Vi). (16)

Alternatively, A(tn−1) could be approximated as

A(tn−1) =
∫

X
G(x, tn−1)dµX ≈

nv

∑
i=1

Gn−1
i µX (Vi).

This leads to an approximation of the volume density Gn−1. Since we did not par-
ticularly specify µX , we can assume that µX (X) = 1/C and µX (Vi) = µX (X)/nv for
all i = 1 . . .nv. Then we can set

Gn−1
i = µ

n−1(Vi)
nv

µX (X)
=Cnvµ

n−1(Vi), C
A
G
≈ An−1

nvµn−1(Vi)
. (17)

4 Experiments

Finally, we present two examples of segmentation of biological images. The images
display cell nuclei and cell membranes of a zebrafish embryo. Segmentation of cell
nuclei and cells has a large number of applications [5]. Particularly, segmentation in
form of a triangulated surface can be easily used to compute the area of the surface
of a cell or to evaluate the shape of a cell. Before segmenting, the images were
pre-filtered by the geodesic mean curvature flow method [1].

In both experiments, we used a relatively large value of ω . Since the tangen-
tial direction is approximated, for such large values, the points tend to deviate from
the surface where they should be situated [6]. In order to overcome this difficulty,
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in each time step we first perform the corresponding normal movement, then the
tangential movement and afterwards we project the new vertices on the surface ob-
tained by the normal movement alone.

The first experiment deals with the nucleus image. We show segmentation of a
single cell nucleus. We performed 400 time steps and the model parameters were
set to nv = 258, τ = 0.001, h = 1.0, ω = 100.0, a = 1.0, b = 200.0 for time steps
1 . . .200 and b = 1.0 after. The initial condition was a sphere centered in a manually
estimated nucleus center. Figure 2 shows two different 2D slices of the data, the
initial surface and the segmentation result. Figure 3 shows the effect of the tangential
redistribution of mesh points during the computation. We can see that the tangential
movement leads to more evenly distributed mesh points and thus a more correct
representation of the surface. Quantitatively evaluated, the ratio of the minimal and
maximal control volume area was 0.176 when no redistribution was applied while
it reached 0.894 when the redistribution step was included.

In the second experiment, we segmented several cells from the membrane image.
Membrane data are usually of a worse quality and more difficult to segment than
nucleus data. We performed 400 time steps and we used nv = 258, τ = 0.003, h =
1.0, ω = 100.0, a = 3.0, b = 20.0 for time steps 1 . . .200 and b = 1.0 after. Similarly
to the case of nucleus segmentation, the initial surface was a sphere (of the same
radius for all cells). Figure 4 shows a 2D slice of the image, the initial surfaces and
the segmented cells. Figure 5 shows the whole segmented cells.

Fig. 2 Cell nucleus segmentation – the data, the initial surface and the segmented surface shown
in two different 2D slices.
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