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Abstract. The paper presents new numerical algorithm for an automated cell tracking from
large-scale 3D+time two-photon laser scanning microscopy images of early stages of zebrafish (Danio
rerio) embryo development. The cell trajectories are extracted as centered paths inside segmented
spatio-temporal tree structures representing cell movements and divisions. Such paths are found by
using a suitably designed and computed constrained distance functions and by a backtracking in
steepest descent direction of a potential field based on these distance functions combination. The
naturally parallelizable discretization of the eikonal equation which is used for computing distance
functions is given and results of the tracking method for real 4D image data are presented and
discussed.

1. Introduction. In this paper we present a new method for tracking cells in 4D
biomedical images (3D+time image sequences). The method is based on extraction
of the cell trajectories as centered paths inside 4D spatio-temporal tree structures
obtained by segmentation of 4D images. Our method thus further develops ideas
given in [1, 10]. In the presented approach, the 4D segmentation is obtained by
creating a spatio-temporal tubes around the cell identifiers given as a result of suitable
image filtering [8, 5, 4, 7] followed by a cell detection algorithm [6, 2, 11]. Then a
computation of constrained distance functions inside 4D segmentation is performed
by solving numerically a spatially 4D eikonal equation. Since this is a large-scale
computational problem in case of real 4D image data, the parallel implementation
is necessary and thus developed. By a proper combination of computed distance
functions we build a potential field which is backtracked in steepest descent direction in
order to get the cell trajectories. Consequently, the cell lineage tree can be constructed
by detecting merging trajectories when going backward in time indicating mitosis and
thus a branching node of the cell lineage tree.

Our work is motivated by the recent research in biology and medicine where the
reconstruction of cell population dynamics is crucial for obtaining the cell lineage trees
and study of formation and evolution of morphogenetic structures. Such research is
related to embryonic development of organisms as well as to anticancer drug design.

Among other imaging technologies, the multi-photon laser scanning microscopy
is able to deliver in-vivo 3D+time image sequences of long periods of the embryonic
development. Due to a similarity with human in many aspects and due to trans-
parency for the microscope, the zebrafish (Danio rerio) is studied extensively and
strong demand for reliable cell tracking methods exists [13]. Although a large amount
of work has been already done, e.g. by a combination of various image processing
techniques and manual inspection, for the zebrafish developmental stages up to about
one thousand cells [13], there is a great challenge to study embryogenesis at very
complex stages of development with thousands of cells present. The tracking of cells
and construction of the cell lineage tree for such complex stages of embryogenesis is
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Fig. 1.1. Left: volume rendering of the cell nuclei data in the first 3D image (4 hours after
fertilization). Right: volume rendering of the cell nuclei data in the last 3D image (12 hours after
fertilization).

a very difficult problem unsolved satisfactorily yet. A seminal work towards building
the cell lineage tree for the complex stages of zebrafish embryo development based
on optic flow estimation followed by a stochastic simulated annealing minimization
of a heuristic energy functional has been done in [9]. After the construction of the
tree, the individual cells or cell populations can be tracked. In contrast to [9], in our
approach we first extract all possible cell trajectories inside the 3D+time image data
set and then the cell lineage tree can be reconstructed by finding merging trajectories
going backward in time.

Our data for the cell tracking come from two-photon laser scanning microscopy
and represent the first hours of zebrafish embryo development, approximately from the
4th until 10th-20th hour. The labeling of cell nuclei (and cell membranes) is obtained
by expression of the fluorescence protein through its RNA injection performed at the
one-cell stage. The 3D images are obtained by moving the focal plane from the top
more deeply inside the embryo and their quality depends on the speed of scanning
in one plane. Many various quality datasets are available thanks to EC Embryomics
and BioEmergences projects (http://bioemergences.iscpif.fr/bioemergences/). The
data quality is related to a level of noise depending mainly on the size of the time
step between acquisition of subsequent 3D images. The acquisition step ranges from
50 seconds to 5 minutes. A longer time step produces better 3D image quality, one
has a good visual impression of what is happening during embryogenesis and such
data is well suited for segmentation purposes e.g. for obtaining a shape of cells and
other their characteristics during the embryogenesis [16, 11]. On the other hand, such
data is not suitable for tracking since the cells move too far between single 3D images
and consequently mother-daughters cell correspondences can be lost. In Figs. 1.1 and
1.2 we plot an example of embryo development at the beginning and at the end of the
imaging. In Fig. 1.1 we see visualization of 3D cell nuclei images which are used in our
tracking method. Although the nuclei images contain certain level of noise when using
time step about one minute they are suitable for application of the presented tracking
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Fig. 1.2. Top left: 2D slice of raw data 4 hours after fertilization (cell nuclei), top right: 2D
slice of raw data 4 hours after fertilization (cell membranes). Bottom left: 2D slice of raw data 12
hours after fertilization (cell nuclei), bottom right: 2D slice of raw data 12 hours after fertilization
(cell membranes).

technique. In Fig. 1.2 one can clearly observe how the zebrafish embryo grows from
an unorganized set of cells to complex stages of development containing presumptive
organs of the future zebrafish adult. Here we show also the cell membane images in
order to see differentiation of cells after 12 hours of embryo development. However,
the overall quality of the 3D membranes data is still not suitable for application of
our tracking method although it would be natural and desirable, cf. [1].

The paper is organized as follows. In the next section we present our approach
to the trajectories extraction and discuss numerical approaches used in the tracking
method. Then we discuss numerical experiments devoted to testing the tracking
method as well as we present processing of the real 3D+time image sequence of the
early zebrafish brain embryogenesis.
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2. The cell tracking algorithm. Our method for the cell trajectories extrac-
tion is composed of the following steps:

• construction of a 4D segmentation yielding the 4D spatio-temporal tree struc-
ture inside which two (constrained) distance functions will be computed,

• computation of the first constrained distance function D giving distance of
any point to the most far cell identifier to which it is continuously connected
inside the 4D segmentation,

• computation of the second constrained distance function DB giving distance
of any point to the boundary of the 4D segmentation,

• building a potential field V for tracking by using a suitable combination of
two computed distance functions,

• extraction of the steepest descent paths of the potential field,
• centering the extracted paths inside the 4D spatio-temporal trees in order to

get the cell trajectories
We note that after successful trajectories extraction the reconstruction of the cell

lineage tree can be performed by detecting trajectories which merge together when
going backward in time indicating mitosis and thus a branching node of the cell lineage
tree.

From mathematical point of view, the 3D+time image sequence is understood
as a function u(x1, x2, x3, θ), u : Λ → [0, 1], where Λ is a bounded spatio-temporal
(rectangular) subdomain of R4, (x1, x2, x3) is a spatial point and θ represents a time.

2.1. Building the 4D segmentation. We call 4D segmentation a spatio-
temporal structure which approximates the space-time movement of cell nuclei in
3D+time image sequence. Due to [16, 2, 11] the shape of cell nuclei during zebrafish
embryogenesis is reasonably approximated by spheres or ellipsoids. Thus, in order to
construct 4D segmentation we use cell identifiers [6, 2, 11] detected in all time steps,
slm,m = 1, . . . , nlC , l = 1, . . . , Nθ (m denotes cell identifier index at time step l and Nθ
is number of time steps), and create 4D ellipsoids around all these points. Currently
we are using the same halfaxes in space equal to 2dx, where dx = dx1 = dx2 = dx3
areis the voxel size (same in all three spatial dimensions) and with halfaxis equal to
dθ in temporal direction. The nonzero temporal halfaxis is important due to the time
overlap which we create and thus we improve connectivity of 4D spatio-temporal tree
structures. Thanks to the time overlap we also make connected such branches of the
4D spatio-temporal tree where a cell center is not detected in one frame but it is
detected in two neighboring frames and thus we correct false negative errors of the
cell center detection algorithm.

We also have to note that above approach is not optimal in the sense of getting a
real 4D image segmentation of cell nuclei movement. A more realistic approach, using
4D generalized subjective surface (GSUBSURF) method [15, 4, 7], was developed in
[10]. Such method, however, can currently be used only for short time sequences
and smaller portions of full 3D volume due to its high computational complexity.
Utilization of GSUBSURF method for long 3D+time image sequences remains a great
challenge from modeling, discretization and computational point of view and it will
be an objective of our further study. On the other hand, the simplified approach
suggested and used in this paper also gives, thanks to the time overlap, the reliable
4D segmentation which can be used in further steps of cell trajectories extraction.

As outlined above we have to compute distance functions inside the 4D segmen-
tation (we called them constrained because all the computations are performed only
inside it) in order to build the potential field for tracking. So now we present the
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numerical scheme which is used in the distance functions computation.

2.2. 4D Rouy-Tourin scheme with fixing for computing distance func-
tion. In order to compute distance function we solve numerically the so-called ”time”
relaxed eikonal equation

dt + |∇d| = 1 (2.1)

for the unknown function d(x1, x2, x3, θ, t). We solve here spatially 4D problem, so ∇d
is a 4D gradient of the function d, i.e. the vector of partial derivatives with respect
to x1, x2, x3 and θ variables. The distance function is obtained as an equilibrium
of the numerical solution, i.e. it satisfies numerically the classical eikonal equation
|∇d| = 1. For the equation (2.1), we have to prescribe zero Dirichlet condition on
the set from which we compute the distances. In our cases, we will prescribe the zero
values either for a particular set of cell identifiers or for the boundary points of the
4D segmentation.

We denote the 4D doxels by Vijkl. Without losing generality, we rescale the time
step dθ to be equal to dx1 = dx2 = dx3 and denote their common value by hD
(standardly we set hD = 1). Let dnijkl denote the approximate value of solution d
in barycenter of Vijkl in a discrete step tn = nτD where τD is the length of step
discretizing t variable. Then, for every Vijkl we define the index set Nijkl of all
(p, q, r, s) such that p, q, r, s ∈ {−1, 0, 1}, |p|+ |q|+ |r|+ |s| = 1. In order to built the
scheme, for any (p, q, r, s) ∈ Nijkl, we define

Dpqrs
ijkl =

(
min

(
dn−1
i+p,j+q,k+r,l+s − d

n−1
ijkl , 0

))2
(2.2)

and then also

M1000
ijkl = max

(
D−1,0,0,0
ijkl , D1,0,0,0

ijkl

)
, M0100

ijkl = max
(
D0,−1,0,0
ijkl , D0,1,0,0

ijk

)
M0010
ijkl = max

(
D0,0,−1,0
ijkl , D0,0,1,0

ijkl

)
, M0001

ijkl = max
(
D0,0,0,−1
ijkl , D0,0,0,1

ijkl

)
. (2.3)

Using this notations, the 4D Rouy-Tourin scheme [14] for solving equation (2.1) has
the following form

dnijkl = dn−1
ijkl + τD −

τD
hD

√
M1000
ijkl +M0100

ijkl +M0010
ijkl +M0001

ijkl . (2.4)

Due to stability reasons, the coupling τD = hD/2 is used.
From (2.2) one can see that numerical solution given by the Rouy-Tourin scheme

(2.4) depends only on neighours with lower values. The steady state of numerical
solution in any doxel is thus reached only after stabilization of values in all neigh-
bouring doxels with lower values. Moreover, if the steady state is reached, it cannot
be changed later by any influence of other neighbours. It shows that the steady state
of numerical solution, representing desired distance function, is achieved subsequently
from smaller to bigger values and allow us to fix values in doxels which are already
in equilibrium and omit further computations in such doxels. This fixing strategy
was introduced in [3, 11] in order to speed-up the basic method (2.4) and it will be
significantly utilized here in building the first distance function D as will be seen in
the next subsection.

Let us consider the index set I of all indices (i, j, k, l) and the set Fn that contains
the indices (i, j, k, l) ∈ I of doxels where the steady state has been already reached, i.e.
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where |dnijkl − d
n−1
ijkl | < ε, where ε is a given threshold (in all presented computations

we use ε = 0.01). The set F0 contains indices of all doxels which have given values and
are fixed initially. Since we perform all computations only in the doxels that have not
yet reached the steady state and the number of fixed doxels is gradually increasing,
the computational time needed in one time step of (2.4) is decreasing and finally all
doxels are fixed. Here is our algorithm of Rouy-Tourin scheme with the fixing:

• Do while Fn 6= I
• Do for all (i, j, k, l) ∈ I
• if (i, j, k, l) ∈ Fn then continue

• else

• update dn+1
ijkl using (2.4)

• if dn+1
ijkl = dnijkl then Fn ∪ {(i, j, k, l)}

• n = n+ 1

The 4D Rouy-Tourin scheme with the fixing was parallelized using OpenMP pro-
gramming interface for shared memory parallel servers. The OpenMP parallelization
was chosen in order to eliminate the need for interprocess communication. If MPI
would be used for our purposes, around 100MB would have to be sent and received
between neighboring parallel processes in each step of distance function computation.
Clearly, such communication can make overall parallel implementation inefficient. On
the other hand, when using OpenMP we have to run the computation on a single
shared memory computer and we are limited by the amount of available memory
of such server. E.g., for the numerical experiment with 479 time step dataset with
512× 512× 104 voxels in each 3D volume, discussed in section 3, we needed roughly
140 GB of shared memory. Since there are currently quite standard parallel servers
with 32 processors and 256GB of shared memory available, we can use our OpenMP
parallel approach for the long-time image sequence processing. Moreover, we obtained
the speed-up 23.5 for 32 threads by using our OpenMP parallel implementation. Such
speed-up was obtained thanks to utilization of the NUMA (non-uniform memory ac-
cess) library functions which allow the optimal NUMA nodes memory usage on the
nowadays standard servers with NUMA architecture.

2.3. Building the potential field for tracking. As described in the beginning
of this section, for building the potential field V we compute two types of distance
functions, D and DB , inside the 4D spatio-temporal tree structures. We call them
constrained distance functions because all the calculations are constrained by the
boundaries of the 4D segmentation. Due to that fact, the computed distances be-
tween doxels of the 3D+time image sequence are not a standard Euclidean distances
in R4 but they represent a minimal Euclidean paths between the points inside the
4D segmentation. The 4D segmentation containing 4D spatio-temporal tree struc-
tures can be represented by a 4D piecewise constant function, with some BIG value
(which is arbitrary but bigger than any distance which can be obtained inside the 4D
segmentation) outside of the segmentation and with zero value inside it.

The first constrained distance function D(x1, x2, x3, θ) is built subsequently by
the following approach:

• Initialize D by setting D(x1, x2, x3, θ) = BIG for all doxels outside of the 4D
segmentation and by fixing all these doxels, and setting D(x1, x2, x3, θ) = 0 for all
doxels inside the 4D segmentation. Let us remind that no further computations are
performed in fixed doxels. Then
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• for every l = 1, 2, . . . , Nθ − 1

• take all doxels, corresponding to cell identifiers slm,m = 1, . . . , nlC at the lth
step, where the value is not fixed yet. Fix the value in these doxels (it was set to 0 in
initialization or in previous step l− 1) and compute distance D(x1, x2, x3, θ) to these
cell identifiers in all doxels which are not yet fixed by using the scheme described in
the previous subsection,

• during the computation of D(x1, x2, x3, θ) at the lth step the total number of un-
fixed doxels is gradually decreasing. If the number of unfixed doxels stops to decrease
we have already computed correct distances in all simply connected components of
the 4D segmentation reachable from the l-th step cell identifiers and all such doxels
are fixed. After that the Rouy-Tourin scheme would just uniformly increase values
(by τD in every next step n) in all so far unfixed doxels belonging to components of
4D segmentation which are not reachable from any cell identifier slm. So, we stop the
computation at step l, set D(x1, x2, x3, θ) = 0 in all remaining unfixed doxels and go
to step l + 1.

At the end all doxels inside the 4D segmentation are fixed by the value of distance
to the most far cell identifier to which it is continuosly connected. In Fig. 2.1 we
show how the distance function D contains information about simply connected com-
ponents of the 4D segmentation. Inside the regions encompassed by the BIG values,
the value of D is growing from zero, in cell identifier where any simply connected
component begins, up to a maximal value, where the simply connected component
ends. Such construction of the distance function D allows us to get all, also partial,
cell trajectories contained in our 4D spatio-temporal tree structure. Its utilization
represents an important novelty with respect to [1, 10] where just distance to the
centers detected in the first time step was used, so only the cell trajectories starting
in the first 3D image could be detected.

To update D in a single doxel in each time step of the Rouy-Tourin scheme we
have to perform evaluation of expressions (2.2)-(2.3) for eight neighbouring doxels.
Due to advective character of equation (2.1) and due to stability condition, we need
roughly twice as many time steps as is the number of the 3D volumes to obtain
the steady state of numerical solution. So, if we performed the distance function
computations in all full 3D volumes, the computational complexity would be roughly
estimated as 8 × (2 × Nθ) × N1 × N2 × N3 × Nθ, where N1, N2, N3, Nθ represents
the dimensions in spatial and temporal directions. Fortunately, we need to calculate
D only inside the 4D segmentation, which represents only a small portion of the 4D
image. In our real data set with 479 3D volumes the doxels inside the 4D segmentation
represent only 3.5% of the whole 4D image. This reduces the calculation complexity
considerably. Moreover, 98.8% of doxels inside 4D segmentation was fixed in the first
step l = 1. The computation of D took 4600 seconds in l = 1 and only 200 seconds
for l = 2, . . . , Nθ − 1 altogether.

Now, looking at Fig. 2.1 and also Fig. 2.2 left, we can think about D as a po-
tential field and traverse it in the steepest descent direction from the highest value
in every simply connected component to the zero value. The paths obtained in such
way would represent good approximation of the space-time cell trajectories. And, if
the 4D segmentation would contain only perfectly separated 4D spatio-temporal tree
structures, we would obtain correctly all (also partial) cell trajectories which can be
extracted from the data. Unfortunately, in the real 4D data it is not always the case
and we must deal with imperfections given mainly by a cells overlapping. In order to
overcome this difficulty we have to keep the extracted paths in a certain distance from
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Fig. 2.1. Plot of the constrained distance function D showing its values in various simply
connected components.

the spatio-temporal cell boundaries or, in other words, they should be more centered
inside the 4D segmentation.

This can be achieved by using the constrained distance function DB(x1, x2, x3, θ)
[12, 1, 10] values of which grow from boundaries to the center of the 4D spatio-
temporal trees, see Fig. 2.2 right. For the computation of DB we use again the
Rouy-Tourin scheme with fixing, but we set DB(x1, x2, x3, θ) = 0 and fix it for all
(x1, x2, x3, θ) outside and on the boundary of the 4D segmentation.

Based on these observations we build a potential field

V (x1, x2, x3, θ) = D(x1, x2, x3, θ)−DB(x1, x2, x3, θ) (2.5)

which is used in our algorithm for the extraction of cell trajectories.

2.4. Extraction of the cell trajectories. The cell trajectory will be repre-
sented by a series of points in space-time (discrete spatio-temporal curve) for which
we prescribe the condition that there is exactly one point in every time step l =
Nb, . . . , Ne, 1 ≤ Nb < Ne ≤ Nθ. The extraction of cell trajectories is realized in two
steps
• first, we use backtracking in time by the steepest descent direction of the potential
V built in (2.5) starting from all cell identifiers slm,m = 1, . . . , nlC detected in all time
steps l = Nθ, . . . , 2,
• then, we center all the extracted paths inside the 4D spatio-temporal trees by using

constrained distance function DB in order to eliminate duplicates and thus to obtain
the cell trajectories.

The first step is realized as follows: Let slm be one of the cell identifiers detected
in the lth time step. Let us define a temporary point P lT = slm. Then, we search
recursively in the nearest vicinity of P lT , but only in the current time step l and
previous time step l− 1, for a doxel with the minimal value of the potential V which
is also strictly less than the value of potential at the temporary point. The extracted
path point P l for the time step l is defined as the (last in search) doxel from which we
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Fig. 2.2. On the left one can see the plot of constrained distance function D in one simply
connected component of the 4D segmentation, on the right one can see the plot of the constrained
distance function DB in the same simply connected component.

move to a point in the previous time step l − 1. The point where we moved becomes
the temporary point P l−1

T for time step l − 1 and we continue the descent as above.
We end the process when we cannot move from a time step Nb to a previous time step
Nb−1 by decreasing value of the potential V . Then the last point of the search in the
time step Nb must be some detected center sNbm and it becomes the first point of the
extracted path starting in the time step Nb and ending in the time step Ne where we
started the descent. As an output of this first step, we get as many extracted paths
as is the number of cell identifiers in all time steps except the first one, which means
that we have

∑Nθ
l=2 n

l
C steepest descent paths.

After the first step of trajectories extraction there exist many duplicated paths
(representing the same cell space-time movement but for a shorter time). To illustrate
the above fact, let us consider a long cell trajectory going from the first to the last
3D volume of the image sequence. Since we start the descent from centers detected
at every l = Nθ, . . . , 2, and they all lay inside the branch corresponding to that cell,
we obtain Nθ − 1 extracted paths laying inside the same branch of the 4D spatio-
temporal tree. These paths can slightly differ because the steepest descent search
does not give necessarily the same set of points when starting at different time steps
from different temporary points. But this does not cause any problem. Since all such
paths lay in the same branch of the tree we center their points in 3D volumes by
using the steepest growth direction of the constrained distance function DB . After
the centering step, the points of the shorter path become subset of points of the
longer path and we can remove the shorter one just by comparing their points. The
remaining path is representing the cell trajectory. After this step we obtain a set of
unique cell trajectories in the sense that a mother cell representative point is presented
in as many trajectories as is the number of her descendant cells.

By experiments presented in Figures 2.3-2.5 we illustrate the behavior of our cell
trajectories extraction method and test its implementation.

First, we created 4D dataset (3D volumes with 100x100x100 voxels in 40 time
steps) containing few cells that are moving in space and time and performing several
cell divisions. The dataset contains also partial cell movements starting and ending
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Fig. 2.3. 3D projection of the 4D segmentation of the artificial dataset where we can see cells
moving and dividing inside the 4D volume.

Fig. 2.4. 3D projection of the 4D points of the extracted cell trajectories.

inside the 4D data. In fact, here we created directly the 4D segmentation, described
in section 2.1, which gives us the 4D spatio-temporal tree structures corresponding to
cells movements and divisions. The 3D projection of that 4D segmentation is given
in Fig. 2.3. Then we performed computation of constrained distance functions D
and DB . After, we built the potential V and performed both steps (steepest descent
of V and centering by DB) of cell trajectories extraction. The resulting extracted
trajectories are presented in Fig. 2.4. By different colors we plot 3D projection of
4D points (represented by small 4D spheres) of different trajectories. As we can
see, all trajectories, including partial and dividing, are correctly extracted. Since the
trajectories are overlapping we can see only the color of the last drawn one, e.g. the
red trajectory is the same as the blue one before the first division.

In the second testing example, we created two touching branches of a 4D seg-
mentation imitating situation that the cell nuclei are not perfectly separated due to
acquisition errors. And, we tested our method in an extremal case when the branches
are fully overlapped in space in two subsequent time steps (we used the same cell
identifiers for those two time steps when building the 4D segmentation). In Fig. 2.5
we present the result obtained after the first step of our method, i.e. after the back-
tracking in time by the steepest descent direction of V . Since we perform only the
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steepest descent and not the centering in this step, we can obtain two separated paths.
When we center them in the second step they will remain different (although with two
equal points) and thus they will represent two correctly extracted cell trajectories.

Fig. 2.5. Separated steepest descent paths before their centering.

3. Numerical experiment on real zebrafish embryogenesis data. For the
testing of the proposed method on real data we use the representative dataset with
acquisition step dθ = 67 seconds, Nθ = 479 number of time steps and with dimension
of every 3D image 512x512x104 voxels. The real voxel size is dx1 = dx2 = dx3 = 1.37
micrometer in every spatial direction. In the last time step Nθ = 479 biologist selected
manually cells forming seven presumptive organs during the zebrafish brain early
embryogenesis (hypoblast, presumptive hypothalamus, ventral telencephalon, right
eye, right optic stalk, left eye, left optic stalk). Using developed approach we can
track those cell populations backwards (and then also forward) in time and thus
follow their dynamics and clonal history.

Before tracking, all 3D images of the processed data were filtered by 10 steps of
geodesic mean curvature flow (GMCF) model [8, 2, 11] and the cell nuclei identifiers
were detected by 10 steps of level set center detection (LSCD) algorithm [6, 2, 11].
From several millions of cell identifiers we built the 4D segmentation and then the
cell trajectories were extracted by the approach developed in section 2.

We present here Figs. 3.1 and 3.2 showing results of the tracking procedure. For
the cell trajectories visualization we built software, running on graphics card, where we
can fluently zoom, rotate and animate in time 3D scene even with very high number of
trajectories. The trajectories are displayed as short lines (in given colors) connecting
a few subsequent spatio-temporal points with a freely chosen starting time. In Fig. 3.1
we show trajectories of a subset of all cells where different colors represent different
cell populations. The visualized subset represents five cell populations, presumptive
hypothalamus (green), right eye (blue) , left eye (red), right optic stalk (brown) , left
optic stalk (yellow). By the colored thick tubes we also plot the mean trajectory of
every cell population. One can see the evolution of cells from the 0th still chaotic
stage, through 100th, 200th, 300th, 400th time steps where the cells are becoming
more compactly localized up to 479th time step where the cells were marked by
biologist.

In Fig. 3.2 we plot another useful information which can be obtained from the
cell tracking algorithm, the average velocity of the mean trajectory of every cell pop-
ulation. In order to compute the average velocity at time t we divide the length of
trajectory (in micrometers) in time interval [t − 10dθ, t + 10dθ] by the length of the
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time interval 20dθ (in seconds).

4. Conclusions. In this paper we presented new algorithm for the cell tracking
in 3D+time microscopy data. We applied the tracking method to complex stages of
the zebrafish early embryogenesis images. Together with [9] it is a first cell tracking
method able to deal with such type of data. We discussed mathematical models
forming the basis of the tracking method and present their numerical discretizations
and algorithmic realizations.
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ment has helped to obtain presented results.
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Fig. 3.1. Visualization of the formation of presumptive organs during embryogenesis obtained
by backward tracking of cells selected by biologists in time step 479. The visualization presents five
cell populations in time steps 0, 100, 200, 300, 400 and 479.
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Fig. 3.2. The graphs of the average velocity (in micrometer per second) of the mean trajectory
for selected cell populations forming presumptive organs during the zebrafish brain early embryoge-
nesis.


