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We present a set of techniques that enable us to segment objects from 3D cell membrane images.

Particularly, we propose methods for detection of approximate cell nuclei centers, extraction of the

inner cell boundaries, the surface of the organism and the intercellular borders—the so called

intercellular skeleton. All methods are based on numerical solution of partial differential equations.

The center detection problem is represented by a level set equation for advective motion in normal

direction with curvature term. In case of the inner cell boundaries and the global surface, we use the

generalized subjective surface model. The intercellular borders are segmented by the advective level set

equation where the velocity field is given by the gradient of the signed distance function to the

segmented inner cell boundaries. The distance function is computed by solving the time relaxed eikonal

equation. We describe the mathematical models, explain their numerical approximation and finally we

present various possible practical applications on the images of zebrafish embryogenesis—computation

of important quantitative characteristics, evaluation of the cell shape, detection of cell divisions and

others.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cell membrane is a fundamental structure of living organisms,
from bacteria to humans, separating the interior of cells from the
outside environment. Inspection of these membranes is necessary
whenever we want to evaluate the shape of a cell or measure
some quantities such as volume or contact surface with the
neighboring cells. The modern biological and microscopy tools
enable us to selectively stain the membrane structures and then
perform the imaging that can vary from a single 2D image to long
series of 3D images mapping the time evolution of an organism or
its parts.

Although biologists have been so far mainly exploiting image
data sets by manual analysis, 3D and 3Dþtime confocal micro-
scopy imaging of entire living organisms produce huge amounts
of data that can be properly analyzed only through automated
procedures, using computers and appropriate image processing
algorithms. While single 2D or 3D images can be sometimes
processed using the most simple approaches, when dealing with
long time sequences of data, the methods must be robust enough
to handle the possible imperfections of the images – noise,
ll rights reserved.

h.sk (O. Stašová).
artifacts, incomplete boundaries of objects, etc. Imaging the time
evolution of an organism always requires some sort of compro-
mise – maximizing the signal quality, minimizing the time
interval between two subsequent images, taking in account the
limited resistance of the living organism to the action of the
technical device, etc. As a consequence, we must always expect a
certain level of noise, spurious structures and other effects and
any method applied to the images must be well adapted to such
difficulties.

This paper suggests several mathematical and computational
image processing techniques for treating the cell membrane
images. We use 3D biphoton laser scanning microscopy images
taken throughout early embryogenesis of zebrafish (Danio rerio)
embryos. First, we show how we can segment the inner bound-
aries of all individual cells. We use a method based on numerical
solution of a PDE model, the so called generalized subjective
surface equation [6,14,13,16,22]. Then we show that the same
strategy can be used to segment the global surface (in our case the
surface of the part of the embryo visible in the image). Finally, we
present a technique to construct the so called intercellular
skeleton (cell contact surface). Here, we first compute the signed
distance function to the segmented inner boundaries of the cells
by solving the time relaxed eikonal equation. After, we apply the
advective level set model with the velocity field given by the
gradient of the computed distance function. As a result we obtain
the ridges of the signed distance function that represent the
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desired intercellular skeleton. In order to perform all these
segmentations automatically, we also need to automatically
construct appropriate initial segmentation functions. In case of
the cell border segmentation, the compact support of the initial
function should be located in the neighborhood of the (approx-
imate) cell center. Therefore, before we start explaining the
segmentation techniques, we present a method for automatic cell
nuclei center detection. This detection uses cell nuclei images that
can be scanned simultaneously with the membranes, in the
second channel of a confocal microscope.

Segmentation of cell nuclei and cell membrane images as well
as the center detection problem was previously discussed e.g. in
[1,9,13,22]. The methods presented in these works were success-
fully applied in practice and allowed us to obtain a number of
results [1,2,5,12,22]. The extensive testing indicated both advan-
tages and drawbacks of the proposed techniques, possibilities of
their improvement and a large variety of further applications. The
main goal of this paper is to apply different, more efficient
numerical approaches, apply them to advanced analysis of
embryogenesis image data and thus provide a complex, experi-
ence based explanation of processing and analysis of cell mem-
brane images.

Speaking in detail, we provide here an improvement of the
efficiency of the center detection algorithm introduced in [9]. This
is achieved by applying the Rouy–Tourin approximation to the
term representing the motion of level sets in normal direction.
This modification leads to both CPU time improvement and better
accuracy of the result. The solution of the subjective surface
models was simplified by applying the upwind discretization of
the advective terms. We would like to emphasize that the
efficiency of the methods has to be viewed in the context of
processing large datasets and a huge number of individual cells.
Being aware of the practical difficulties and demands that such
data bring, it is necessary to concentrate the research on finding
the numerical methods as efficient as possible.

Another important improvement introduced in this paper
concerns the detection of the intercellular skeleton. Contrarily
to [2], we provide here a 3D method for the extraction of the
skeleton, we apply it to a whole embryo, which involves also the
embryo surface segmentation, we validate the technique and we
mention and illustrate several practical applications, i.e determin-
ing the cell shapes and quantitative characteristics of the embryo
or detection of the cell layers.

Together with these novel contributions, the paper also pro-
vides to the reader a synthesis of the cell membrane image
processing methodology. Therefore it contains the full description
of the corresponding set of mathematical models and a detailed
explanation of the semi-implicit time discretization and the finite
volume space discretization. To conclude, we provide a paper
with a complete and transparent description of the membrane
image processing chain, with the numerical methods that
appeared to be the most efficient in practical experiments, in a
way that would make the algorithms easy to understand and
reproduce, with validation and a number of suggestions of
practical applications.

The numerical approximations of the models are based on the
following ideas. The time discretization of the time relaxed
eikonal equation and the advective level set model is explicit
while the center detection equation and generalized subjective
surface model, since they contain nonlinear curvature terms, are
discretized by the semi-implicit approach. As for the space
discretization, the advective term in the subjective surface model
and in the advective level set model is approximated by applying
the upwind principle. The center detection equation and the
eikonal equation contain the term that represents motion of level
sets in normal direction. Here we apply the Rouy–Tourin scheme.
The curvature term in the center detection and the generalized
subjective surface model is discretized by the finite volume
technique. The application of the semi-implicit time discretiza-
tion to the generalized subjective surface equation represents an
improvement with respect to [22] where the explicit approach
was used. The semi-implicit method guarantees the uncondi-
tional stability of the curvature term and thus it allows larger
time discretization steps. The Rouy–Tourin scheme can signifi-
cantly improve the efficiency of the center detection method
compared with [9] where the so called flux-based level set
method [8] was applied. The numerous tests also confirmed that
the upwind strategy provides results of sufficient quality and it
represents a more simple alternative to the flux-based level set
method in case of the subjective surface segmentation [1,13,14].

From the biological point of view, we provide a complex set of
techniques for analysis of the cell images. The computer analysis can
provide an insight that would be impossible to achieve by an eye
inspection and allows us to perform various measurements and
statistical evaluations. As we will show, the results of the segmenta-
tion algorithms together with the center detection method can
provide a number of useful information about the individual cells or
about the whole organism. The segmented inner boundaries of the
cells can be used for example for computation of the inner volume
of each cell or for detection of cell divisions. The global surface
segmentation provides the information about the volume and sur-
face of the whole organism, the local and global densities of cells,
etc. The intercellular skeleton can be used to measure the cell
contact surface, evaluate the shape of the cells, detect specific cell
groups or layers. All these results can be further used for analysis of
4D data (the time evolution of an organism) or for comparison of
different individuals. We provide several improvements and exten-
sions with respect to the related works, e.g. [1,20,22]. We use the
cell shape evaluation described in [20] but we inspect later stages of
embryonic development with a much larger number of cells and
different features. Contrarily to [22], we segment both inner and
outer (intercellular) borders and the global surface. In addition to
the applications mentioned in [1], we indicate e.g. how we can
recognize the epiblast layers at gastrulation stages of embryogenesis
or calculate some quantitative characteristics of the organism.

The paper has the following organization. First, we present the
data we are dealing with and we briefly describe their preproces-
sing. Then we explain the methods—for each method, we first
present the mathematical model and then we describe the
numerical approximation. In the last section, we suggest some
possible practical applications of the segmentation methods, we
show some results obtained from the zebrafish embryogenesis
images and we also provide a validation of the computed inter-
cellular skeleton done by comparing with a manual segmentation.
2. Cell image data and image preprocessing

Our research was mainly focused on images representing the
early embryonic development of zebrafish. This animal is a
privileged model organism in developmental biology because its
embryos are easily available, develop rapidly and are transparent.
The images are obtained by a biphoton laser scanning microscopy
with one detection channel corresponding to cell membranes.
This one-color representation is equivalent to the greylevel scale,
therefore we will consider our images to be represented by a
scalar grey intensity function.

Let us denote by u0
M : O-R the intensity function representing

the cell membrane image, O being a 3D rectangular image
domain. Without loss of generality we can assume that
0ru0

M r1. Fig. 1 shows a typical example of such an image, in
horizontal and vertical slice views. This image represents a part of



Fig. 1. The cell membrane images. Left, optical section corresponding to the xy scanned plane. Right, the xz slice, i.e. orthogonal to the imaging plane views.

Fig. 2. An illustration of the data preprocessing (denoising). Left, a detail of the original image. Right, the filtered image.
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an embryo (scanned from the animal pole) at the late gastrulation
stage of embryonic development, the stage that precedes the
formation of organs, and covers about ten thousand cells.

As we can see, the level of noise in these images is rather high,
although we present data with a relatively slow pixel time rate
(4:88 ms=pixel). It would be practically impossible to proceed
without first removing the noise with an appropriate filtering
algorithm. In our case, we used the so called geodesic mean
curvature flow model [3,11,4], which was chosen from several
possibilities after extensive testing [12]. Let u0

Mf
denote the result

of the filtering. An example is shown in Fig. 2 where we display a
detail of original and filtered data.
3. Algorithms for the cell image processing

In this section, we describe several methods designed to
extract information from cell membrane images. A necessary
preliminary step for all these techniques is the detection of cell
nuclei centers, therefore we start up by explaining a method that
can be generally used for counting and locating the objects in
various types of images. For each method, we first present the
corresponding mathematical model and after we explain its
numerical approximation. All techniques are presented in such a
form that their implementation should be straightforward.

3.1. Detection of cell nuclei centers

In the process of the cell boundary segmentation, we want to
work individually with each cell. For this purpose we first need to
know the approximate position of the cell, i.e., the approximate
position of its center. Though it might be difficult to obtain such
centers from the cell membrane image, they can be successfully
located using the cell nuclei image which is acquired simulta-
neously with the membrane image but in a separate channel
[9,17].

The principle of the center detection algorithm, applicable to a
general object counting and locating problem, is based on the
following idea [9]. As we can see in Fig. 3, the cell nuclei image
contains objects of relatively high intensity with respect to the
background. Our goal is to locate the significant objects, i.e. the
cell nuclei, and omit the spurious structures like noise, artifacts or
local structures other than nuclei. This can be done if we realize
that any object visible in the image is represented by certain
image intensity level sets. All objects can then be classified
according to the diameter of these level sets—level sets with a
relatively large diameter, 05c1rdrc2, correspond to significant
objects, while the ones with a small diameter, 0od5c1, can be
identified as spurious structures.

In general, the level sets are closed surfaces. If we want to
select the ones with large diameter, we simply let all their points
move at a constant speed in the direction of the corresponding
inner normal to the level set. Such a motion leads to shrinking and
finally disappearing of the level set. During this process, the level
sets with small diameter naturally disappear quickly whereas the
ones with large diameter are observable in a much longer time
scale. Therefore, if we choose an appropriate stopping time, the
important objects are still present while the spurious ones have
already disappeared.

In order to speed up the described advective level set motion,
we take the normal velocity V of any level set in the form
V ¼ dþmk where d and m are constants and k is the mean



Fig. 3. Demonstration of the nuclei center detection process. Top left, 2D slice of the nuclei image. Top middle, plot of the corresponding intensity function. Top right,

intensity function of the filtered data. Bottom left and middle, the intensity function after 5 and 15 steps of the evolution given by (1). Bottom right, 2D slice of filtered data

and the corresponding centers constructed after five time steps of the evolution. This number of time steps was determined as optimal for the presented image.

Fig. 4. The finite volume mesh.
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curvature. Then we can model the level set evolution process as
follows:

ut�djruj�mjrujr �
ru

jruj

� �
¼ 0, ð1Þ

coupled with the zero Neumann boundary condition. The initial
condition for this equation is u0 ¼ u0

Nf
where u0

Nf
is the filtered cell

nuclei image. Similarly as in the case of cell membrane images,
we used the GMCF filtering method.

Due to the shrinking and smoothing of all structures in the
described evolution process, we observe decreasing of the num-
ber of local maxima of the solution u satisfying Eq. (1). This
decrease is fast at the beginning and later it is stabilized. We stop
this process when the slope of the decreasing is below a certain
threshold. The approximate cell nuclei centers are represented by
the points where the function u reaches its local maxima at the
stopping time TC. The principle of the center detection process is
illustrated in Fig. 3.

Now let us explain the discretization of the model (1). Let NC

be the number of time steps and tC ¼ TC=NC the corresponding
uniform time step. We consider the following semi-implicit time
discretization:

un�un�1

tC
�djrun�1j�mjrun�1jr �

run

jrun�1j

� �
¼ 0, ð2Þ

for any n¼ 1, . . . ,NC . This type of time discretization guarantees
the unconditional stability of the curvature term.

In order to perform the space discretization, we apply the
finite volume strategy where the finite volumes of the mesh T h

are identified with the voxels of the 3D image. Let us suppose that
any volume (voxel) Vijk, i¼ 1, . . . ,N1, j¼ 1, . . . ,N2, k¼ 1, . . . ,N3, is
represented by a cube with side length h. Let mðVijkÞ denote the
volume of Vijk and cijk its barycenter. By un

ijk we will denote the
approximate value of un in cijk (Fig. 4).

For all volumes Vijk, we define two index sets. First, let Nijk

denote the set of all (p,q,r) such that p,q,rAf�1,0,1g,
jpjþjqjþjrj ¼ 1. Then, let Pijk represent the set of all (p,q,r)
satisfying p,q,rAf�1,0,1g, jpjþjqjþjrj ¼ 2. Let us first consider
ðp,q,rÞANijk. The line connecting the center of Vijk and the center
of its neighbor Viþp,jþq,kþ r is denoted by spqr

ijk and its length by
mðspqr

ijk Þ. The faces of the finite volume Vijk are denoted by epqr
ijk with
area mðepqr
ijk Þ and normal npqr

ijk . Let xpqr
ijk be the point where the line

spqr
ijk crosses the face epqr

ijk . Finally, for any ðp,q,rÞAPijk, let ypqr
ijk

denote the midpoints of the voxel edges. The approximate value
of un�1 at xpqr

ijk and ypqr
ijk , where (p,q,r) belongs to the corresponding

index set, is denoted by upqr
ijk , omitting the time index, as only the

values from the time level n�1 will be needed in these points.
In order to implement the Neumann boundary condition, we

use the reflection principle, i.e. we consider additional volumes
with indices i¼0, i¼N1þ1, j¼0, j¼N2þ1, k¼0, k¼N3þ1 and
we set un

0jk ¼ un
2jk for all j¼ 1, . . . ,N2, k¼ 1, . . . ,N3 and analogously

for the other domain boundaries.
Now let us integrate (2) over the finite volume Vijk. We get

Z
Vijk

un�un�1

tC
dx�

Z
Vijk

djrun�1jdx�

Z
Vijk

mjrun�1jr �
run

jrun�1j

� �
dx¼ 0: ð3Þ

The time derivative term can be approximated straightforwardly:Z
Vijk

un�un�1

tC
dx�mðVijkÞ

un
ijk�un�1

ijk

tC
ð4Þ

and now we explain in details the approximation of the other two
terms on the LHS of (3).

The second term contains the absolute value of the gradient
jrun�1j. A good quality approximation of this expression is
provided by the Rouy–Tourin scheme [15]. Let us define for any
ðp,q,rÞANijk:

Dpqr
ijk ¼ ðminðun�1

iþp,jþq,kþ r�un�1
ijk ,0ÞÞ2 ð5Þ
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Fig. 5. Solution of Eq. (13) obtained by the Rouy–Tourin scheme (top) and the flux-based level set method (bottom). We display results for h¼0.1 (left), h¼0.05 (middle)

and h¼0.025 (right). The images are contour plots of the exact (black) and numerical solution (red), the innermost circle represents the zero level set. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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and further

M100
ijk ¼maxðD�1,0,0

ijk ,D1,0,0
ijk Þ, M010

ijk ¼maxðD0,�1,0
ijk ,D0,1,0

ijk Þ,

M001
ijk ¼maxðD0,0,�1

ijk ,D0,0,1
ijk Þ ð6Þ

Then we get the approximations

jrun�1j �
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M100

ijk þM010
ijk þM001

ijk

q
ð7Þ

Z
Vijk

djrun�1jdx�
dmðVijkÞ

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M100

ijk þM010
ijk þM001

ijk

q
: ð8Þ

The integral of the curvature term in (3) can be rewritten as
follows:Z

Vijk

mjrun�1jr �
run

jrun�1j

� �
dx¼ mQ

n�1

ijk

X
Nijk

Z
epqr

ijk

run

jrun�1j
npqr

ijk dg, ð9Þ

where Q
n�1

ijk is an average modulus of jrun�1j in Vijk. To complete the

discretization, we need to approximate Q
n�1

ijk and its equivalent

Qpqr;n�1
ijk —the average modulus of jrun�1j on the voxel faces epqr

ijk .

Let us note that in practical implementations the absolute value of

gradient jrun�1j in the curvature term, since it appears in denomi-

nator, is substituted by the regularized term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjrun�1j2

p
. Then

instead of Q
n�1

ijk , Qpqr;n�1
ijk we use their regularized equivalents Q

n�1

e;ijk ,

Qpqr;n�1
e;ijk .

Now let us consider the midpoints ypqr
ijk , ðp,q,rÞAPijk, of the

voxel edges. The values of un�1 in these points can be approxi-
mated as

upq0
ijk ¼

1
4ðu

n�1
ijk þun�1

iþp,j,kþun�1
i,jþq,kþun�1

iþp,jþq,kÞ,

up0r
ijk ¼

1
4ðu

n�1
ijk þun�1

iþp,j,kþun�1
i,j,kþ rþun�1

iþp,j,kþ rÞ,
u0qr
ijk ¼

1
4ðu

n�1
ijk þun�1

i,jþq,kþun�1
i,j,kþ rþun�1

i,jþq,kþ rÞ:

Let us denote by rpqrun�1
ijk the approximation of the gradient in

the barycenter xpqr
ijk of the face epqr

ijk , ðp,q,rÞANijk, of the voxel Vijk.
Using this notation, we can define

r
p00un�1

ijk ¼ ðpðu
n�1
iþp,j,k�un�1

ijk Þ=h, ðup10
ijk �up,�1,0

ijk Þ=h, ðup01
ijk �up,0,�1

ijk Þ=hÞ,

r
0q0un�1

ijk ¼ ððu
1q0
ijk �u�1,q,0

ijk Þ=h, qðun�1
i,jþq,k�un�1

ijk Þ=h, ðu0q1
ijk �u0,q,�1

ijk Þ=hÞ,

r00run�1
ijk ¼ ððu

10r
ijk �u�1,0,r

ijk Þ=h, ðu01r
ijk �u0,�1,r

ijk Þ=h, rðun�1
i,j,kþ r�un�1

ijk Þ=hÞ:

The required approximations can be now defined as

Qpqr;n�1
ijk ¼ jr

pqrun�1
ijk j, Qpqr;n�1

e,ijk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þjr

pqrun�1
ijk j

2
q

,

Q
n�1

ijk ¼
1

6

X
Nijk

jr
pqrun�1

ijk j, Q
n�1

e,ijk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þ

1

6

X
Nijk

jr
pqrun�1

ijk j
2

vuut ð10Þ

and we can complete the approximation of (9):

Z
Vijk

mjrun�1jr �
run

jrun�1j

� �
dx� mQ

n�1

ijk

X
Nijk

mðepqr
ijk Þ

mðspqr
ijk Þ

un
iþp,jþq,kþ r�un

ijk

Qpqr;n�1
ijk

� ð11Þ

Let us mention that the technique described above was tested
in [14] together with other methods based on similar principles.
Among the examined methods, this type of discretization
appeared to be the most suitable for practical purposes due to
its simplicity and overall good performance.

Finally, we can write the fully discrete formulation of the
center detection equation (1). Summarizing the approximations
(4), (8) and (11), realizing that mðVijkÞ ¼ h3, mðepqr

ijk Þ ¼ h2, mðspqr
ijk Þ ¼ h

and denoting the space step h for the center detection problem by
hC we get

1þm tC

h2
C

X
Nijk

Q
n�1

ijk

Qpqr;n�1
ijk

0
@

1
Aun

ijk�m
tC

h2
C

X
Nijk

Q
n�1

ijk

Qpqr;n�1
ijk

un
iþp,jþq,kþ r



Fig. 6. Nuclei centers obtained with flux-based level set method (larger spheres)

and Rouy–Tourin discretization (small spheres) applied to (1).

Table 1
Comparison of the flux-based level set method and the Rouy–Tourin discretization

applied to (13).

h t R–T t FBLSM L2ðOÞerror R–T L2ðOÞerror FBLSM

0.1 0.05 0.025 2.667512e�2 6.581266e�2

0.05 0.025 0.0125 1.502070e�2 3.273901e�2

0.025 0.0125 0.00625 7.969409e�3 1.650439e�2

Table 2
Comparison of the flux-based level set method and Rouy–Tourin discretization

applied to (1).

Method tC Time steps Centers CPU (s)

FBLSM 0.00125 4 8670 314.77

R-T 0.0025 3 8647 202.23
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¼ un�1
ijk þd

tC

hC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M100

ijk þM010
ijk þM001

ijk

q
: ð12Þ

At the end, we present two experiments illustrating the
advantages of the Rouy–Tourin approximation in order to clarify
our motivation for using this scheme. In [9], contrarily to this
paper, the so called flux-based level set (FBLS) technique was
applied in order to discretize (1). Figs. 5 and 6 together with
Tables 1 and 2 show the comparison of the two methods. The first
experiment is a 2D test example where we solve the following
equation:

ut�jruj ¼ 0, ð13Þ

on the domain [�1,1]� [�1,1] with the initial condition

u0ðx,yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
�0:95

and the boundary condition

uðx,y,tÞ ¼ Fðx,y,tÞ 8ðx,yÞA@O,

where

Fðx,y,tÞ ¼ u0ðx,yÞþt

is the exact solution of Eq. (13) representing shrinking of circular
level sets of the function u at a constant speed v¼1. Fig. 5 shows
the results for three different space discretization steps at time
T¼0.75. As we can see, the Rouy–Tourin scheme provides more
precise results. This visual inspection is verified by Table 1 that
shows the error of the numerical solutions corresponding to the
pictures. Another advantage of the Rouy–Tourin scheme is that in
general, it is stable (in 2D) if trh=2, where t and h are the time
and space discretization steps, while the basic flux-based level set
method requires trh=4. Therefore, the Rouy–Tourin scheme
allows larger time steps which leads to shorter CPU time needed
for the computation.

The second experiment is a practical example where we detect
cell nuclei centers in a selected subvolume of a 3D image. As we
can see in Fig. 6, the quality of the results obtained by the two
methods is very similar—the positions of the detected centers
only slightly differ in some cases and the difference in the number
of detected centers is less than 0.3% of the total number of
centers. The difference is in the efficiency of the methods
(Table 2)—since the Rouy–Tourin discretization allows us to use
larger time steps, the total CPU time is significantly shorter. To
conclude, applying the Rouy–Tourin scheme, we gain in both
performance and accuracy of the results. In addition, the Rouy–
Tourin scheme is also more simple to implement.
3.2. Segmentation of the inner cell boundaries

As we can see e.g. in Fig. 1, the cell membranes have a certain
nonnegligible thickness which means that we can distinguish
between the inner and outer boundaries of the cell. If we consider
the simplifying assumption that the cells are attached to each
other, the outer boundary is equivalent to the intercellular border.
Let us first describe the extraction of the inner boundary of the
cell which will be later used as the basic step for obtaining the
intercellular skeleton.

Let us assume that sl, l¼ 1, . . . ,nC , are the points in R3 where
the approximate cell centers were detected by the center detec-
tion method. In order to segment the inner boundaries of the
cells, we construct an initial segmentation function for any of
these points. The compact support of any such function should be
situated inside its respective cell. After, we let the function evolve
by solving the following generalized subjective surface (GSUB-
SURF) equation [6,14,13,16,22]:

ut�warg � ru�wdgjrujr �
ru

jruj

� �
¼ 0, ð14Þ

where u is the evolving function, uð0,xÞ ¼ u0ðxÞ (the initial seg-
mentation function) and we consider the zero Dirichlet boundary
condition on @O. The function g is the so called edge detector and
it is of the form:

gðsÞ ¼
1

1þKs2
, KZ0: ð15Þ

It is applied to the gradient of the filtered image additionally
smoothed by the Gaussian kernel with a small variance s
(g ¼ gðjru0

sjÞ, u0
s ¼ Gs�u0

Mf
). The essential property of this function

is that its negative gradient points towards the edges in
the image.

The model (14) is a generalization of the subjective surface
method introduced in [16] where the authors use the following
model:

ut�jrujr � g
ru

jruj

� �
¼ 0:

This equation is equivalent to (14) if we set wa¼1.0 and wd¼1.0.
By introducing the new parameters wa and wd that can be seen as
weights for the advection and diffusion processes, we obtain a
more general and more flexible model. Having the possibility to
control separately the two processes, we have the potential to
improve the efficiency of the method, cf. [1].

The time discretization of the GSUBSURF equation is semi-
implicit as in the case of the center detection problem. Let us
suppose that we solve the equation in the time interval [0,TS] and
let NS be the corresponding number of uniform time steps and the
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time step tS ¼ TS=NS. Then for all n¼ 1, . . . ,NS we get

un�un�1

tS
�warg � run�1�wdgjrun�1jr �

run

jrun�1j
¼ 0: ð16Þ

For the space discretization we use the finite volume mesh and
the corresponding notation described in Section 3.1. The Dirichlet
boundary condition is implemented by setting un

ijk ¼ 0 for the
volumes touching the boundary of the domain and all corre-
sponding definitions and further steps are then valid only for the
inner volumes Vijk. Integrating (16) over the volume Vijk we obtainZ

Vijk

un�un�1

tS
dx�

Z
Vijk

warg � run�1 dx

�

Z
Vijk

wdgjrun�1jr �
run

jrun�1j
dx¼ 0 ð17Þ

and the time derivative term is again approximated byZ
Vijk

un�un�1

tS
dx�mðVijkÞ

un
ijk�un�1

ijk

tS
�

In order to discretize the other two terms, we have to
approximate the average modulus of g ¼ gðjru0

sjÞ. Using the
definitions stated in Section 3.1, we can define

gijk ¼ g
1

6

X
Nijk

jr
pqru0

s;ijkj

0
@

1
A:

Now we can approximate the advection term in (17). For that
purpose, we define the index set Iijk ¼ fð1,0,0Þ,ð0,1,0Þ,ð0,0,1Þg and
the following central differences for all ðp,q,rÞA Iijk:

Dpqr
ijk g ¼ ðgiþp,jþq,kþ r�gi�p,j�q,k�rÞ=ð2hÞ: ð18Þ

Then we apply the upwind principle and we getZ
Vijk

ð�warg � ruÞdx

�wamðVijkÞ
X
Iijk

maxð�Dpqr
ijk g,0Þ

un�1
ijk �un�1

i�p,j�q,k�r

mðs�p,�q,�r
ijk Þ

 

þminð�Dpqr
ijk g,0Þ

un�1
iþp,jþq,kþ r�un�1

ijk

mðspqr
ijk Þ

!
: ð19Þ

The diffusion term can be approximated similarly as in the
case of the center detection, according to (11)Z

Vijk

wdgjrun�1jr �
run

jrun�1j

� �
dx

�wdgijkQ
n�1

ijk

X
Nijk

mðepqr
ijk Þ

mðspqr
ijk Þ

un
iþp,jþq,kþ r�un

ijk

Qpqr;n�1
ijk

� ð20Þ

Now if we set h¼ hS, we can write the fully discrete form of the
GSUBSURF equation (14)

1þwdgijk
tS

h2
S

X
Nijk

Q
n�1

ijk

Qpqr;n�1
ijk

0
@

1
Aun

ijk�wdgijk
tS

h2
S

X
Nijk

Q
n�1

ijk

Qpqr;n�1
ijk

un
iþp,jþq,kþ r

¼ un�1
ijk �wa

tS

hS

X
Iijk

ðmaxð�Dpqr
ijk g,0Þðun�1

ijk �un�1
i�p,j�q,k�rÞ

þminð�Dpqr
ijk g,0Þðun�1

iþp,jþq,kþ r�un�1
ijk ÞÞ: ð21Þ

3.3. The global surface segmentation

The model (14) is a powerful segmentation tool that can be
used to extract objects from various images, e.g., in case of
embryogenesis images, the cell nuclei or cell structures [1,7].
The cell membrane images can be used to segment not only the
individual cells but also the surface of the whole embryo,
respectively, the part of the embryo visible in the image. In this
case, Eq. (14) is applied without change, the only thing that has to
change is the initial segmentation function. As we have men-
tioned above, in case of a single cell segmentation, the compact
support of the initial segmentation function should be situated in
the neighborhood of the approximate cell center. In case of
embryo segmentation, the compact support of the initial seg-
mentation function should cover the whole embryo. Then, as the
function is evolving according to (14) with the edge detector (15),
its isosurfaces are attracted to the nearest edge—the border of the
embryo.

3.4. Extraction of the intercellular skeleton

As we have already mentioned, the starting point for extrac-
tion of the intercellular skeleton is the segmentation of the inner
boundaries of the cells obtained by the GSUBSURF segmentation.
The procedure consists of two steps. The first step is the
computation of the signed distance function to the segmented
inner borders. In the second step, the gradient of the computed
signed distance function is used to construct the vector field for
the advection part of the subjective surface segmentation model.
This segmentation extracts the ridges of the signed distance
functions that represent the intercellular borders.

3.4.1. Computation of the signed distance function

Let us denote by O0 the set of curves representing the inner
cell borders. The distance function can be computed in several
ways, analytically or by using some numerical method, cf. e.g.
[19,24]. Within the scope of our research, we tested extensively
the application of the eikonal equation with time relaxation
(cf. [2]) that reads as follows:

dtþjrdj ¼ 1: ð22Þ

The equation is solved in the domain O� ½0,TD� where O is the
image domain and it is coupled with a Dirichlet type condition:

dðx,tÞ ¼ 0, xAO0 �O: ð23Þ

By the problem formulated in this way the solution d approaches,
as time is evolving, the distance function to the set O0. The signed
distance function d7 can be constructed straightforwardly, since
the result of the cell segmentation is a level set function. Choosing
one of the level sets to represent the inner boundary of the cell,
we are able to recognize the inner and outer parts of the cell. Then
we set d7 ¼�d inside the cell and d7 ¼ d outside.

In order to construct the numerical approximation of (22), we
recall the center detection problem. We can see that (22) has a
similar structure as the center detection model (1) with the
difference that d¼�1 and the curvature term is replaced by a
constant f¼1. Therefore we can again apply the Rouy–Tourin
scheme and the notation and approximations stated in (5)–(7)
where we substitute d for u. Considering tD the time step and hD

the space step of the discretization, we obtain the discrete
equation:

dn
ijk ¼ dn�1

ijk þtD�
tD

hD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M100

ijk þM010
ijk þM001

ijk

q
: ð24Þ

This scheme is stable for tDrhD=3 and it produces mono-
tonically increasing updates that are gradually approaching a
steady state—the approximation of the distance function. Due to
this property, we can implement (24) in a computationally
efficient way. Let us consider the index set I of all indices (i,j,k)
and the set F n that contains the indices ði,j,kÞAI of the volumes
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Fig. 7. Computation of the signed distance function to four 3D geometrical shapes. Right, a 2D cut of the contour plot of the distance function.

Table 3
Computational tests for the method without fixing in 3D—the distance function to

four geometrical shapes.

nx tD Time steps L2ðOÞ-error CPU EOC

25 0.026̄ 118 8.195605e�2 0.16

50 0.013̄ 189 5.459197e�2 2.07 0.58616

100 0.006̄ 320 3.398842e�2 25.66 0.68365

200 0.003̄ 563 2.082350e�2 340.68 0.70683

400 0.0016̄ 390 1.244441e�2 5100 0.74272

Table 4
Computational tests for the method with fixing in 3D—the distance function to

four geometrical shapes.

nx tD Time steps L2ðOÞ-error CPU EOC

25 0.026̄ 118 8.195604e�2 0.11

50 0.013̄ 189 5.459197e�2 1.37 0.58616

100 0.006̄ 320 3.398842e�2 15.64 0.68365

200 0.003̄ 563 2.082349e�2 206.54 0.70683

400 0.0016̄ 390 1.244439e�2 2820 0.74272
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where the steady state has been already reached, i.e. there exists
such n0AN, n0rn, that dn0

ijk ¼ dn0�1
ijk . The set F 0 is given as follows.

Let us denote by O1 the union of the set O0 (the set of curves
representing the segmented inner boundaries of cells) with its
local (one voxel) neighborhood. At the beginning, we compute
exact distances to the set O0 in all voxels of O1. Then F 0 ¼O1 and
the method is given by Algorithm 1. The basic principle is that we
perform all computations only in the voxels that have not yet
reached the steady state. The number of these voxels and the
computational time needed to complete one time step of the
procedure gradually decrease until the values in all voxels
are fixed.

Algorithm 1. Fixing method for distance function.
	 Set d0
ijk to values of the exact solution for all ði,j,kÞAO1
	 n¼1, F 0 ¼O1
	 Do while Fn�1aI

	 Do for all ði,j,kÞAI

	 if ði,j,kÞAF n�1 then continue

	 else
	 dn
ijk ¼ dn�1

ijk þtD�
tD

hD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M100

ijk þM010
ijk þM001

ijk

q

	 if dn

ijk ¼ dn�1
ijk then F n ¼Fn�1 [ fði,j,kÞg
	 n¼nþ1
Let us now perform a test experiment to determine the
experimental order of convergence of the presented scheme and
verify the validity of the fixing strategy. Let us consider a problem
of computation of the distance function to four 3D geometrical
shapes as displayed in Fig. 7. These shapes are located in a
rectangular domain O¼ ½�1,1�3. Table 3 shows the EOC,
L1ðI,L2ðOÞÞ error and CPU time for the basic numerical (24). After,
we provide Table 4 that shows the results obtained by the
implementation represented by Algorithm 1. As we can see, the
fixing strategy provides a significant reduction of the necessary
computational time. Let us note that when the fixing is not
applied, the computation is stopped when Jdnþ1�dnJL1Ore151
or when a prescribed number of time steps is completed. In our
case, we prescribe exactly the same number of time steps that
were needed to fix all values by the fixing strategy. In practical
implementation, a value is fixed when jdnþ1

ijk �dn
ijkjre251.

Remark 1. The efficiency of the presented method can be
significantly improved if we realize the following fact. In order
to segment the intercellular boundaries by the advective level set
model, we do not necessarily need the exact distance function,
the important factor is the correct orientation of the vector field
given by the gradient of d7 and the correct position of its ridges.
As it follows from the character of the problem and also from
the numerical procedure, a sufficient result is obtained as soon as
the values in all image voxels are nontrivially updated by the
numerical (24), i.e. before they are definitely fixed. Thus,
the computational time can be considerably reduced while the
quality of the result is preserved, cf [2] for a demonstration.

3.4.2. Advective level set segmentation

As we have already mentioned, the intercellular borders
correspond to the ridges of the signed distance function. These
ridges could be extracted by the GSUBSURF segmentation
described in Section 3.2 with the signed distance function d (or
a function depending on it) playing the role of the edge detector g.
Since the velocity field given by the gradient of d does not induce
any difficulties that are usually present in the scanned images
(noise, spurious structures, incomplete borders), a simple advec-
tive level set model is sufficient, i.e., we solve the equation:

utþrg � ru¼ 0, ð25Þ

where ðx,tÞAO� ½0,TA� and gðxÞ ¼ ðd7 ðx,TDÞÞ
p according to [25] or

gðxÞ ¼ �1=ð1þKðd7 ðx,TDÞÞ
p
Þ with K40, p40 as in [16,13]. The

unknown function u is initialized by a piecewise constant profile
localized around the approximate cell center. Then it is evolved
by (25). Due to the properties of the function d, the isosurfaces of
the evolving function u are attracted to the ridges of the distance



Fig. 8. Segmentation of the inner cell boundaries. From the left: 2D slice of the corresponding cell nuclei image with detected centers, 2D slice of the cell membrane image

with an isosurface of the initial segmentation function, segmentation results (isosurface I¼128 of the segmentation function), 2D slice of the segmentation results.

Fig. 9. Mitosis detection. On the left, we can see a 2D slice of data with nuclei (red)

and membranes (green) superimposed and the initial segmentation functions

corresponding to the centers of the two nuclei. On the right, the result of

segmentation which is very similar for both centers. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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function and at the end they are attached to the borders of the
neighboring cells. The outer boundary of the cell is then repre-
sented by a chosen level set of the function uðx,TAÞ. For the
epithelial cell layer that covers the embryo as well as the cell
layer adjacent to the yolk cell, there is no ridge to stop the
evolution of the function u in the parts where there are no
neighboring cells (the apical surface of the cell). In this case, we
use the segmented surface of the embryo to complete the missing
boundary. Finally, the intercellular skeleton is formed by the
union of all segmented outer cell boundaries.

Eq. (25) is discretized using the explicit time approach and
upwind strategy given by (18) and (19). We can write

un
ijk ¼ un�1

ijk �
tA

hA

X
Iijk

maxðDpqr
ijk g,0Þðun�1

ijk �un�1
i�p,j�q,k�rÞ

�

þminðDpqr
ijk g,0Þðun�1

iþp,jþq,kþ r�un�1
ijk Þ

�
, ð26Þ

where tA and hA are the corresponding time and space steps.
Fig. 10. Segmentation of the embryo surface. Left, the initial condition. Right, the

segmentation result.
4. Experiments and practical applications

4.1. Segmentation of the inner cell boundaries

The first result that we present is the extraction of the inner
cell boundaries. As we have already mentioned, since we want to
segment the inside of the cell, we try to construct initial
segmentation function whose compact support does not exceed
the border of the cell. We proceed as follows. Supposing that we
have at disposal the approximate cell nuclei centers, we construct
a function with a constant positive value (e.g. u0ðxÞ ¼ 1) inside a
sphere centered in the detected center of the cell nucleus. Outside
the sphere, we set u0ðxÞ ¼ 0. Then we let the function evolve
according to the GSUBSURF model (14). In Fig. 8, we illustrate the
process on several selected cells. We show the cell nuclei with the
detected centers, after the corresponding cell membrane image
with the initial segmentation function and finally the segmented
inner cell boundaries. For this example, we set the following
values of segmentation parameters: K¼1000, wa¼10.0, wd¼0.2,
e¼ 10�3, s¼ 0:0001, tS ¼ 0:1, h1 ¼ h2 ¼ h3 ¼ 1:0. The process is
stopped when we do not observe any significant change of the
segmented object.

The segmentation of the inner cell borders has several useful
applications. Besides the extraction of the intercellular skeleton, it
can be used, for example, to determine the inner volume of the
cells (see Section 4.4). Another interesting application is the
detection of mitoses (cell divisions). The idea is illustrated in
Fig. 9. At a certain stage of the cell division (anaphase), the
nucleus is already split in two parts while the whole cell is not
divided yet. As a consequence, the center detection algorithm
finds two centers in a single cell. After, if we start the segmenta-
tion from these two centers, we obtain very similar results.
Therefore, by comparing the segmented objects belonging to
different nuclei centers, the cell divisions can be easily located.

Remark 2. In the results presented in this paper, the segmenta-
tion of all cells was fully automatic except the epithelial (outer-
most) cells. The shape of these cells is specific, they are very flat
and with dimensions several times larger than the dimensions of
the inner cells. The quality of the data in this region can vary
significantly, both the cell membranes and cell nuclei contain
artifacts and unexpected structures. Therefore, the algorithms
presented above as well as the center detection algorithm do not
always provide results of sufficient quality. For this reason, the
center detection in the epithelium was corrected manually and
the cell segmentation was approximated by the following proce-
dure. The size of each cell was estimated by the distance of its
center to its nearest epithelial neighbor. Then the epithelial region
was divided according to the Voronoi principle, taking in account



Fig. 11. Computation of the global cell density. Top and bottom left, segmented surface of the embryo at three different stages of the development. Bottom right, the plot of

time evolution of the global cell density.

Fig. 12. Computation of the local cell density. Top left, 2D slice of the segmented

embryo surface. Top right, the corresponding distribution of local cell density.

Bottom left, segmented surface of the embryo in 3D view. Bottom right, the

volume rendering of the local cell density with recognizable structures. Brighter

colors correspond to higher local density. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 5
The mean Hausdorff distance of the automatically segmented intercellular

skeleton from the gold standard.

Cells Min. MHD Max. MHD Mean MHD

37 0:482 mm 2:819 mm 0:939 mm
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the approximate cell size. As the structure of epithelial cells is
naturally similar to Voronoi tiling, this approach provides a
sufficiently good approximation, see Fig. 18.
4.2. Segmentation of the embryo surface

In order to segment the surface, i.e. the outer border of the
embryo, we have to construct the initial condition similar to the
embryo shape. We proceed similarly as in the case of cell segmenta-
tion, i.e. for each cell, we set u0ðxÞ ¼ c40 inside an ellipsoid
centered in the detected nucleus center and u0ðxÞ ¼ 0 outside. The
difference is that this time the ellipsoids should overlap so that their
union covers the whole visible part of the embryo. The ellipsoids are
oriented in such a way that their longest diameter is approximately
tangent to the surface of the embryo. In Fig. 10, we show such an
initial segmentation function together with the segmentation result.
This time we set K¼1000, wa¼10.0, wd¼2.0, e¼ 10�3, s¼ 0:0001,
tS ¼ 0:1, h1 ¼ h2 ¼ h3 ¼ 1:0. The stopping time was TS¼100.

The segmentation of the surface of the embryo can be used to
determine some quantitative characteristics of the developing
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organism like its surface or volume. The center detection algo-
rithm also provides the number of cells at each time step of the
imaging and therefore we are also able to compute the global or
local density of cells that can serve as useful criteria for compar-
ing the evolution of two different individuals. Thus we can see e.g.
the difference between organisms that develop in different con-
ditions, for example when they are treated with a drug. In Fig. 11
we show the segmented surface of the embryo at three different
stages of the development. Together with that, we provide a plot
of the time evolution of the global cell density. Fig. 12 displays
some local density results. The embryo is shown at an early stage
of organogenesis and the forming brain, spinal chord and somites
can be recognized in the membrane image as well as in the local
density visualization.
Fig. 13. Manually and automatically segmented outer cell boundaries. Top, the manu

Fig. 14. A detail of the inner cell boundary segmentation (left) wi
4.3. Extraction of the intercellular skeleton

As we have already mentioned before, the intercellular skele-
ton is given by the ridges of the distance function to the
segmented inner cell boundaries and by the embryo surface
segmentation. Before we proceed to the results and practical
applications, we provide a validation of the technique described
in Section 3.3. For this purpose, we manually segmented a group
of 37 cells – the ‘gold standard’ – so that we obtained their outer
borders attached to each other (in order to do this, we used ITK
Snap software tool [21]). After, we compared them with the
automatically segmented skeleton. Such comparison validates
not only the segmentation of the intercellular borders but
indirectly the whole sequence of the described methods as the
al segmentation in 3D and 2D slice views. Bottom, the automatic segmentation.

th the corresponding segmented intercellular skeleton (right).



Fig. 16. A 2D slice of data with differentiated cell layers and a selection of
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final form of the intercellular skeleton depends on their results.
We selected a group of cells where some cell borders coincide
with the border of the embryo so that the global surface
segmentation could be also partially validated.

The comparison is realized by computing the mean Hausdorff
distance between the manually segmented objects and the
objects obtained by automatic segmentation. Let A¼ fa1, . . . ,apg

and B¼ fb1, . . . ,bqg denote two finite point sets. Then the mean
Hausdorff distance is defined as, cf. [23]

MHDðA,BÞ ¼maxðmhdðA,BÞ,mhdðB,AÞÞ,

where

mhdðA,BÞ ¼ 1=p
Xp

i ¼ 1

min
bAB

Jai�bJ

is the so called mean directed Hausdorff distance and J � J is an
underlying norm (usually Euclidean). In our case the sets A and B

are given by discrete points that form the surface of the gold
standard and the isosurface of the segmentation function that
represents the automatically segmented intercellular borders. The
result of the test is displayed in Table 5 and Fig. 13. In order to be
able to evaluate the quality of the automatic segmentation, let us
note that standard dimensions of the cells are approximately
10220 mm. The values of model parameters for this example were
set as follows. For the computation of the signed distance function
we set hD¼1.0, tD ¼ 0:3, e2 ¼ 10�10. Then we constructed the
initial segmentation function for the advective level set equation.
Similarly as in the case of the inner cell border segmentation, the
compact support of the function was located inside a sphere, now
centered in the center of mass of the corresponding inner cell
boundary. The parameters of the advective level set model were
gðxÞ ¼�1=ð1þdðxÞÞ (dðxÞ being the computed approximation of
the distance function), tA ¼ 0:03, hA¼1.0.

In Fig. 14 we show a detail of the inner cell boundary
segmentation and the corresponding intercellular skeleton. We
used the same values of parameters as in the validation example.
Fig. 15 displays a 2D slice of the complete intercellular skeleton of
an embryo.

Having the intercellular skeleton, we can evaluate the shape of
the individual cells. While at the beginning of the embryonic
development all cells have the same or very similar shape, at later
Fig. 15. 2D slice of the complete intercellular skeleton.
stages they start to differentiate, and the embryo undergoes
morphogenesis by forming germ layers, recognizable structures
and finally organs. Figs. 16–18 show several examples concerning
the cell shapes. The chosen cell membrane image represents the
late gastrulation period of the embryonic development when the
organs are not yet formed but we can recognize several cell
layers. The embryo is situated on a giant yolk cell and it is covered
by a thin one-cell thick epithelial enveloping layer. The inter-
mediate multilayer of cells, the blastoderm, consists of two parts –
the epiblast (future skin and neural tissues) and the hypoblast
(future muscles, bones, blood, digestive and respiratory organs,
etc.), see Fig. 16. Fig. 17 demonstrates automatic recognition of
the cell shapes. According to [10], the epiblast consists of a
pseudostratified epithelium. Here we rather identify it as a
multilayered structure. The cells of the inner epiblast tend to be
elongated and oriented in the radial direction with respect to the
embryo surface. This makes them distinguishable from the outer
epiblast cells that do not show the elongation in the radial
direction and form a single layer. The epiblast can be distin-
guished from the hypoblast and a thick border separates the two
automatically segmented cells corresponding to these layers. From the top:

epithelium, exterior epiblast, interior epiblast and hypoblast.

Fig. 17. Automatic recognition of the cell shapes. From the top: epithelium,

exterior epiblast, interior epiblast and hypoblast enveloping cells. The interior

epiblast cells are more elongated and oriented in the radial direction with respect

to the embryo surface, contrarily to the exterior epiblast cells and the hypoblast

enveloping cells.



Fig. 18. Visualization of the embryo cell layers. Top left, the isosurface I¼20 of the cell membrane image. Top right, the approximation of the corresponding epithelial cells

segmentation. Bottom left, the exterior epiblast cells. Bottom right, the cells of the embryo viewed from the inside of the yolk cell. We can observe thickening of the

blastoderm on the right side—the embryonic shield. Later on, the spine will be formed along its symmetry axis.

Table 6
Quantitative characteristics of the embryo.

Number of cells 3919

Number of epithelial cells 181

Outer embryo surface 4:24e5 mm2

Embryo volume 8:29e6 mm3

Average cell volume (inner cells) 842:3 mm3

Global cell density 4:73e�4 cells=mm3

Cell contact surface 1:62e6 mm2
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germ layers that are sliding on each other. The cell shape and its
orientation can be determined according to the shape of its
bounding box [20]. Fig. 18 shows various views of the embryo
and its cell layers.
4.4. Quantitative characteristics of the embryo

Finally, we computed several quantitative characteristics of
the embryo and its cells for a chosen 3D image displayed in Fig. 1.
This image represents the stage of embryonic development
approximately 9 h after fertilization and the embryo is about to
complete the gastrulation. The 3D image dimensions are
512�512�100 voxels while one voxel represents a cube with
side length 1:51 mm. The quantitative characteristics that we
calculated are listed in Table 6. The volume and surface of the
embryo and of the individual cells were computed using VTK
libraries [18], particularly the vtkMassProperties class. By cell
volume we mean the inner volume. If we denote by Se the surface
of the embryo and by Sc the sum of the surfaces of all cells, we can
compute the area of the cell contact surface Sccs as

Sccs ¼
Sc�Se

2
:

The outer surface of the embryo is approximated by Sepith=2,
where Sepith is the sum of the surface of the epithelial cells. Here
we take advantage of the fact that the epithelial cells are very flat
compared with the other cells and we neglect their thickness.
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