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Abstract The paper introduces techniques for space-time segmeamiatid track-

ing in time sequences of 3D images of zebrafish embryogenesisad of treating

each 3D image individually, we consider the whole time segaes a single 4D
image and perform the extraction of objects and cell tragkinfour dimensions.

The segmentation of the spatiotemporal objects correspgal the time evolution

of the individual cells is realized by using the generaligaljective surface model
that is discretized by a 4D finite volume scheme. Afterwavags use the distance
functions to the borders of the segmented spatiotempojattshand to the initial

cell center positions in order to backtrack the cell trajeess that can be under-
stood as 4D parametrized curves. The distance functioradaied by numerical
solution of the time relaxed eikonal equation.

1 Introduction

Celltracking, i.e. finding the space-time trajectories enmments of divisions of the
cells of a developing organism, is one of the most intergsthnallenges of modern
biology. A reliable backward tracking can answer a lot ofgjigns concerning the
origin and formation of cell structures and organs, the gl@mnd local movement
of the cells, the cell division rate and localization etceyhall are fundamental
questions of developmental biology.

In this paper, we introduce the basic concepts of a techrtistatecan be used
for the cell tracking from time sequences of 3D images of gmogenesis. A cell
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can be represented by the surface of its nucleus or by its merapdepending on
the type of images we have at disposal. The time evolutionoaflecan be seen as
spatiotemporal tube whose cross-section by a chosen tiperphane corresponds
to the 3D representation of the cell at the selected times ZDitube is bifurcated in
the time moments when the cell undergoes division. Thus,et@ ¢ree-like object
corresponding to any cell present at the beginning of the 8eguence. In order to
track a cell, we need to descend from its current positioméoroot of the tree in
which it is situated. This implies that the tracking proceglconsists in solving the
following two problems:

1. Segmentation of the 4D cell evolution trees from the spathporal image.
2. Finding the way to the root of a tree from any of its innempei

In our paper, we discuss the solution of both of these problaife test our
methods on artificial data and on time sequences of 3D imagessponding to the
zebrafish embryonic development obtained by a confocalasémpe. In order to be
able to apply the described methods, we need to have at disfh@sapproximate
positions of cell centers for all cells visible in the imagesr the artificial data, these
points are known by construction and for the zebrafish imabesapproximate cell
centers are computed by a level set object detection tegbifg].

In order to solve the first problem, we apply the generalizggextive surface
model [1, 7]

Uu
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solved in the domairi0, Ts] x Q whereQ C R* is the spatiotemporal image do-
main, i.e. the whole time sequence of 3D images. Weudgtx) = up(x) and we
consider the zero Dirichlet boundary condition®. The edge detector function
g=09(]0Gg *lo|), lo being the 4D image intensity function, and andw, are the
advection and curvature parameters of the model. The des@k evolution tree
segmentation is represented by a selected isosurface dfittisgon u(x, Ts). We
would like to point out the importance of performing this semtation in 4D. Al-
though the cell evolution tree object could be more easityposed of less time and
memory consuming 3D cell segmentations, this could leagioigus interruptions
of the cell trajectories in the points where the cell center @onsequently the cor-
responding cell segmentation is missing for some reasaookihg for a whole spa-
tiotemporal structure rather than a composition of 3D disjetakes the procedure
more robust and resistant to the possible errors of the icdatection technique.

Having segmented the tree object, we now want to find a way dovits root
from any of its inner points. Since the root can be represknyethe center of the
root cell, a reasonable descend direction indicator coalthb gradient of the dis-
tance functiord; to this center computed inside the segmented 4D object. Aawe
this might not be sufficient. In real data containing a largenber of cells, we can
observe that the trees corresponding to different roos @&l not always perfectly
isolated. In order to prevent dropping into a wrong trees itlésirable to descend
along the center line of the tree branches. For this purpesepmpute the distance
function to the border of the 4D tree, denoteddaywhose negative gradient leads
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us towards the center line that we want to follow. The distafinmction to a seQ
can be computed by solving the time relaxed eikonal equation

d+|0d =1 (2)

in the domain0, Tp] x Qp. In our casep is the inner part of the segmented tree
object, i.e. the part whengx, Ts) >V, V being the isosurface value chosen to rep-
resent the segmentation result. The equation (2) has toluy@embwith a Dirichlet
type condition

d(x,t)=0, xe€Qq 3)

whereQq can represent the root point of the tree or its boundarhiesset of points
whereu(x, Ts) = V.

The descend to the root of the tree is performed as followgerGan arbitrary
point (doxel center)xy, X2, X3, X4] inside the tree, we move to the center of the nearest
doxel in the direction given byid;. Supposing that, represents the time dimension
of the 4D data, we repeat this step until we drop to the Iryel 1. After, we move
in the direction of—[d, until we find the nearest ridge point df. Thus we are
situated on the center line of the current branch of the Eeem there we repeat the
whole procedure until we descend to the lexgek 0, resp. to the root of the tree.

2 Discretization of the models

The time discretization of the generalized subjective azefmodel (1) is semi-
implicit since in this way we can guarantee unconditionabsity of the curvature
term. Letts be the time discretization steps = Ts/Ns. Then for anyn=1...Ns
we get .
u—u" u"
B —walg- Ou"t —weg|Ou™ 10 BT =
whereu" represents the numerical solution on title time level.
The space discretization is realized by applying the finiteme strategy where
one doxel of the 4D image corresponds to one volume of theatization. Let us
suppose that the volumes are 4D cubes of side lemgtid letV; denote the volume
with index vectori = (i, j,k,1) andu! the value of the numerical solutiou' in
the center; of this volume. Further, le¢p, p = 1...4 represent the standard basis
vectors inR*, F,"P andF, P the two faces o¥} orthogonal tcep, v;*P the normal of
the faceF P andm(F,*P) its measure.
Now let us integrate (4) ovéf. We get

(4)

u"—un-t ~ ~ Ou”
/de—/waDg-Du“ 1dx—/wcg|Dun 1|D-de:0. (5)
Vi Vi

The time derivative term is approximated by
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n—1
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The advection term is approximated by the upwind approaeh, i

/(—WaDg- Ou)dx ~ @)
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whereDipg = (di+e, — Yi-e,)/(2h) andg; is the average value @ in V;. For the
curvature term we get the approximation
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where(jin‘l is the average value ¢flu"~1| in V. Further
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whereQ """ is the average value 6fiu" | on the facem*P.

As we can see, in order to properly perform the approximatiodicated in
(7) and (8), we need to find an appropriate approximation efaverage value of
|0u1| in bothV; and on the faceB *P and the average modulusgfidls|), lo =
Gy *lo, iInVi. There are various possibilities how to do that [5].

Let us first consider the approximation @™~ in the barycentexcii%ep of the

doxel faceFiip. The component corresponding to the directiompfs simply ap-
proximated by
n-1_ n-1

Ute, — Ui

h
The other components corresponding to the directioreg,aj=1...4,q# p, can
be approximated as follows. The doxel fa?ép is a 3D cube with faces denoted by
F“P*9. The barycenter of P can be expressed a 4 . Thus, the value

DEPUM =+ (10)

eptieq
of u™ 1 at this point can be approximated as

nfl 1(

I:tzep:tzeq 4 +u|iep+u|ia]+u|iep:teq) (11)

The partial derivatives ai"~! at C are then approximated as

1
+lep
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un—1 -1
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Finally, we can define the required approximations

e - 7 1 12
Qiip,n l:\/(Dipuin 1)2+ z (D:tp7quin l) , In 1:é z

a#p p=1
1 -
G :\/(Dip|a;i)2+ ; (D*Plg:)?, g = 8 > (Gi p+Gi+p) (13)
a7p p=1

Combining (6)—(13), we get the finite volume scheme for sw@the problem (1).
The eikonal equation (2) is discretized by the Rouy-Touclmesne [6]. Letrp =
To/Np be the time discretization step adfithe value of the numerical solution in

the barycenter of the dox¥] on thenth time level. Let us definefogp=1...4

2
0 _ (min(d-1 — gn-1 P_ ~P P
D "= (mln(di”iep—di“ )) . M _max(Di ,D; )

Then the numerical scheme is written as follows

(14)

This scheme is stable fop < h/4 and it produces monotonically increasing updates
that gradually approach a steady state. This leads to areeffimplementation of
the scheme that uses a fixing strategy [2].

3 Experiments

Before we proceed to the experiments concerning the aggaientation and track-
ing, we test the experimental order of convergence of theefilume scheme pre-
sented above on a simple regularized mean curvature flowtiegqua

Ou
= |0OulO- [ =— 15
with the exact solution

X+ X5+ x5+x5—1
6
We use the Dirichlet boundary condition and the initial ctind given by this an-

alytical solution. The problem was solved in the domfaid.25,1.25)* x [0,0.08).
The spatial domain consisted f doxels withh = 2.5/n. The time stefr was pro-

+1.

U(X17X27X37X47t) =
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Fig. 1 Segmentation of artificial 4D data. Left, the isosurfate- 128 of the 3D representation
of the data. Middle, the isosurfadé = 15 of the 3D representation of the initial segmentation
function. Right, the isosurfacé = 15 of the 3D representation of the segmentation result. This
isosurface was chosen as the best representation of theseghobject.

portional toh?. The error of the numerical solution was measured inthe, Lo(Q))
norm. The result of this test is displayed in Tab. 1.

Table1 The experimental order of convergence of the finite volunmeste described in Sec. 2

n T error EOC
10 0.04 5.531426e-3

20 0.01 7.276024e-4 2.926
40 0.0025 1.407815e-4 2.370
80 0.000625 3.264185e-5 2.109

The second experiment illustrates the segmentation dicéati4D data. The 4D
image was constructed as an analogy of the cell nuclei moweamel division. The
cell nuclei are more or less spherical objects, so we staviddtwo spheres. In
each time slice of the 4D image, these two spheres are sit@atdifferent posi-
tions but not far from their positions in the previous time&el We construct 25
time slices. At timexy = 9, one of the spheres divides and from then on, we have
3 spheres in the image. To make the situation more geneealathi of the spheres
are not constant in time. The centers of these spheres at¢éaisenstruct the initial
segmentation function for the GSUBSURF segmentation. \&eeph 4D ellipsoid
with radii a, b, ¢, d in each of these centers and we ggtx) = 1 inside these el-
lipsoids andlip(x) = O outside. The model parameters were set as folléws:1.0,
h=1.0,1s=0.1,w,; =5.0,w; = 0.1, Tp = 30. Instead ofJu| we use its regular-
izationy/€ + |Ou|? with € = 1076, The procedure is illustrated in Fig. 1. In order to
visualize a 4D discrete functiom(xy, X2, X3,X4) With m slices inxs-coordinate, we
construct its 3D representation by setting the value in &izloxel (x1,X2,X3) to

mlax u(xa,%2,X3,X%4). Then we visualize an isosurface of this representation.
X=1..m

Another experiment shows the segmentation of the zebrafibinegenesis data.
We segmented a sequence of 20 3D cell nuclei images pregeastédenoised) by
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Fig. 2 Segmentation of the zebrafish embryogenesis data. On theviopisplay 2D slices of
the 4D image corresponding to differexi (time) values with indication of the position of the
segmented object. On the bottom, we provide the correspgratigmentation result in the form of
isosurface/ = 128 ofxs-slices of the 4D segmentation function.

the geodesic mean curvature flow filter [4]. The initial segtagon function was
constructed in the same way as in the case of the artificial. datrther, we set
K = 1000, h= 1.0, 1s = 0.1, Wy = 10.0, w, = 1.0, Tp = 50, ¢ = 1075, Fig. 2
displays 2D slices of the 4D data (more precisely, 2D slides,slices of the 4D
data). The object that we tried to segment was a simple calliBon tree containing
one cell division. Together with the image slices, we prexlte segmentation result,
now displayed as isosurfacesxaf(time) slices of the segmentation function.

Fig. 3 shows the result of the cell tracking performed on thifical data de-
scribed above. We backtrack the cells (spheres) from thigiquos of their centers
at the end of the time sequence. Both distance functigramdd, were computed
by settingh = 1.0, 1p = 0.25. The result of the tracking is a set of 4D points char-
acterizing the cell position on the individual time leved$.each time level, we get
one point that represents the intersection of the time Ipjaee with the ridge of
the 4D distance functiod, (note that these points in general do not correspond to
the geometrical centers of the individual 3D spheres). Tdietp are visualized by
neglecting theix, coordinate.

Finally, we present a test illustrating the effect of usihg tlistance functiods.

In Fig. 4, we can see four branches of 2D cell evolution tréesve can observe, if
using only the distance functiah, the tracking lines tend to go along the borders
of their respective branches or, if the branches are not t&igip isolated, they can
drop into a wrong tree. Taking in account the functi) we are able to proceed
along the center lines of the branches and thus avoid thisnted effect.
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Fig. 3 The result of the

cell tracking performed on
artificial 4D data. We can
see the points characterizing
the positions of the cells at
each time level visualized by
neglecting theix, coordinate
(as this is a projection from
4D to 3D, in some cases we
have actually more than one
4D point projected to one 3D
point). The starting points for
the tracking are situated on
the top of the point sequences.

Fig. 4 The effect of using the distance functioh. From the left: first, the tracking line in an
isolated branch obtained by using odly second, the tracking line in the same branch when using
di andd,, third, the tracking line in a branch interconnected witleaghboring branch drops into a
wrong branch if onlyd; and notd, is applied, fourth, by applying botty andd,, the line remains

in the correct branch. The grey level shading of the branokg®sents the values df.
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