
4D numerical schemes for cell image
segmentation and tracking
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Abstract The paper introduces techniques for space-time segmentation and track-
ing in time sequences of 3D images of zebrafish embryogenesis. Instead of treating
each 3D image individually, we consider the whole time sequence as a single 4D
image and perform the extraction of objects and cell tracking in four dimensions.
The segmentation of the spatiotemporal objects corresponding to the time evolution
of the individual cells is realized by using the generalizedsubjective surface model
that is discretized by a 4D finite volume scheme. Afterwards,we use the distance
functions to the borders of the segmented spatiotemporal objects and to the initial
cell center positions in order to backtrack the cell trajectories that can be under-
stood as 4D parametrized curves. The distance functions areobtained by numerical
solution of the time relaxed eikonal equation.

1 Introduction

Cell tracking, i.e. finding the space-time trajectories andmoments of divisions of the
cells of a developing organism, is one of the most interesting challenges of modern
biology. A reliable backward tracking can answer a lot of questions concerning the
origin and formation of cell structures and organs, the global and local movement
of the cells, the cell division rate and localization etc. They all are fundamental
questions of developmental biology.

In this paper, we introduce the basic concepts of a techniquethat can be used
for the cell tracking from time sequences of 3D images of embryogenesis. A cell
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can be represented by the surface of its nucleus or by its membrane, depending on
the type of images we have at disposal. The time evolution of acell can be seen as
spatiotemporal tube whose cross-section by a chosen time hyperplane corresponds
to the 3D representation of the cell at the selected time. This 4D tube is bifurcated in
the time moments when the cell undergoes division. Thus, we get a tree-like object
corresponding to any cell present at the beginning of the time sequence. In order to
track a cell, we need to descend from its current position to the root of the tree in
which it is situated. This implies that the tracking procedure consists in solving the
following two problems:

1. Segmentation of the 4D cell evolution trees from the spatiotemporal image.
2. Finding the way to the root of a tree from any of its inner points.

In our paper, we discuss the solution of both of these problems. We test our
methods on artificial data and on time sequences of 3D images corresponding to the
zebrafish embryonic development obtained by a confocal microscope. In order to be
able to apply the described methods, we need to have at disposal the approximate
positions of cell centers for all cells visible in the images. For the artificial data, these
points are known by construction and for the zebrafish images, the approximate cell
centers are computed by a level set object detection technique [3].

In order to solve the first problem, we apply the generalized subjective surface
model [1, 7]

ut −wa∇g ·∇u−wcg|∇u|∇.

(

∇u
|∇u|

)

= 0, (1)

solved in the domain[0,TS]×Ω whereΩ ⊂ R4 is the spatiotemporal image do-
main, i.e. the whole time sequence of 3D images. We setu(0,x) = u0(x) and we
consider the zero Dirichlet boundary condition on∂Ω . The edge detector function
g = g(|∇Gσ ∗ I0|), I0 being the 4D image intensity function, andwa andwc are the
advection and curvature parameters of the model. The desired cell evolution tree
segmentation is represented by a selected isosurface of thefunction u(x,TS). We
would like to point out the importance of performing this segmentation in 4D. Al-
though the cell evolution tree object could be more easily composed of less time and
memory consuming 3D cell segmentations, this could lead to spurious interruptions
of the cell trajectories in the points where the cell center and consequently the cor-
responding cell segmentation is missing for some reason. Looking for a whole spa-
tiotemporal structure rather than a composition of 3D objects makes the procedure
more robust and resistant to the possible errors of the center detection technique.

Having segmented the tree object, we now want to find a way downto its root
from any of its inner points. Since the root can be represented by the center of the
root cell, a reasonable descend direction indicator could be the gradient of the dis-
tance functiond1 to this center computed inside the segmented 4D object. However,
this might not be sufficient. In real data containing a large number of cells, we can
observe that the trees corresponding to different root cells are not always perfectly
isolated. In order to prevent dropping into a wrong tree, it is desirable to descend
along the center line of the tree branches. For this purpose,we compute the distance
function to the border of the 4D tree, denoted byd2, whose negative gradient leads
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us towards the center line that we want to follow. The distance function to a setΩ0

can be computed by solving the time relaxed eikonal equation

dt + |∇d| = 1 (2)

in the domain[0,TD]×ΩD. In our case,ΩD is the inner part of the segmented tree
object, i.e. the part whereu(x,TS) > V , V being the isosurface value chosen to rep-
resent the segmentation result. The equation (2) has to be coupled with a Dirichlet
type condition

d(x,t) = 0, x ∈ Ω0 (3)

whereΩ0 can represent the root point of the tree or its boundary, i.e.the set of points
whereu(x,TS) = V .

The descend to the root of the tree is performed as follows. Given an arbitrary
point (doxel center)[x1,x2,x3,x4] inside the tree, we move to the center of the nearest
doxel in the direction given by∇d1. Supposing thatx4 represents the time dimension
of the 4D data, we repeat this step until we drop to the levelx4−1. After, we move
in the direction of−∇d2 until we find the nearest ridge point ofd2. Thus we are
situated on the center line of the current branch of the tree.From there we repeat the
whole procedure until we descend to the levelx4 = 0, resp. to the root of the tree.

2 Discretization of the models

The time discretization of the generalized subjective surface model (1) is semi-
implicit since in this way we can guarantee unconditional stability of the curvature
term. LetτS be the time discretization step,τS = TS/NS. Then for anyn = 1. . .NS

we get
un −un−1

τS
−wa∇g ·∇un−1−wc g|∇un−1|∇ ·

∇un

|∇un−1|
= 0. (4)

whereun represents the numerical solution on thenth time level.
The space discretization is realized by applying the finite volume strategy where

one doxel of the 4D image corresponds to one volume of the discretization. Let us
suppose that the volumes are 4D cubes of side lengthh and letVi denote the volume
with index vectori = (i, j,k, l) and un

i the value of the numerical solutionun in
the centerci of this volume. Further, letep, p = 1. . .4 represent the standard basis
vectors inR4, F+p

i andF−p
i the two faces ofVi orthogonal toep, ν±p

i the normal of
the faceF±p

i andm(F±p
i ) its measure.

Now let us integrate (4) overVi. We get

∫

Vi

un −un−1

τS
dx−

∫

Vi

wa∇g ·∇un−1dx−
∫

Vi

wc g|∇un−1|∇ ·
∇un

|∇un−1|
dx = 0. (5)

The time derivative term is approximated by
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∫

Vi

un −un−1

τS
dx ≈ m(Vi)

un
i −un−1

i

τS
· (6)

The advection term is approximated by the upwind approach, i.e.
∫

Vi

(−wa∇g ·∇u)dx ≈ (7)

wam(Vi)
4

∑
p=1

(

max
(

−Dp
i g,0

)

un−1
i −un−1

i−ep

h
+min

(

−Dp
i g,0

)

un−1
i+ep

−un−1
i

h

)

whereDp
i g = (gi+ep − gi−ep)/(2h) andgi is the average value ofg in Vi. For the

curvature term we get the approximation

∫

Vi

wcg|∇un−1|∇.
∇un

|∇un−1|
dx = wcgiQ̄

n−1
i

4

∑
p=1

∑
q=−p,+p

∫

Fq
i

∇un

|∇un−1|
.νq

i dγ, (8)

whereQ̄n−1
i is the average value of|∇un−1| in Vi. Further

∫

F±p
i

∇un

|∇un−1|
.ν±p

i dγ ≈
m(F±p

i )

Q±p;n−1
i

un
i±ep

−un
i

h
(9)

whereQ±p;n−1
i is the average value of|∇un−1| on the faceF±p

i .
As we can see, in order to properly perform the approximations indicated in

(7) and (8), we need to find an appropriate approximation of the average value of
|∇un−1| in bothVi and on the facesF±p and the average modulus ofg(|∇Iσ |), Iσ =
Gσ ∗ I0, in Vi. There are various possibilities how to do that [5].

Let us first consider the approximation of∇un−1 in the barycenterci± 1
2ep

of the

doxel faceF±p
i . The component corresponding to the direction ofep is simply ap-

proximated by

D±pun−1
i = ±

un−1
i±ep

−un−1
i

h
· (10)

The other components corresponding to the directions ofeq, q = 1. . .4, q 6= p, can
be approximated as follows. The doxel faceF±p

i is a 3D cube with faces denoted by
F±p,±q

i . The barycenter ofF±p,±q
i can be expressed asci± 1

2ep±
1
2eq

. Thus, the value

of un−1 at this point can be approximated as

un−1
i± 1

2ep±
1
2eq

=
1
4
(un−1

i + un−1
i±ep

+ un−1
i±eq

+ un−1
i±ep±eq

) . (11)

The partial derivatives ofun−1 at ci± 1
2ep

are then approximated as
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D±p,qun−1
i =

un−1
i± 1

2ep+ 1
2eq

−un−1
i± 1

2ep−
1
2eq

h
(12)

Finally, we can define the required approximations

Q±p;n−1
i =

√

(D±pun−1
i )2 + ∑

q 6=p

(

D±p,qun−1
i

)2
, Q̄n−1

i =
1
8

4

∑
p=1

(

Q−p;n−1
i + Q+p;n−1

i

)

G±p
i =

√

(D±pIσ ;i)2 + ∑
q 6=p

(D±p,qIσ ;i)
2, gi =

1
8

4

∑
p=1

(

G−p
i + G+p

i

)

(13)

Combining (6)–(13), we get the finite volume scheme for solving the problem (1).
The eikonal equation (2) is discretized by the Rouy-Tourin scheme [6]. LetτD =

TD/ND be the time discretization step anddn
i the value of the numerical solution in

the barycenter of the doxelVi on thenth time level. Let us define forp = 1. . .4

D±p
i =

(

min
(

dn−1
i±ep

−dn−1
i

))2
, Mp

i = max
(

D−p
i ,D+p

i

)

Then the numerical scheme is written as follows

dn
i = dn−1

i + τD −
τD

h

√

√

√

√

4

∑
p=1

Mp
i (14)

This scheme is stable forτD ≤ h/4 and it produces monotonically increasing updates
that gradually approach a steady state. This leads to an efficient implementation of
the scheme that uses a fixing strategy [2].

3 Experiments

Before we proceed to the experiments concerning the actual segmentation and track-
ing, we test the experimental order of convergence of the finite volume scheme pre-
sented above on a simple regularized mean curvature flow equation

∂tu = |∇u|∇ ·

(

∇u
|∇u|

)

(15)

with the exact solution

u(x1,x2,x3,x4,t) =
x2

1 + x2
2+ x2

3 + x2
4−1

6
+ t.

We use the Dirichlet boundary condition and the initial condition given by this an-
alytical solution. The problem was solved in the domain[−1.25,1.25]4× [0,0.08].
The spatial domain consisted ofn4 doxels withh = 2.5/n. The time stepτ was pro-
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Fig. 1 Segmentation of artificial 4D data. Left, the isosurfaceV = 128 of the 3D representation
of the data. Middle, the isosurfaceV = 15 of the 3D representation of the initial segmentation
function. Right, the isosurfaceV = 15 of the 3D representation of the segmentation result. This
isosurface was chosen as the best representation of the segmented object.

portional toh2. The error of the numerical solution was measured in theL∞(I,L2(Ω))
norm. The result of this test is displayed in Tab. 1.

Table 1 The experimental order of convergence of the finite volume scheme described in Sec. 2

n τ error EOC

10 0.04 5.531426e-3
20 0.01 7.276024e-4 2.926
40 0.0025 1.407815e-4 2.370
80 0.000625 3.264185e-5 2.109

The second experiment illustrates the segmentation of artificial 4D data. The 4D
image was constructed as an analogy of the cell nuclei movement and division. The
cell nuclei are more or less spherical objects, so we startedwith two spheres. In
each time slice of the 4D image, these two spheres are situated at different posi-
tions but not far from their positions in the previous time slice. We construct 25
time slices. At timex4 = 9, one of the spheres divides and from then on, we have
3 spheres in the image. To make the situation more general, the radii of the spheres
are not constant in time. The centers of these spheres are used to construct the initial
segmentation function for the GSUBSURF segmentation. We place a 4D ellipsoid
with radii a, b, c, d in each of these centers and we setu0(x) = 1 inside these el-
lipsoids andu0(x) = 0 outside. The model parameters were set as follows:K = 1.0,
h = 1.0, τS = 0.1, wa = 5.0, wc = 0.1, TD = 30. Instead of|∇u| we use its regular-
ization

√

ε + |∇u|2 with ε = 10−6. The procedure is illustrated in Fig. 1. In order to
visualize a 4D discrete functionu(x1,x2,x3,x4) with m slices inx4-coordinate, we
construct its 3D representation by setting the value in each3D voxel(x1,x2,x3) to
max

x4=1...m
u(x1,x2,x3,x4). Then we visualize an isosurface of this representation.

Another experiment shows the segmentation of the zebrafish embryogenesis data.
We segmented a sequence of 20 3D cell nuclei images preprocessed (denoised) by
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Fig. 2 Segmentation of the zebrafish embryogenesis data. On the top, we display 2D slices of
the 4D image corresponding to differentx4 (time) values with indication of the position of the
segmented object. On the bottom, we provide the corresponding segmentation result in the form of
isosurfaceV = 128 ofx4-slices of the 4D segmentation function.

the geodesic mean curvature flow filter [4]. The initial segmentation function was
constructed in the same way as in the case of the artificial data. Further, we set
K = 100.0, h = 1.0, τS = 0.1, wa = 10.0, wc = 1.0, TD = 50, ε = 10−6. Fig. 2
displays 2D slices of the 4D data (more precisely, 2D slices of x4-slices of the 4D
data). The object that we tried to segment was a simple cell evolution tree containing
one cell division. Together with the image slices, we provide the segmentation result,
now displayed as isosurfaces ofx4 (time) slices of the segmentation function.

Fig. 3 shows the result of the cell tracking performed on the artificial data de-
scribed above. We backtrack the cells (spheres) from the positions of their centers
at the end of the time sequence. Both distance functionsd1 andd2 were computed
by settingh = 1.0, τD = 0.25. The result of the tracking is a set of 4D points char-
acterizing the cell position on the individual time levels.At each time level, we get
one point that represents the intersection of the time hyperplane with the ridge of
the 4D distance functiond2 (note that these points in general do not correspond to
the geometrical centers of the individual 3D spheres). The points are visualized by
neglecting theirx4 coordinate.

Finally, we present a test illustrating the effect of using the distance functiond2.
In Fig. 4, we can see four branches of 2D cell evolution trees.As we can observe, if
using only the distance functiond1, the tracking lines tend to go along the borders
of their respective branches or, if the branches are not completely isolated, they can
drop into a wrong tree. Taking in account the functiond2, we are able to proceed
along the center lines of the branches and thus avoid this unwanted effect.
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Fig. 3 The result of the
cell tracking performed on
artificial 4D data. We can
see the points characterizing
the positions of the cells at
each time level visualized by
neglecting theirx4 coordinate
(as this is a projection from
4D to 3D, in some cases we
have actually more than one
4D point projected to one 3D
point). The starting points for
the tracking are situated on
the top of the point sequences.

Fig. 4 The effect of using the distance functiond2. From the left: first, the tracking line in an
isolated branch obtained by using onlyd1, second, the tracking line in the same branch when using
d1 andd2, third, the tracking line in a branch interconnected with a neighboring branch drops into a
wrong branch if onlyd1 and notd2 is applied, fourth, by applying bothd1 andd2, the line remains
in the correct branch. The grey level shading of the branchesrepresents the values ofd1.
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