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Abstract. We introduce a new level set method for motion in normal direction. It is based on
a formulation in the form of a second-order forward-backward diffusion equation. The equation is
discretized by the finite volume method. We propose a semi-implicit time discretization taking into
account the forward diffusion part of the solution in an implicit way, while the backward diffusion
part is treated explicitly. When forward diffusion dominates, a straightforward reconstruction of
the solution is used while larger (smoothing) stencils are used when backward diffusion dominates.
The method is precise on coarse grids and is second order accurate for smooth solutions. Numerical
experiments show an optimal coupling of time and space steps with τ = h and no stronger CFL
condition is required. Numerical tests with the scheme are discussed on representative examples.
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1. Introduction. In this article we propose a new level set method for motion
in normal direction. The standard level set techniques are based on finite difference
discretization of the first order Hamilton-Jacobi equation,

ut + F |∇u| = 0, (1.1)

where F is a speed function. We refer to cf. [13, 14, 12] and references therein for
more details on this classical approach. For simplicity and clarity of the presentation
we will assume throughout the paper that F is a constant.

Recently, fully explicit finite volume schemes were suggested in [8, 9] for an ad-
vective formulation of (1.1)

ut + F
∇u

|∇u|
· ∇u = 0 (1.2)

which was written in the equivalent form

ut + ∇ · (vu) − u∇ · v = 0 (1.3)

with v = F ∇u
|∇u| representing a velocity by which the level sets of the solution are

driven. In [8], a first order upwind scheme with recursive flux redistribution was
introduced while in [9] a high resolution version has been developed. The first order
scheme has theoretically no restriction on time step. In the high resolution scheme
the first order polynomial reconstruction of the solution inside every finite volume
brought the second order accuracy for smooth solutions. The experimental order
of convergence (EOC) for solutions with shocks and expanding characteristics was
less than 2. The high resolution method is computationally more complex than the
first order upwind approximation and has a natural CFL restriction on the time step
related to the local Courant numbers, cf. [8, 9].
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The new level set method developed in this paper is based on the observation that
if we plug v = F ∇u

|∇u| directly into the equation (1.3) we get a second order partial

differential equation for the unknown level set function u, namely,

ut + ∇ ·

(

Fu
∇u

|∇u|

)

− u∇ ·

(

F
∇u

|∇u|

)

= 0. (1.4)

In the first spatial differential term, the diffusion coefficient depends on u and thus
results in a nonlinearly weighted mean curvature flow term [3, 2]. The second spatial
differential term is in non-divergence form where the solution u is multiplied by the
(weighted) mean curvature of its level sets.

In order to discuss equation (1.4), let us first consider the constant F to be pos-
itive. Then, if u is negative, the first spatial differential term represents a forward
and the second one a backward diffusion. On the other hand, if u is positive the
situation is just opposite. If F is negative we have similarly a combination of forward
and backward diffusion. Thus, if we are interested in motion of the zero level set
representing an interface (closed curve), starting from a signed distance function we
always have this forward-backward diffusion coupling included in (1.4). A finite vo-
lume discretization of this forward-backward diffusion (FBD) formulation is the basis
of our new numerical method.

The rest of the paper is organized as follows. In Section 2 we motivate our new
level set method and give a basic version of the scheme in Definition 2.1. In Section
3 an alternative variant of the method is proposed that takes into account a more
evolved reconstruction technique. Finally, in Section 4 several numerical experiments
are given that analyze the convergence and efficiency of the new method. Thereby we
also compare our approach with the explicite finite volume approach in [9].

2. The new level set FBD scheme. Let us consider equation (1.4) in a
bounded polygonal domain Ω ⊂ R

d, d = 2, 3, and time interval [0, T ]. Let Qh denote
a primal polygonal partition of Ω. Let p be a finite volume of a corresponding dual
Voronoi tessellation Th with measure mp and let epq be an edge between p and q,
q ∈ N(p), where N(p) is a set of neighbouring finite volumes (i.e. p̄ ∩ q̄ has nonzero
(d − 1)-dimensional measure). Let cpq be the length of epq and npq be the unit outer
normal vector to epq with respect to p. We shall consider Th to be an admissible mesh
in the sense of [6], i.e., there exists a representative point xp in the interior of every
finite volume p such that the joining line between xp and xq, q ∈ N(p), is orthogonal
to epq. We denote by xpq the intersection of this line segment with the edge epq.
The length of this line segment is denoted by dpq, i.e. dpq := |xq − xp|. As we have
build Th based on the primal mesh Qh, we assume that the points xp coincide with
the vertices of Qh. Let us denote by up a (constant) value of the solution in a finite
volume p computed by the scheme. We shall use also up, a reconstructed (but also
constant) value of the solution in p (e.g. given as an average of neighbouring finite
volume values), and upq, a reconstructed (but constant) value of the solution assigned
to the edge epq.

To derive and motivate our scheme, let us approximate u in the second spatial
term of (1.4) by an appropriate constant function ūp on p, integrate the spatial dif-
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ferential terms of (1.4) over p and use the divergence theorem. We get
∫

p

∇ ·

(

Fu
∇u

|∇u|

)

dx −

∫

p

u∇ ·

(

F
∇u

|∇u|

)

dx

=

∫

∂p

F
u

|∇u|
∇u · nds − up

∫

∂p

F
1

|∇u|
∇u · nds

=
∑

q∈N(p)

∫

epq

F
u

|∇u|

∂u

∂npq

ds − up

∑

q∈N(p)

∫

epq

F
1

|∇u|

∂u

∂npq

ds.

Let us denote the absolute value of the reconstructed gradient on an edge epq (given
e.g. by the so-called diamond-cell strategy specified later) by |∇upq| and let the normal
derivative on this edge be approximated by (uq −up)/dpq. Then, as an approximation
of the spatial differential terms we get the following expression

∑

q∈N(p)

cpq

dpq

F (up − upq)

|∇upq|
(up − uq). (2.1)

Now, let us think about a matrix representation of a numerical scheme that is
based on such a space discretization. If the term F (up−upq) is positive, it gives a ”for-
ward diffusion contribution” to the system matrix, which means that the coefficient on
the diagonal is positive while off-diagonal coefficients are negative. Thus, in this situ-
ation we get the M-matrix property which guarantees the solvability and L∞-stability
of a linear system represented by the matrix. On the other hand, if F (up − upq) is
negative, it gives opposite signs to the matrix coefficients. In our understanding, it
represents a ”backward diffusion contribution” which destroys the favourable matrix
solvability and stability properties. Taking into account these observations we define
the diffusion coefficient on the edge epq as

apq =
F (up − upq)

|∇upq|
, (2.2)

and split it into forward and backward diffusion parts, respectively

af
pq = max(apq, 0), ab

pq = min(apq, 0). (2.3)

In the next step we approximate ut in (1.4) by the time difference
un

p
−un−1

p

τ
,

where τ is a uniform time step, and integrate the whole equation (1.4) in every
finite volume p according to the space discretization given in (2.1). Then, due to the
above mentioned contributions to the matrix properties, we take the forward diffusion
contribution implicitly and the backward diffusion contribution explicitly. This results
in the following linear system at the n-th discrete time step

mpu
n
p + τ

∑

q∈N(p)

cpq

dpq

af
pq(u

n
p − un

q ) = mpu
n−1
p + τ

∑

q∈N(p)

cpq

dpq

ab
pq(u

n−1
q − un−1

p ). (2.4)

For a uniform squared grid in 2D with a finite volume side width h, the dual Voronoi
mesh Th is again a uniform squared grid with side width h, shifted by (h/2, h/2)⊤.
For such grids we obtain mp = h2,

cpq

dpq

= 1, and in 3D on uniform Cartesian meshes

analogously mp = h3,
cpq

dpq

= h. Thus, in these cases we end up with the simple system

un
p +

τ

h2

∑

q∈N(p)

af
pq(u

n
p − un

q ) = un−1
p +

τ

h2

∑

q∈N(p)

ab
pq(u

n−1
q − un−1

p ). (2.5)
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Fig. 2.1. The diamond-cell co-volume χpq associated to the edge epq.

This system should be accompanied by suitable initial and boundary conditions in
order to get unique solvability. In our convergence test examples (see Section 4), we
use the distance function for the level set representing an initial curve as initial data.
At the boundaries we prescribe exact Dirichlet data: for uq on the left hand side of
equation (2.4) at the new time level and for uq on the right hand side at the old time
level. It is clear that at any edge epq only one of the terms af

pq or ab
pq appears. Thus,

the boundary values are needed either on the left or on the right hand side of (2.4). In
experiments where the exact solution on the boundary is not known we use boundary
conditions which extrapolate the solution at the boundary of Ω, using the slope of an
approximate normal derivative from the interior cells.

The system (2.4) can be considered as a general formulation of our semi-implicit
level set FBD method on any admissible dual Voronoi finite volume grid. The next
important question is how the values up, upq and |∇upq| in the diffusion coefficients
apq are computed. First of all, the term |∇upq| is given by using the so called diamond-
cell strategy. For simplicity, let us consider a uniform grid in two space dimensions as
depicted in Fig. 2.1. If we denote by u1

pq and u2
pq approximate values of the solution

in the end points x1
pq and x2

pq of the edge epq we may define

|∇un−1
pq | :=





(

un−1
q − un−1

p

h

)2

+

(

u2,n−1
pq − u1,n−1

pq

h

)2




1

2

. (2.6)

In this case, u1,n−1
pq and u2,n−1

pq are given by the average of the values at time tn−1

in the four adjacent finite volumes for which the points x1
pq , respectively x2

pq , are
common, cf. [4]. For more general meshes and 3D case we refer to [1, 7, 11, 5].

An important point in our method is the fact that the further reconstructed
values up and upq in the numerator of (2.2) are computed differently depending on
the forward-backward character of the diffusion in a finite volume p. The strategy is
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as follows. In a first step we simply take

un−1
p = un−1

p and un−1
pq =

1

2
(un−1

p + un−1
q ), (2.7)

for all p and q ∈ N(p), and compute our first estimate of af
pq and ab

pq by (2.2).
Then, for every finite volume p, we compute the ”strength” of forward and backward
diffusion by summing all corresponding contributions and define

Df
p =

∑

q∈N(p)

af
pq ≥ 0 and Db

p =
∑

q∈N(p)

ab
pq ≤ 0. (2.8)

If the forward diffusion dominates in the finite volume p, i.e. Df
p ≥ −Db

p, then we
use the already computed reconstructions (2.7). On the other hand, if the backward
diffusion dominates, i.e. Df

p < −Db
p, we replace ūp, and ūpq by a larger spatial

average. For example, on Cartesian meshes in 2D we define

un−1
pq :=

1

4

∑

q∈N(p)

(un−1
p + un−1

q + u1,n−1
pq + u2,n−1

pq ),

and (2.9)

un−1
p :=

1

4

∑

q∈N(p)

un−1
pq .

This can be considered as a stencil for a spatial smoothing of the solution. By that
approach we get a meaningful (stable) approximate solution. It is known that a
backward diffusion process can be solved for a short time uniquely only starting from
smooth initial data, cf. [10]. So our switch between (2.7) and (2.9) is also motivated
by this fact. Finally, for such backward diffusion dominated finite volumes p we
recompute (2.2) and get the final coefficients of the linear system (2.4) or (2.5). The
resulting linear systems can then be solved by an appropriate linear solver. In the
numerical experiments in Section 4, we use the Gauss-Seidel iterative method.

We summarize our new forward-backward diffusion level set scheme in the follow-
ing definition.

Definition 2.1 (The general level set FBD scheme) Let a sufficiently smooth
(C0) interface curve Γl ⊂ Ω be given and let u0 ∈ C0(Ω) denote the signed distance
function to Γl in Omega. In addition, let us assume that Dirichlet boundary data
uD ∈ C0(∂Ω × [0, T ]) are given for the level set problem such that the following
compatibility condition is satisfied

uD(x, 0) = u0(x), ∀x ∈ ∂Ω. (2.10)

Then, the general level set FBD scheme is given as follows.

Initial data: For n = 0 define the piecewise constant approximation u0
h through

u0
h|p(x) := u0

p := πp(u0), ∀x ∈ p, p ∈ Th, (2.11)

where πp : C0(p) → P0(p) is a suitable local projection to a constant.

Time step (n − 1) → n: For n > 0 we define un
h through un

p , p ∈ Th as follows
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a) Boundary values at time tn: For all xp ∈ ∂Ω we set

un
p := uD(xp, t

n). (2.12)

b) Definition of the interior values at time tn:
i) For all p ∈ Th, q ∈ N(p) we compute

ūn−1
p := Rp(u

n−1
h ), ūn−1

pq := Rpq(u
n−1
h ), |∇un−1

pq | := |DRpq(u
n−1
h )|,

where Rp, Rpq, and DRpq denote suitable constant local reconstructions
of the solution or the gradient of the solution, respectively.

ii) Define preliminary diffusion coefficients

an−1
pq :=

F (un−1
p − un−1

pq )

|∇un−1
pq |

, (2.13)

af,n−1
pq = max(an−1

pq , 0), ab,n−1
pq = min(an−1

pq , 0). (2.14)

iii) For all interior cells p, compute the forward and backward diffusion
contributions as

Df,n−1
p :=

∑

q∈N(p)

af,n−1
pq ≥ 0 and Db,n−1

p =
∑

q∈N(p)

ab,n−1
pq ≤ 0.

If for a cell p backward diffusion dominates, i.e. −Db,n−1
p > Df,n−1

p ,
recompute ūp, ūpq, q ∈ N(p), by

ūn−1
p := Rb

p(u
n−1
h ), ūn−1

pq := Rb
pq(u

n−1
h ),

where Rb
p, R

b
pq are spatial reconstructions for the backward diffusion

dominated case that use a larger spatial averaging than Rp, Rpq. In
addition, for those cells recompute af,n−1

pq , af,n−1
pq according to (2.13),

(2.14).
iv) For all xp ∈ Ω \ ∂Ω we define un

p as the solution of the following linear
system

mpu
n
p + τ

∑

q∈N(p)

cpq

dpq

af
pq(u

n
p − un

q )

= mpu
n−1
p + τ

∑

q∈N(p)

cpq

dpq

ab
pq(u

n−1
q − un−1

p ).

b) Definition of un
h:

We define the piecewise constant approximation un
h as

un
h|p(x) := un

p , ∀x ∈ p, p ∈ Th.

In the general definition of the new level set FBD scheme, we assumed that the
suitable local reconstruction operators Rp, Rpq, DRpq, and Rb

p, R
b
pq are given. In the

following definition we summarize the definition of those reconstruction operators in
the case of Cartesian meshes in two space dimensions.
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Definition 2.2 (A specific FBD scheme on Cartesian meshes in 2D) For Carte-
sian meshes in 2D, the basic FDB scheme is given by Definition 2.1 with the following
reconstruction operators (cf. the motivation above):

Rp(uh) := up, Rpq(uh) :=
1

2
(up + uq),

DRpq(uh) :=
uq − up

h
npq +

u2
pq − u1

pq

h
tpq ,

Rb
pq(uh) :=

1

4

∑

q∈N(p)

(up + uq + u1
pq + u2

pq),

Rb
p(uh) :=

1

4

∑

q∈N(p)

Rb
pq(uh).

Here npq denotes the outer normal to epq with respect to p, and tpq := (x2
pq − x1

pq)/h
is a tangential vector to epq.

Remark 2.3 (Choice of reconstructions) The suitability of the specific recon-
structions in Definition 2.2 is documented by the presented numerical experiments. In
the next subsection we give also a more advanced reconstruction for uniform Cartesian
meshes in two space dimensions. We will compare the performance of both recon-
struction schemes in Section 4. However, we note that other reconstruction stencils
and gradient approximations are possible and we leave it to the reader and further
studies to test and compare further approaches.

Remark 2.4 (Time discretization) Our choice of the semi-implicit time discretiza-
tion is motivated by the good properties of the resulting linear system matrix. As a
result, the system can be solved efficiently using only a few Gauss-Seidel iterations,
usually less than 15 for very fine grids and about 5 for coarse grids with stopping cri-
terion ||Rk||

2
2 ≤ TOL||R0||

2
2, TOL = 10−12, where Rk and R0 are current and initial

residuum, respectively. One could also use nonlinear Gauss-Seidel iterations, i.e., to
update the system coefficients inside the iterative loop. We did not find this choice
more precise and it is clearly more CPU time consuming. Another possibility is to
take the reconstructions (2.7), (2.9) and then to consider just a fully explicit scheme
with the treatment of both backward and forward diffusion contributions from the
previous time step. In such an approach, the time step is restricted by τ ≤ h

4 (in 2D)
and the optimal coupling τ = h (which turns out in the semi-implicit scheme) is lost.
Since the number of Gauss-Seidel iterations does not double when increasing the time
step by a factor of two, cf. Table 4.3, we again prefer the semi-implicit scheme as
suggested in (2.4).

3. The FBD2 scheme with higher-order forward-backward reconstruc-
tions. In the case of a backward diffusion dominated finite volume p we can replace
the simple reconstructions Rb

pq, and Rb
p from Definition 2.2 by more advanced ones.

The basic idea is that inside every finite volume p we reconstruct linearly our solution
using an averaged gradient. Then, on every edge we define values ūn−1

pq through an
evaluation of these linear reconstructions in the midpoints (or center of gravities) of
the edge epq. Thereby, the evaluation is taken from the reconstruction in p, if the
corresponding edge diffusion is backward, i.e. ab

pq ≤ 0, while the evaluation is done
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from the reconstruction in the neighbouring cell q if the edge diffusion is forward, i.e.
af

pq > 0. Thus, first we compute averaged gradients

∇un−1
p =

1

|N(p)|

∑

q∈N(p)

DRpq(u
n−1
h ) , (3.1)

where |N(p)| denotes the number of neighbouring cells, and the gradient reconstruc-
tions on the edges DRpq(u

n−1
h ) are computed by the diamond-cell strategy described

in Section 2. Then, if ab
pq ≤ 0, we define

un−1
pq = un−1

p + (xpq − xp) · ∇un−1
p , (3.2)

and, if af
pq > 0, we define

un−1
pq = un−1

q + (xpq − xq) · ∇un−1
q . (3.3)

Finally, we set

un−1
p =

1

|N(p)|

∑

q∈N(p)

un−1
pq . (3.4)

On Cartesian meshes in two space dimensions, this reconstruction procedure gives
rise to the following definition of our FBD2 scheme.

Definition 3.1 (The FBD2 scheme with higher-order reconstruction in 2D)
For Cartesian meshes in 2D, the FBD2 scheme is given by Definition 2.1 with the fol-
lowing reconstruction operators:

Rp(uh) := up, Rpq(uh) :=
1

2
(up + uq),

DRpq(uh) :=
uq − up

h
npq +

u2
pq − u1

pq

h
tpq ,

DRp(uh) :=
1

4

∑

q∈N(p)

DRpq(uh) ,

Rb
pq(uh) :=

{

un−1
p + h

2 DRp(uh) · npq, if ab
pq ≤ 0 ,

un−1
q − h

2 DRq(uh) · npq, else ,
,

Rb
p(uh) :=

1

4

∑

q∈N(p)

Rb
pq(uh).

Remark 3.2 (Comparison of FBD and FBD2) Note that the reconstructions in
the FBD2 method are the same as in the simple FBD method from Definition 2.2 for
finite volumes p, where forward diffusion is dominating. Only in the case of backward
diffusion dominated cells we switch to the higher-order reconstructions.
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4. Numerical experiments. In this section we discuss computational results
obtained by our new level set FBD methods. The results are compared with the
recently suggested flux-based level set method (FBLSM), [9], which is also based
on a finite volume discretization. In [9], FBLSM has been carefully compared to
other known approaches, like second order ENO schemes. Numerical examples were
given that showed a superior behaviour of FBLSM, especially concerning conservation
of area and its precision on coarse grids. Here, we show that for solutions with
shrinking characteristics (like shrinking circle or square) the new FBD scheme, given
in Section 2, gives even more precise results than FBLSM, and that it is further
improved by using the FBD2 scheme from Section 3. For solutions with expanding
characteristics (like expanding circle or square) we found the FBD2 scheme more
precise than FBLSM.

In the Subsections 4.1. to 4.4., we present four examples (shrinking and expand-
ing circle and square) where we analyze the numerical convergence properties of the
schemes. Finally, in Subsection 4.5., we give an evolution of a nontrivial closed curve
where topological changes appear. For the numerical experiments we present figures
which compare visually numerical and exact solutions, mainly on coarse grids. The
figures show 3D graphs of exact and numerical level set functions, a comparison of
their level lines, and a zoom of exact and numerically computed zero level lines rep-
resenting the moving curve. The plots display different behaviour of the analyzed
schemes and it turns out that the new FBD level set methods are superior, especially
on coarse grids.

In the tables we present errors and experimental orders of convergence (EOC)
of the numerical schemes together with other characteristics when refining the grid.
The error is given as a difference between the exact and numerical zero level line
representing the moving curve in a discrete L2(I, L2(S

1))-norm where I = [0, T ] is
a time interval (T = 0.4 in our experiments), and S1 denotes the unit circle. The
norm is computed as follows. The evolving curves in all our test cases are radially
symmetric, centered in the origin, and can be parameterized by the angle ϕ ∈ [0, 2π]
(or correspondingly by the arclength parameterization of S1). For every ϕ and t
a distance r(ϕ, t) in radial direction from the origin is given for each such exact
solution. In every discrete time step n = 0, ..., M we find all zero crossing points
pn

i , i = 1, ..., K, of the piecewise bi-linear representation of the numerical solution,
given on the primal grid Qh. Then, we compute distances from the origin rn

i for all
pn

i , i = 1, ..., K and compare them with the radial distance r(ϕn
i , nτ) of the exact

solution for the corresponding angle ϕn
i := ϕ(pn

i ). The final formula for computing
the error then looks like

|||u − uh|||h :=

(

M
∑

n=0

τ
1

K

K
∑

i=1

(rn
i − r(ϕn

i , nτ))2

)

1

2

.

In all our computations and tables, N denotes the number of finite volumes in the
primal grid Qh in x and y direction, our domain is Ω = [−1, 1]× [−1, 1], i.e. we have
h = 2/N . Since our grid Th is squared, we use the scheme (2.5) with reconstructions
given in Definitions 2.2 and 3.1, respectively. In order to have a fair comparison,
we compute gradients and normal derivatives in the FBLSM scheme, cf. [9], by
the same approach as in FBD methods, i.e. by using the diamond cell strategy
outlined in Section 2. Since in both methods there are absolute values of gradients in
denominators, we use the so-called Evans-Spruck regularization |∇u| ≈

√

ε2 + |∇u|2

in order to prevent division by zero. In experiments with shrinking characteristics we
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Table 4.1

Report on FBD error for the example of a shrinking circle.

N h = τ NTS FBD error EOC nGSi CPU
10 0.2 2 2.013 10−3 11
20 0.1 4 3.843 10−4 2.39 13 0.01
40 0.05 8 1.001 10−4 1.94 14 0.05
80 0.025 16 2.505 10−5 2.00 15 0.33
160 0.0125 32 6.319 10−6 1.98 15 1.55
320 0.00625 64 1.573 10−6 2.00 15 8.38
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Fig. 4.1. 3D graphs of exact (left) and numerical FBD solution (right) for N = 20.

use ε = 10−3 and in experiments with expanding characteristics (where flat regions
are formed) we use ε = 10−6. Since we start the computation by a signed distance
function which is negative inside the moving curve and positive outside, we solve
the equation (1.4) with F = −1 in the case of shrinking and F = 1 in the case of
expansion. All computations were done on a standard 2.2GHz notebook, and we
report the computing times (CPU) in seconds in the tables.

4.1. Shrinking circle. In this example, we discuss the shrinking of a circle with
initial radius r(0) = 1 in the time interval I = [0, T ], T = 0.4. The exact solution is
then given by r(t) = r(0) − t, i.e. the exact radius at time T is r(0.4) = 0.6. The

exact level set function is given by u(x, y, t) =
√

x2 + y2−1+t. In Fig. 4.1 we present
exact and numerically computed level set functions at time T . We see just a little
smoothing of the numerical solution computed by the FBD method in the bottom
corner point. It does not, however, destroy the precision of the FBD scheme, even
on very coarse grids. This is documented in Figs. 4.2, 4.3, and in Table 4.1. In this
case the FBD and FBLSM methods give approximately the same error and they are
second order accurate, cf. Tables 4.1 and 4.2. The FBD scheme has no stability
restriction on the time steps (NTS denotes the number of time steps in all tables),
while for FBLSM we have to use τ ≤ h/2. When enlarging or decreasing the time
step in the FBD method the results are almost the same (which is also a consequence
of the fact that we start from a distance function), and the error is smallest for the
coupling τ = h, cf. Table 4.3. Thus, we use such a coupling in all further computed
examples, because it is a good compromise between precision and computing time,
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Fig. 4.2. Isolines of the exact (blue) and by FBD method numerically computed solution (red)
for N = 10 (left) and N = 20 (right).
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Fig. 4.3. Comparison of the exact (blue) and by FBD method numerically computed (red) zero
level line representing moving circle for N = 10 (left) and N = 20 (right).

as can be seen from the table. In the Tables 4.1 and 4.2 we report CPU times for
refined grids and the number of Gauss-Seidel iterations (nGSi) until we reach the
stopping criterion given in Remark 2.2. Due to good matrix properties, we need only
few iterations, also on fine grids. FBD is in this example slightly better than FBLSM
concerning both precision and CPU times. In all further examples the number os
Gauss-Seidel iterations and the corresponding CPU times for the FBD scheme are
practically the same as for this example, which is also true for FBLSM. Thus, we
report CPU times for these methods only in this first subsection. Let us also note
that in this example of a shrinking smooth solution the basic reconstruction strategy
from Definition 2.2 is sufficient, and that the error of FBD2 is comparable.
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Table 4.2

Report on FBLSM error for the example of a shrinking circle.

N h = 2τ NTS FBLSM error EOC CPU
10 0.2 4 1.544 10−3 0.
20 0.1 8 4.374 10−4 1.82 0.01
40 0.05 16 1.074 10−4 2.02 0.05
80 0.025 32 2.684 10−5 2.00 0.39
160 0.0125 64 6.743 10−6 1.99 1.91
320 0.00625 128 1.645 10−6 2.04 10.33

Table 4.3

Report on FBD error for N = 40 (h = 0.05) and different time step sizes.

N τ NTS FBD error nGSi CPU
40 0.4 1 1.7845 10−4 40 0.02
40 0.2 2 1.3692 10−4 34 0.03
40 0.1 4 1.1082 10−4 22 0.04
40 0.05 8 1.0016 10−4 14 0.05
40 0.025 16 1.0133 10−4 10 0.08
40 0.0125 32 1.0424 10−4 7 0.14
40 0.00625 64 1.0207 10−4 6 0.24
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Fig. 4.4. Upper row: 3D graphs of exact (left) and numerical (right) solution for N = 20.
Lower row: numerical solution for N = 40 (left) and N = 80 (right). The numerical solution was
computed by the FBD method.

4.2. Shrinking square. In this example we start by the initial curve given as a
zero level line of the level set function u0(x, y) = max(|x|, |y|) − 1 and evolve it until
time T = 0.4. The exact solution is given by u(x, y, t) = max(|x|, |y|) − 1 + t and
is plotted (projected on the grid N = 20) in Fig. 4.4. We plot there also numerical
solutions computed by the FBD method on grids N = 20, 40, 80, showing very good
resolution of the four singular lines and the bottom corner point. In Fig. 4.5 we see
FBD resulting isolines for N = 10 and N = 20 which are already on such coarse grids
visually almost undistinguishable from the exact ones. It is worth to note that by
the FBD method we removed undershooting of the numerical solution in the corner
points of the singular lines which is a known artefact of the FBLSM method, cf.
Fig. 4.6. Also the precision of the resolution of the bottom corner point is higher
for FBD, cf Table 4.6. All these facts clearly show advantages of FBD, resulting in
lower interface errors, cf. 4th column of Tables 4.4 and 4.5, especially on coarse grids.
The precision of FBD is additionally improved by using the nontrivial reconstruction
given in Section 3, i.e using the FBD2 method. In particular we hint at a comparison
on finer grids, cf. 6th column of Table 4.4. Comparing the 7th column of Table 4.1
and 8th column of Table 4.4 we see that the more advanced reconstruction does not
bring any significant increase in CPU time while the precision is enhanced.
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Fig. 4.5. Upper row: isolines of the exact (blue) and by FBD numerically computed (red)
solutions for N = 10 (left) and N = 20 (right). Lower row: comparison of the exact (blue) and by
FBD numerically computed (red) zero level line representing shrinking square for N = 10 (left) and
N = 20 (right).

Table 4.4

Report on FBD and FBD2 errors for the shrinking square example.

n h = τ NTS FBD error EOC FBD2 error EOC FBD2 CPU
10 0.2 2 1.530 10−3 1.542 10−3 0.
20 0.1 4 6.022 10−4 1.34 6.208 10−4 1.32 0.01
40 0.05 8 3.067 10−4 0.97 2.829 10−4 1.13 0.05
80 0.025 16 1.323 10−4 1.21 1.158 10−4 1.29 0.37
160 0.0125 32 5.550 10−5 1.25 4.502 10−5 1.36 1.96
320 0.00625 64 2.276 10−5 1.28 1.645 10−5 1.45 9.82

4.3. Expanding circle. In the case of curve expansion, we first look at an
initial circle with radius r(0) = 0.4 given as the zero level line of the level set func-

tion u0(x, y) =
√

x2 + y2 − 0.4. The exact solution is then given by u(x, y, t) =

max(
√

x2 + y2 − 0.4− t, 0.4 and is plotted for T = 0.4 in Fig. 4.7 in the top left-hand
corner. The convergence of the numerical solutions to the exact one is documented
visually in the further plots of Fig. 4.7. The interface errors are given in Tables 4.7,



NEW LEVEL SET METHOD 15

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 4.6. Upper row: isolines of the exact (blue) and by FBLSM numerically computed (red)
solutions for N = 10 (left) and N = 20 (right). Lower row: comparison of the exact (blue) and by
FBLSM numerically computed (red) zero level line representing shrinking square for N = 10 (left)
and N = 20 (right).

Table 4.5

Report on FBLSM error for the shrinking square example.

n h = 2τ NTS FBLSM error EOC
10 0.2 4 5.508 10−3

20 0.1 8 1.848 10−3 1.58
40 0.05 16 6.575 10−4 1.49
80 0.025 32 2.349 10−4 1.48
160 0.0125 64 8.343 10−5 1.49
320 0.00625 128 2.954 10−5 1.50

4.8, and a visualization of solution isolines on coarse grids for FBD, FBLSM and
FBD2 is given in Figs. 4.8, 4.9, and 4.10, respectively. We see that the methods are
all second order and the smallest errors are realized by the FBD2 scheme.
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Table 4.6

Position of the minimum in the numerical solution for the shrinking square example. The exact
minimum is at −0.6.

n h FBLSM FBD FBD2
10 0.2 −0.5122 −0.5349 −0.5224
20 0.1 −0.5504 −0.5740 −0.5737
40 0.05 −0.5774 −0.5853 −0.5890
80 0.025 −0.5891 −0.5921 −0.5952
160 0.0125 −0.5943 −0.5959 −0.5976
320 0.00625 −0.5967 −0.5978 −0.5988
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Fig. 4.7. Upper row: 3D graphs of exact (left) and numerical (right) solution for N = 20.
Lower row: numerical solution for N = 40 (left) and N = 80 (right). The numerical solution was
computed by FBD.
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Fig. 4.8. Upper row: isolines of the exact (blue) and by FBD numerically computed (red)
solutions for N = 10 (left) and N = 20 (right). Lower row: comparison of the exact (blue) and by
FBD numerically computed (red) zero level line representing expanding circle for N = 10 (left) and
N = 20 (right).

Table 4.7

Report on FBD and FBD2 errors for the expanding circle example.

n h = τ NTS FBD error EOC FBD2 error EOC
10 0.2 2 1.209 10−2 2.655 10−3

20 0.1 4 2.331 10−3 2.37 4.286 10−4 2.63
40 0.05 8 4.237 10−4 2.46 9.187 10−5 2.22
80 0.025 16 9.517 10−5 2.15 2.619 10−5 1.81
160 0.0125 32 2.328 10−5 2.03 6.794 10−6 1.94
320 0.00625 64 5.802 10−6 2.00 1.764 10−6 1.95
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Fig. 4.9. Upper row: isolines of exact (blue) and numerically computed by FBLSM (red)
solutions for N = 10 (left) and N = 20 (right). Lower row: comparison of the exact (blue) and by
FBLSM numerically computed (red) zero level line representing expanding circle for N = 10 (left)
and N = 20 (right).

Table 4.8

Report on FBLSM errors for the expanding circle example.

n h = 2τ NTS FBLSM error EOC
10 0.2 4 3.561 10−3

20 0.1 8 5.783 10−4 2.62
40 0.05 16 1.516 10−4 1.93
80 0.025 32 3.867 10−5 1.97
160 0.0125 64 9.681 10−6 2.00
320 0.00625 128 2.423 10−6 2.00
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Fig. 4.10. Upper row: isolines of the exact (blue) and by FBD2 numerically computed (red)
solutions for N = 10 (left) and N = 20 (right). Lower row: comparison of the exact (blue) and
by FBD2 numerically computed (red) zero level line representing expanding circle for N = 10 (left)
and N = 20 (right).
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Fig. 4.11. Comparison of 3D graphs of exact (left) and numerically computed by FBD2 (right)
solutions, N = 40.
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Fig. 4.12. Left: Isolines of exact (blue) and numerically computed by FBD2 (red) solutions,
Right: Isolines of exact (blue) and numerically computed by FBLSM (red) solutions. In both com-
putations N = 40.

4.4. Expanding square. This is the most difficult example where an initial
square, given as a zero level line of u0(x, y) = max(|x|, |y|) − 0.4, is expanding by
unit speed until time T = 0.4. In Fig. 4.11 we show graphs of the exact and FBD2
numerical solutions at time T . In Fig. 4.12 we present a comparison of level lines
of exact and numerically computed solutions by FBD2 and FBLSM. The details of
exact and numerically computed zero level lines of the numerical solutions are plotted
in Figs. 4.13 and 4.14 for FBD2 and FBLSM, respectively. Comparing the errors in
Tables 4.9 and 4.10 we again see the highest precision for the FBD2 level set method.
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Fig. 4.13. Comparison of the exact (blue) and by FBD2 numerically computed (red) zero level
lines, representing the expanding square, for N = 10, N = 20, N = 40, and N = 80.

Table 4.9

Report on FBD and FBD2 errors for the expanding square example.

n h = τ NTS FBD error EOC FBD2 error EOC
10 0.2 2 2.192 10−2 7.321 10−3

20 0.1 4 1.078 10−2 1.02 4.045 10−3 0.86
40 0.05 8 5.600 10−3 0.94 2.237 10−3 0.85
80 0.025 16 2.957 10−3 0.92 1.268 10−3 0.82
160 0.0125 32 1.591 10−3 0.89 7.453 10−4 0.77
320 0.00625 64 8.756 10−4 0.86 4.612 10−4 0.69
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Fig. 4.14. Comparison of the exact (blue) and by FBLSM numerically computed (red) zero
level lines, representing the expanding square, for N = 10, N = 20, N = 40, and N = 80.

Table 4.10

Report on FBLSM errors for the expanding square example.

n h = 2τ NTS FBLSM error EOC
10 0.2 4 2.013 10−2

20 0.1 8 8.154 10−3 1.30
40 0.05 16 3.817 10−3 1.09
80 0.025 32 1.946 10−3 0.96
160 0.0125 64 1.025 10−3 0.94
320 0.00625 128 5.659 10−4 0.86
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Fig. 4.15. Initial level set function for evolving quatrefoils and all its level lines.

4.5. Shrinking and expanding nonconvex curve. At the end of this section
we present two nontrivial evolutions, shrinking and expanding quatrefoil. The numer-
ical results are computed by the FBD2 level set method with τ = 0.0125, N = 160,
i.e. h = τ . The initial curve is given as the zero level line of the function

u0(x1, x2) = L +

√

x2
1 + x2

2

r
, r = 0.6 + 0.4 sin

(

4arctan
(x2

x1

))

(4.1)

with L = −1 in the case of shrinking characteristics, and L = −0.4 in case of ex-
pansion. The graph and level lines of u0 in the first case are plotted in Fig. 4.15. In
Fig. 4.16 we plot the evolution of the shrinking quatrefoil. One can see the splitting of
the leaves after some time point. In Fig. 4.17 several states of the expanding quatrefoil
are shown. The very good resolution of the corner points evolution is documented by
the level line plots, and by the graphs of the evolving level set function.

5. Conclusion. In this article we introduced a general approach for the con-
struction of new level set methods for motion in normal direction, based on finite
volume approximations of a forward-backward diffusion formulation. The time dis-
cretization treats the forward diffusion part implicitly, while the backward diffusion
part is integrated explicitly. By construction, the resulting linear system matrices are
M-matrices and thus the resulting schemes are unconditionally stable. In particular,
we presented and analyzed two new schemes on Cartesian meshes in two space dimen-
sions (FBD, and FBD2) that were obtained by particular choices of reconstruction
operators. The numerical examples in Section 4 revealed that both methods are of
second order for smooth solutions. While both methods behave in a similar way for
shrinking characteristics, the more advanced FBD2 method is much more accurate
for expanding characteristics. A comparison of both methods with the recently in-
troduced flux-based level set method (FBLSM), [9], shows that in particular FBD2
performs better then FBLSM, both with respect to accuracy and CPU times.
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Fig. 4.16. Shrinking of the initial quatrefoil with topological changes appearing plotted at times
0, 0.05, 0.1 and 0.15 (from left up to bottom right, first two rows) computed by FBD2 on the grid
with N = 160. Below is the graph of level set function at time 0.15
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Fig. 4.17. Expanding of the initial quatrefoil with four corners evolving plotted at times
0, 0.1, 0.2 and 0.5 (from left up to bottom right, first two rows) computed by FBD2 on the grid
with N = 160. Below are the graphs of level set function at time 0.2 and 0.5 showing resolution of
singular lines corresponding to corners.
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[4] Drbliková, O, Mikula, K.: Convergence analysis of finite volume scheme for nonlinear tensor
anisotropic diffusion in image processing, SIAM Journal on Numerical Analysis, Vol. 46,
No.1 (2007) pp. 37-60.
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