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Abstract We present new method for solving non-stationary advection equations
based on the finite volume space discretization and the semi-implicit discretization
in time. Its basic idea is that outflow from a cell is treated explicitly while inflow
is treated implicitly. Since the matrix of the system in this new I2OE method is
determined by the inflow fluxes it is an M-matrix yielding favourable solvability
and stability properties. The method allows large time steps at a fixed spatial grid
without losing stability and not deteriorating precision which makes it attractive for
practical applications. Our new method is exact for any choice of a discrete time step
on uniform rectangular grids in the case of constant velocity transport of quadratic
functions in any dimension. We show that it is formally second order accurate in
space and time for 1D advection problems with variable velocity and numerical
experiments indicates its second order accuracy for smooth solutions in general.
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1 Introduction

In this paper we present the inflow-implicit/outflow-explicit (I2OE) method for solv-
ing variable velocity advection equations of the form

ut +v ·∇u = 0 (1)
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where u ∈ Rd × [0,T ] is the unknown function and v(x) is a vector field. The basic
idea of our new method is that outflow from a cell is treated explicitly while inflow
is treated implicitly. Such an approach is natural, since we know what is flowing
out from a cell at an old time step n− 1 but we leave the method to resolve a sys-
tem of equations determined by the inflows to obtain a new value in the cell at time
step n. Since the matrix of the system is determined by the inflow fluxes it is an M-
matrix for Voronoi like grids and thus it has favourable discrete minimum-maximum
properties. Consequently, the method allows large time steps at a fixed spatial grid
without losing stability. Interestingly, the new I2OE scheme is exact on rectangu-
lar grids for constant velocity transport of quadratic polynomials in any dimension
and for any length of a time step. In general, it is second order accurate for smooth
solutions, both for variable velocity and nonlinear advection problems [5]. A com-
parison with the second order Lax-Wendroff method for variable velocity shows
good properties of the new scheme with respect to precision and CPU times. In [5],
the I2OE method was introduced in more general settings where v= v(x,u,∇u). The
semi-implicit forward-backward diffusion level set approach for motion in normal
direction [4] is its special case. The variable and nonlinear velocity fields to which
our method can be successfully applied arise in many applications, e.g. in level set
methods and other transports with non-divergence free velocities and nonlinear con-
servation laws or in image segmentation by the active contours.

2 The inflow-implicit/outflow-explicit scheme

Let us consider equation (1) in a bounded polygonal domain Ω ⊂ Rd , d = 2,3, and
time interval [0,T ]. Let Qh denote a primal polygonal partition of Ω . Let p be a finite
volume (cell) of a corresponding dual Voronoi tessellation Th with measure mp and
let epq be an edge between p and q, q ∈ N(p), where N(p) is a set of neighbouring
finite volumes (i.e. p̄ ∩ q̄ has nonzero (d − 1)-dimensional measure). Let cpq be
the length of epq and npq be the unit outer normal vector to epq with respect to
p. We shall consider Th to be an admissible mesh in the sense of [1], i.e., there
exists a representative point xp in the interior of every finite volume p such that the
joining line between xp and xq, q ∈ N(p), is orthogonal to epq. We denote by xpq the
intersection of this line segment with the edge epq. The length of this line segment
is denoted by dpq, i.e. dpq := |xq − xp|. As we have build Th based on the primal
mesh Qh, we assume that the points xp coincide with the vertices of Qh. Let us
denote by up a (constant) value of the solution in a finite volume p computed by
the scheme. For the solution representation inside the finite volume p we use either
this value up or a reconstructed (but again constant) value denoted by up. A constant
value of the solution assigned to the edge epq (given again by a reconstruction) is
denoted by upq. Let us rewrite (1) in the formally equivalent form with conserving
and non-conserving parts [2]

ut +∇ · (vu)−u∇ ·v = 0. (2)
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Integrating (2) over a finite volume p then yields∫
p

ut dx+
∫

p
∇ · (vu) dx−

∫
p

u∇ ·v dx = 0.

Applying the divergence theorem and using constant representations of the solution
on the cell p, denoted by up, and on the cell interfaces epq, denoted by upq, we get∫

p
ut dx+ ∑

q∈N(p)
upq

∫
epq

v ·npq ds−up ∑
q∈N(p)

∫
epq

v ·npq ds = 0.

If we denote the fluxes in the inward normal direction to the finite volume p by

v̄pq =−
∫

epq

v ·npq ds, (3)

we finally arrive at the equation∫
p

ut dx+ ∑
q∈N(p)

v̄pq(up −upq) = 0. (4)

The novelty of our scheme is to split the resulting fluxes into the corresponding
inflow and outflow parts to the cell p. This is done by defining

ain
pq = max(v̄pq,0), aout

pq = min(v̄pq,0). (5)

We then approximate ut by the time difference
un

p−un−1
p

τ , where τ is a uniform time
step size, and take the inflow parts implicitly and the outflow parts explicitly in
(4). This yields the following system of equations for the finite volume solution
un

p, p ∈ Th at the n-th discrete time step, representing the general I2OE scheme:

mpun
p + τ ∑

q∈N(p)
ain

pq(u
n
p −un

pq) = mpun−1
p − τ ∑

q∈N(p)
aout

pq (u
n−1
p −un−1

pq ) . (6)

The most natural choice for reconstructions un
p and un

pq at any time step n (i.e. old
and new time steps) is given by un

p = un
p, un

pq =
1
2 (u

n
p + un

q) and leads to the basic
I2OE scheme:

mpun
p +

τ
2 ∑

q∈N(p)
ain

pq(u
n
p −un

q) = mpun−1
p − τ

2 ∑
q∈N(p)

aout
pq (u

n−1
p −un−1

q ) . (7)

The equation (4) has the form of a discretization of a diffusion equation, where v̄pq
would represent the so-called transmissive coefficients (integrated diffusion fluxes
divided by distances between cell centers). In standard forward diffusion all these
coefficients are strictly positive which leads to a weighted averaging of the solution
and the implicit schemes are natural in this case. On the other hand the negative co-
efficients would correspond to backward diffusion in which case information prop-
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agates outside the cell and explicit schemes are thus natural. In our case the sign of
the coefficients is given by the inflow or outflow character of the cell boundary and
the inflow-implicit/outflow-explicit approach is thus natural. It is also well-known
that in the second order schemes for solving advection problems one can identify
the ”forward diffusion” part (like the first order upwinding) and the ”backward dif-
fusion” part given by the additional sharpening terms coming (sometimes surpris-
ingly) from the second order Taylor’s expansions, cf. the Lax-Wendroff scheme [3].
In our method this splitting arises naturally, gives second order accuracy and when
treating it semi-implicitly it brings significant improvements in stability of compu-
tations.

Let us present the I2OE scheme for 1D variable velocity equation ut +v(x)ux = 0,
which will be used in numerical computations of Section 4. Let pi be the cell with
the spatial index i, length h, center point xi, left border xi− 1

2
and right border xi+ 1

2
.

Let us denote un
i the value of the numerical solution at time step n and un

i ,u
n
i− 1

2
the

reconstructed values. We define

ain
i− 1

2
= max(v(xi− 1

2
),0), aout

i− 1
2
= min(v(xi− 1

2
),0),

ain
i+ 1

2
= max(−v(xi+ 1

2
),0), aout

i+ 1
2
= min(−v(xi+ 1

2
),0) ,

and if we use the reconstructions un
i = un

i , un
i− 1

2
= 1

2 (u
n
i +un

i−1) in both new and old

time steps, the basic one-dimensional I2OE scheme has the following form

un
i +

τ
2h

ain
i− 1

2
(un

i −un
i−1)+

τ
2h

ain
i+ 1

2
(un

i −un
i+1) = un−1

i (8)

− τ
2h

aout
i− 1

2
(un−1

i −un−1
i−1 )−

τ
2h

aout
i+ 1

2
(un−1

i −un−1
i+1 ) .

The scheme (8) requires to solve a tridiagonal system in every time step which is
done by using the standard tridiagonal solver (also called the Thomas algorithm).
In practice, the I2OE scheme allows to use much larger time steps without losing
L∞-stability than given by a standard CFL condition for explicit schemes, cf. Sec-
tion 3. However, the ”backward diffusion” (outflow) explicit part is not necessarily
always dominated by the implicit part in the basic form of the scheme (8). Some
oscillations (not unboundedly growing in time) may arise e.g. on coarse grids or in
solutions tending to a shock. One possibility is to leave the method with oscillations
and remove them at the end of computations using e.g. some edge preserving fil-
ters. Another approach is to supress the oscillations during the computation. In our
scheme, one can use an averaging (by a larger stencil) in the reconstruction of un−1

p ,
similarly to the FBD schemes from [4], or to modify the ”backward diffusion” part
on the right hand side of (8) by using the standard limiters, for details see [5].

Theorem 1. Let us consider the equation (1) in 1D with constant velocity v and
I2OE scheme (8) on uniform grid. If the initial condition is given by a second order
polynomial, then the scheme gives the exact solution for any choice of time step.
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Proof. The initial condition has the form u0(x) = ax2+bx+c and the exact solution
is given by u(x,τ) = u0(x− vτ). For v > 0 the scheme (8) takes the form

un
i +

τv
2h

(un
i −un

i−1) = un−1
i − τ(−v)

2h
(un−1

i −un−1
i+1 ) (9)

One can easily check that if we plug the exact values in grid points xi, xi−1, xi+1 at
time steps n = 1 and n−1 = 0, namely

un−1
i = ax2

i +bxi + c, un−1
i+1 = a(xi +h)2 +b(xi +h)+ c, (10)

un
i = a(xi − vτ)2 +b(xi − vτ)+ c, un

i−1 = a(xi −h− vτ)2 +b(xi −h− vτ)+ c,

into the scheme (9), we get true identity, and the same we obtain for v < 0. ⊓⊔

It is also possible to make similar considerations as above in higher dimensional
case for uniform rectangular grids and constant velocity vector field . One can plug
a general 2D or 3D quadratic polynomial as initial condition and the corresponding
exact solution at time τ into the I2OE scheme (7), use a symbolic computational
software like the Mathematica, and check that the scheme is exact in such situations.

Theorem 2. Let us consider the equation (1) in 1D with variable velocity v(x) ≥
0 (or v(x) ≤ 0) and the I2OE scheme (8) on a uniform grid. Then the scheme is
formally second order and the consistency error is of order O(h2)+O(τh)+O(τ2).

Proof. We write our transport equation as ∂tu + f (v,∂xu) = 0 with f (v,∂xu) :=
v(x)∂xu and let v(x) ≥ 0. We will use notations un := u(tn), f n := f (v,∂tun). The
Taylor expansion in time yields

un = un−1 +τ∂tun−1 +
τ2

2
∂ 2

t un−1 +O(τ3), un−1 = un −τ∂tun +
τ2

2
∂ 2

t un +O(τ3).

Subtracting these two equations we derive relation

un −un−1 =
τ
2
(∂tun +∂tun−1)+

τ2

4
(∂ 2

t un−1 −∂ 2
t un)+O(τ3). (11)

We can see that the second term on the right hand side is also O(τ3) and using the
equation ∂tu+ f (v,∂xu) = 0, we get for the first term of the right hand side

I =
τ
2
(∂tun +∂tun−1) =−τ

2
( f n + f n−1) . (12)

Using the notation fi := f (xi) = v(xi)∂xu(xi), by the Taylor expansion in space we
have (for v(x)≥ 0)

f n
i−1/2 = f n

i − h
2

∂x f n
i +O(h2), f n−1

i+1/2 = f n−1
i +

h
2

∂x f n−1
i +O(h2) (13)

or (for v(x)≤ 0)
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f n−1
i−1/2 = f n−1

i − h
2

∂x f n−1
i +O(h2), f n

i+1/2 = f n
i +

h
2

∂x f n
i +O(h2) . (14)

We continue (for v(x)≥ 0) and using (12)-(13) we derive

Ii =−τ
2
( f n

i + f n−1
i ) =−τ

2

(
f n
i−1/2 + f n−1

i+1/2 +
h
2
(∂x f n

i −∂x f n−1
i )+O(h2)

)
.

The second term in the brackets on the right hand side is of order O(τh) and we
shall analyse the first one. We know that

∂xun
i−1/2 =

1
h
(un

i −un
i−1)+O(h2), ∂xun−1

i+1/2 =
1
h
(un−1

i+1 −un−1
i )+O(h2)

and resubstituting for f n
i−1/2 = vi−1/2∂xun

i−1/2 and f n−1
i+1/2 = vi+1/2∂xun−1

i+1/2 we get

Ii =−τ
2

(
vi−1/2

1
h
(un

i −ui−1)+ vi+1/2
1
h
(un−1

i+1 −un−1
i )

)
+O(τ2h)+O(τh2). (15)

From (11) and (15) we finally get

un
i −un−1

i = − τ
2

(vi−1/2

h
(un

i −un
i−1)+

vi+1/2

h
(un−1

i+1 −un−1
i )

)
+ O(τ2h)+O(τh2)+O(τ3)

where we recognize the scheme (8) for v(x) ≥ 0, cf. also (9), and dividing by τ we
get the consistency error of the I2OE scheme stated in the theorem. ⊓⊔

3 Numerical experiments

First, let us consider 1D equation (1) with v(x) ≡ 1 in interval Ω = (−1,1) and
time interval I = (0,T ), T = 1. Let the initial condition u0 be given by a quadratic
polynomial u0(x) = 1− 1

2 (x
2 − x). The exact solution is given u(x, t) = u0(x− vt).

We solve this problem numerically using the exact Dirichlet boundary conditions
and compare the results of the I2OE method (8), the standard Lax-Wendroff and
explicit up-wind schemes [3] with the exact solution. In all experiments we used
increasing number n of finite volumes discretizing Ω , h = 2/n, and we consider
various choices of time step τ and corresponding number of time steps NTS. In
Table 1 we report the errors in L2(I,L2) norm for all the methods. As one can see,
the I2OE method is exact for any relation between space and time step, see Theorem
1, and one can use extremely large (e.g. just one time step τ = T ) without any
deterioration of the numerical result. Here the errors are comparable to machine
precision, they are not exact zeros because we have to solve a tridiagonal system
in every time step yielding some rounding errors which, however, do not propagate
even in a long run. The Lax-Wendroff method, as the second order, is exact for
any quadratic initial function whenever it is stable, i.e. τ ≤ h. For Courant numbers
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Table 1 Report on the L2(I,L2) errors of the I2OE method, the Lax-Wendroff scheme, and the
explicit up-wind scheme for the initial quadratic polynomial and for various choices of time step.
We note that all the methods are exact for τ = h.

n τ = h/2 NTS I2OE Lax-Wendroff Up-wind
20 0.05 20 3.7 10−16 5.1 10−17 1.83 10−2

40 0.025 40 8.0 10−16 7.5 10−17 8.99 10−3

80 0.0125 80 1.1 10−15 8.3 10−17 4.45 10−3

160 0.00625 160 2.4 10−15 9.9 10−17 2.22 10−3

n τ = 2h NTS I2OE Lax-Wendroff Up-wind
20 0.2 5 2.1 10−16 1.1 10−11 5.02 10−2

40 0.1 10 2.1 10−16 1.4 10−9 0.641
80 0.05 20 3.9 10−16 0.466 3.8 10+3

160 0.025 40 5.7 10−16 1.6 10+16 1.3 10+12

160 τ = 10h = 0.125 8 2.5 10−15 − −
160 τ = 40h = 0.5 2 1.7 10−15 − −
160 τ = 80h = 1 1 2.6 10−15 − −

larger than 1, one can see instabilities in the third and 4th rows of Table 1, when
τ = 2h and grid is refined. The explicit upwind scheme is the first order and exact
for any initial data only if the relation τ = h is fulfilled. Its first order accuracy can
be seen for τ = h/2, and oscillations occur soon for τ > h as documented in Table
1.

Next, let us consider an example with variable velocity field v(x) =−sin(x) and
let the initial profile be given by u0(x) = sin(x), Ω = (−1,1) and I = (0,T ), T = 1.
The exact solution can be derived by the method of characteristics and is given as
u(x, t) = u0(

2
π arctg(eπt tg(πx

2 ))). We compare the precision and CPU-time of the
I2OE and the Lax-Wendroff scheme [3]. In the solutions a strong peak is formed at
T = 1, see Figure 1. Both schemes are stable with slight overshoot and undershoot in
the result by the Lax-Wendroff scheme on coarser grids. No overshoot or undershoot
is observed for the I2OE scheme, cf. Figure 1. Figure 2 shows log-log plots of CPU
time versus error of the schemes. We can see superior behavior of the I2OE scheme
in this example with considerable speed-up when using larger time steps up to 4-8
times exceeding the CFL condition, which must be respected in the Lax-Wendroff
scheme. In this case both schemes are second order accurate which holds true for
any time step size of the I2OE scheme.

Further 1D and 2D numerical experiments are reported in [5] showing the sec-
ond order convergence of the I2OE method for any choice of the time steps. This is
the main advantage of the new scheme when comparing with standard explicit sec-
ond order methods, or, when using limiters, in comparison with the so-called high
resolution methods for solving advection equations.
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Fig. 1 The result of the I2OE scheme (up, red points) at time T = 1, computed with n = 160 and
τ = h. By green line we plot the exact solution at T and by black line the initial condition.

Fig. 2 CPU versus L2(I,L2)-
error for the Lax-Wendroff
method (blue solid line) and
for the I2OE scheme with
CFL=1 (red large dashing,
τ = h), CFL=2 (green medium
dashing, τ = 2h), CFL=4
(orange small dashing, τ =
4h) and CFL=8 (magenta
tiny dashing, τ = 8h) for
the experiment from Fig. 1.
The plots indicate that I2OE
scheme is about 4–times
faster in order to get the same
L2(I,L2)-error. 0.1 1 10 100
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