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Abstract The paper presents a numerical solution of the
oblique derivative boundary value problem on and above the
Earth’s topography using the finite volume method (FVM).
It introduces a novel method for constructing non-uniform
hexahedron 3D grids above the Earth’s surface. It is based
on an evolution of a surface, which approximates the Earth’s
topography, by mean curvature. To obtain optimal shapes of
non-uniform 3D grid, the proposed evolution is accompanied
by a tangential redistribution of grid nodes. Afterwards, the
Laplace equation is discretized using FVM developed for
such a non-uniform grid. The oblique derivative boundary
condition is treated as a stationary advection equation, and
we derive a new upwind type discretization suitable for non-
uniform 3D grids. The discretization of the Laplace equation
together with the discretization of the oblique derivative
boundary condition leads to a linear system of equations. The
solution of this system gives the disturbing potential in the
whole computational domain including the Earth’s surface.
Numerical experiments aim to show properties and demon-
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strate efficiency of the developed FVM approach. The first
experiments study an experimental order of convergence of
the method. Then, a reconstruction of the harmonic func-
tion on the Earth’s topography, which is generated from the
EGM2008 or EIGEN-6C4 global geopotential model, is pre-
sented. The obtained FVM solutions show that refining of
the computational grid leads to more precise results. The last
experiment deals with local gravity field modelling in Slo-
vakia using terrestrial gravity data. The GNSS-levelling test
shows accuracy of the obtained local quasigeoid model.

Keywords Geodetic boundary value problem · Laplace
equation · Oblique derivative boundary condition · Finite
volume method · Numerical solution · Computational grid
construction · Local gravity field modelling · Evolving
surfaces · Upwind method · Advection equation

1 Introduction

The Earth’s gravity field modelling is usually formulated in
terms of the geodetic boundary value problems (GBVPs).
At present, a combination of terrestrial gravimetric measure-
ments and precise 3D positioning by GNSS directly yields
gravity disturbances. They naturally lead to boundary condi-
tions (BC) of the fixed gravimetric boundary value problem
(FGBVP), namely to the oblique derivative BC. Hence, from
the mathematical point of view, FGBVP represents an exte-
rior oblique derivative GBVP for the Laplace equation, cf.
Koch and Pope (1972), Freeden and Kersten (1980), Bjer-
hammar and Svensson (1983) and Holota (1997), and many
researchers have been dealing with such kind of GBVP.

Classically, a solution procedure for the oblique deriva-
tive problem has been based on integral equations using
the single-layer potential, cf. Bitzadse (1968) and Miranda
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(1970). Koch and Pope (1972) applied such an integral equa-
tion procedure to solve the FGBVP. However, the strong
nature of the singularities demanding Cauchys principal inte-
gral values turned out to be a serious obstacle (Freeden and
Gerhards 2013). Later on, Freeden and Kersten (1981) pro-
posed a new concept of approximations using the generalized
Fourier expansions to transfer strongly singular integrals into
regular ones. This approach based on the harmonic splines
has been further developed, e.g. in Freeden (1987), Bauer
(2004), Gutting (2007, 2012, 2015), see also Freeden and
Michel (2004) and Freeden and Gerhards (2013).

Recently, numerical methods such as the finite element
method (FEM), boundary element method (BEM) or finite
volume method (FVM) have been applied to solve GBVPs.
They represent an alternative to classical approaches like the
spherical harmonic (SH) analysis, radial basis functions, least
squares collocation or integral transforms that are standardly
used for gravity field modelling. These numerical methods
provide opportunities to treat the oblique derivative prob-
lem locally while considering the real Earth topography and
thus to develop new approaches for gravity field modelling.
Amongvariousmodelling and numerical approaches,we dis-
tinguish between solutions of GBVPs on infinite domains,
see, e.g. Holota (1997), Klees et al. (2001), Nesvadba et al.
(2007), Čunderlík et al. (2008) and Holota and Nesvadba
(2008), and on finite domains, above the Earth’s topography,
either real or approximated by a sphere or an ellipsoid, cf.
Fašková et al. (2010), Minarechová et al. (2015) and Macák
et al. (2015).

The FEMapplied to gravity fieldmodelling has been stud-
ied inMeissl (1981), Shaofeng andDingbo (1991) or Fašková
et al. (2010). In the case of BEM, there have been published
several papers; here wemention only few representative ones
Klees (1995), Lehmann andKlees (1999),Klees et al. (2001),
Čunderlík et al. (2008) or Čunderlík and Mikula (2010). The
oblique derivative problem treated by BEM is discussed in
Čunderlík et al. (2012). Thefirst application of FVMhas been
introduced by Fašková (2008) and its parallel implementa-
tion byMinarechová et al. (2015). However, both papers have
studied the geodetic BVP with the Neumann BC. The first
insight of FVM applied to the oblique derivative BVP has
been discussed inMacák et al. (2012), and this effort was fur-
ther developed inMacák et al. (2015, 2016), where treatment
of the oblique derivative by a central scheme and the first-
order upwind schemes (LeVeque 2002), respectively, were
developed for solving FGBVPs on uniform grids above the
ellipsoid.

In this paper, we consider the following BVP over a local
Earth topography

− �T (x) = 0, x ∈ Ω ⊂ R
3, (1)

v(x) · ∇T (x) = g(x), x ∈ Ψ ⊂ ∂Ω, (2)

T (x) = TDir(x), x ∈ ∂Ω − Ψ, (3)

where T (x) is the disturbing potential, the vector v(x) =
∇U/|∇U | is a unit vector of the normal gravity, the region
Ψ ⊂ ∂Ω represents the Earth topography, i.e. the bot-
tom boundary, and ∂Ω − Ψ represents the top boundary
together with side boundaries, see Fig. 1. In the case that
the Dirichlet and oblique derivative BC are obtained from
different sources, problem with a compatibility of BC can
arise on the edge where bottom and side boundaries meet.
In such a case, the Dirichlet BC is prescribed also in a nar-
row band of the bottom boundary along to this edge. Then,
Ψ is given by the bottom part of ∂Ψ minus the narrow
band.

From the numerical point of view, we present here a new
approach for solving the oblique derivative GBVP based on
the FVM considered on non-uniform grids above the real
Earth topography. To that goal, we develop a new method
for 3D computational grid construction based on an evolv-
ing surface approach (Mikula et al. 2014). At first, we
discretize the real Earth topography by a logically hexa-
hedron grid, and then, such discretization is evolved into
3D space in order to construct a discrete 3D computational
grid. The discrete surface (Earth topography) is evolved
in the outer normal direction by a constant speed and by
its mean curvature, and the evolution includes also a tan-
gential component controlling a geometrical property of
the 3D grid. Construction of such non-uniform 3D grid
allows us to develop a new second-order discretization of
the Laplace operator. Our discretization of the Laplace equa-
tion is based on the FVM, and we accompany it by a new
approach for treatment of the oblique derivative given on
the Earth’s topography. The oblique derivative BC is under-

Fig. 1 Illustration of the computational domain. The bottom red
boundary Earth’s surface Ψ , the upper boundary ellipsoidal surface—
approximation of chosen satellite orbit, the side boundaries borders of
the local region
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stood as a stationary advection equation, because from the
mathematical point of view they are the same. For solv-
ing advection equations, the FVM approach is the most
natural. We develop here a new upwind scheme for its
treatment on non-uniform grids above the real Earth topog-
raphy.

This paper is organized as follows. In Sect. 2, we intro-
duce a method for discretization of computational domain
above the Earth topography. In Sect. 3, we describe our
approximation of the Laplace equation and oblique deriva-
tiveBC. Finally, in Sect. 4we present numerical experiments.
The first one based on synthetic data studies an exper-
imental order of convergence of the developed method.
Next experiments show a reconstruction of the harmonic
function generated by the SH-based approach at the compu-
tational domain about the extremely complicated topography
in the Himalayas and in our mountainous country Slo-
vakia. Finally, we compare efficiency of our new FVM
scheme with the previous ones developed on uniform
grids.

2 Construction of the computational grid above the
Earth topography

Let Ω be a 3D domain bounded by a boundary ∂Ω , which is
composed fromparts, seeFig. 1. Thefirst part of the boundary
∂Ω represents an approximation of the Earth surface (bot-
tom, discretized surface, in Fig. 1). The second one is given
by an approximation of chosen satellite orbit at the height H
(the upper ellipsoidal surface in Fig. 1). Further two bound-
aries are given by planes going through two meridians (front
and back planar surfaces in Fig. 1), and the last two bound-
aries are given by planes going through two parallels (the left
and the right planar surfaces in Fig. 1). Such computational
domain is divided into hexahedrons by a method described
as follows.

2.1 Topography evolution by mean curvature and
external force

The computational domain Ω and its grid can be seen as a
parametrized volume. A parametrization determines a dis-
tribution of points, which in a discrete form determines our
finite volume grid. Let us denote by S = {x(u, v, t), u ∈
(0, 1), v ∈ (0, 1), t ∈ (0, tend)} the unknown parametriza-
tion of Ω . We consider that S(u, v, 0) approximates the
Earth’s topography and we would like to force it in such a
way that S(u, v, tend) forms approximately a part of an ellip-
soid at height H above the reference ellipsoid. This problem
can be treated in such a way that S(u, v, tend) will be the ref-
erence ellipsoid, which is then scaled to be approximately at
the height H and S(u, v, 0) remains unchanged. The 3D vol-

ume S can be seen as an evolving surface forwhich parameter
t is the time. The grid is constructed by an evolution of the
surface S(u, v, 0) by its mean curvature and a force f , where
f corresponds to the mean curvature of the reference ellip-
soid in the point S∗. The point S∗ is given by the projection
of S(u, v, t) to the reference ellipsoid. Using this evolution,
we achieve that the surface continuously forms a shape of a
part of the ellipsoid and the mathematical formulation of this
process is given by Mikula et al. (2014)

∂tx(u, v, t) = ε (kN + f N) , (4)

where unknown x is the position vector of the evolving sur-
face S, k is two times its mean curvature and N is the normal
vector at the point x. The scalar f is the force applied in
direction of the normal vector N. The vector kN is computed
as kN = �sx, where �s is the so-called Laplace–Beltrami
operator, which is the Laplace operator on a surface (Mikula
et al. 2014). The scalar ε is a parameter determining how fast
the surface is moving. Equation (4) is solved using the finite
volumemethod.Boundary points of the surface donot have to
be on the reference ellipsoid at time 0 due to real topography.
We want them to get on the reference ellipsoid in time tend.
So we decided that boundary points will move linearly to the
points on the ellipsoid, but we allow them also a tangential
movement. Points of the grid of the computational domainΩ

are discrete points of scaled S. The point are scaled around
the origin (0, 0, 0) with factor 1 + 240000/6378137.

2.2 Making the uniform grid by using tangential
redistribution of points

A redistribution of points on a surface is important for a
uniformity of the computational grid. Another reason for a
point redistribution is a numerical stability of a surface evo-
lution. Without the redistribution of points, singularities can
arise (Mikula et al. 2014). One way to achieve this goal is
to maintain uniform size of finite volumes. However, in our
approach we decided to maintain a uniform redistribution of
chosen individual curves forming the surface (Mikula et al.
2014). These individual curves can be seen as “deformed”
meridians and parallels. The discrete surface is composed by
such discrete parallels and meridians which cross in discrete
points xi j . In the point xi j , the i-th discrete meridian crosses
the j-th discrete parallel. The uniform redistribution can be
achieved by adding a tangential movement of the surface in
the directions Tpi and Tm j , where Tpi is a tangent to the
i-th parallel and Tm j is a tangent to the j-th meridian. The
tangential movement does not change the shape of a surface.

In this subsection, the tangential redistribution on individ-
ual curves is derived as in Húska et al. (2012) and Mikula
et al. (2014). Let us look only on one general curve Γ on the
surface. This curve can be one of the meridians or parallels,
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Fig. 2 Illustration of the curve Γ on the surface S and TΓ , NΓ
1 , NΓ

2

and it moves as the surface S is moving. The parametriza-
tion Γ = {x(u, t), u ∈ (0, 1), t ∈ (0, tend)} determines a
discretization of the curve . If we have n points on a curve
Γ at time point m, points of the curve are xi = x

( i
n ,m

)
.

If the curve has a uniform distribution at time 0, we want to
preserve this distribution. If it does not have the uniform dis-
tribution, we want redistribute points uniformly. Using this
parametrization, we can write TΓ = xu/|xu |.

There is another important parametrization of Γ . It is
called the arc-length parametrization. We denote it by s.
For this parametrization, it holds |dx|

ds = 1. Using this
parametrization, we can write TΓ = xs and using the Frenet
formula kNΓ = TΓ

s = xss .
For better clarity in the rest of this section, we decided to

denote the surface normal by NS and the surface mean cur-
vature by kS . Movement of the curve, caused by movement
of the surface by (4), is split in three perpendicular direc-
tions. The direction TΓ is a tangent vector of the curve Γ ,
and other two directions NΓ

1 and NΓ
2 lie in the normal plane

of the curve Γ . The direction NΓ
1 is chosen to be the normal

vector of the surface NS . The third vector is NΓ
2 = NΓ

1 ×TΓ .
For an illustration, see Fig. 2. In general, the curve evolution
is given by the equation

∂tx = UΓ NΓ
1 + V Γ NΓ

2 + AΓ TΓ , (5)

where x is the position vector of the curve Γ on the surface
S. Since the curve is moving by (4), the values of UΓ , V Γ

and AΓ are given by

UΓ =
(
ε
(
kSNS + f NS

))
· NΓ

1 ,

V Γ =
(
ε
(
kSNS + f NS

))
· NΓ

2 ,

AΓ =
(
ε
(
kSNS + f NS

))
· TΓ . (6)

Since NΓ
1 = NS , NΓ

2 ⊥ NS and TΓ ⊥ NS , we have

UΓ = ε
(
kS + f

)
,

V Γ = 0,

AΓ = 0. (7)

Using this fact and by adding a new tangent velocity αΓ TΓ ,
we obtain

∂tx = UΓ NΓ
1 + αΓ TΓ , (8)

The scalar αΓ is a quantity providing the tangential redistri-
bution of points on the curve Γ . Since we do not want this
velocity to move boundary points, we set α(0) = α(1) = 0.
This quantity is derived in the rest of this subsection.

Let us introduce a function gΓ = |xu | =√(
dx1
du

)2 +
(
dx2
du

)2 +
(
dx3
du

)2 = ds
du , which can be used for

the point distribution. From the discrete point of view, gΓ is
proportional to a distance between points on the curve. Let

us denote by LΓ the length of the curve Γ . If
(
gΓ

LΓ

)

t
= 0,

the ratio of distances between points and length of the curve
remains the same. This equation gives the αΓ that preserves
the initial redistribution of points.

It can be rewritten in the form

(
gΓ

LΓ

)

t
= gΓ

t LΓ − gΓ LΓ
t(

LΓ
)2

,
(9)

where for gΓ we have

gΓ
t = |xu |t = xu

|xu | · (xu)t (10)

and

(xu)t = (xt )u = (UΓ NΓ
1 +αΓ TΓ )u = gΓ (UΓ NΓ

1 +αΓ T)s .

(11)

From TΓ = xu|xu | and (11), we can rewrite (10) as

gΓ
t = gΓ TΓ · (UΓ NΓ

1 + αΓ T)s

= gΓ TΓ · (
UΓ
s NΓ

1 +UΓ (NΓ
1 )s + αΓ

s TΓ + αΓ (TΓ )s
)

= gΓ TΓ ·UΓ
s NΓ

1 + gΓ TΓ ·UΓ (NΓ
1 )s

+ gΓ TΓ · αΓ
s TΓ + gΓ TΓ · αΓ (TΓ )s

= gΓ TΓ ·UΓ (NΓ
1 )s + gΓ αΓ

s . (12)

Since NΓ
1 and TΓ are perpendicular, we have

TΓ · (NΓ
1 )s = −TΓ

s · NΓ
1 . (13)
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So (12) is given by

gΓ
t = −gΓUΓ TΓ

s · NΓ
1 + gΓ αΓ

s

= −gΓUΓ kΓ NΓ · NΓ
1 + gΓ αΓ

s (14)

Let us split kNΓ into NΓ
1 and NΓ

2

kΓ NΓ = kΓ
1 NΓ

1 + kΓ
2 NΓ

2 . (15)

That means that kΓ
1 and kΓ

2 are given by

kΓ
1 = kΓ NΓ · NΓ

1 . (16)

kΓ
2 = kΓ NΓ · NΓ

2 . (17)

We can use this to rewrite (14)

gΓ
t = −gΓUΓ kΓ

1 + gΓ αΓ
s , (18)

so we have determined gΓ
t in (9). We can determine LΓ

t as
well, by integrating Eq. (18):

LΓ
t =

∫ 1

0
gΓ
t du =

∫ 1

0
−gΓUΓ kΓ

1 du +
∫ 1

0
−gΓ αΓ

s du

=
∫

Γ

−UΓ kΓ
1 ds + αΓ (1) − αΓ (0), (19)

and since αΓ (0) = αΓ (1) = 0 we finally have

LΓ
t =

∫

Γ

−UΓ kΓ
1 ds. (20)

Let us denote

〈UΓ kΓ
1 〉Γ = 1

LΓ

∫

Γ

UΓ kΓ
1 ds. (21)

By substituting (18) and (20) into Eq. (9), we get

(
gΓ

LΓ

)

t
= gΓ

LΓ
(αΓ

s −UΓ kΓ
1 + 〈UΓ kΓ

1 〉Γ ). (22)

This equation determines how a distribution of points is
changing in time.

If we want to determine gΓ such that we obtain an asymp-
totically uniform redistribution, we can choose (Mikula and
Ševčovič 2004)

(
gΓ

LΓ

)

t
= ω

(
1 − gΓ

LΓ

)
. (23)

Considering (22), we see that everything in (23) is given by
the evolution of the curve and the surface, except the term

αΓ . Writing Eq. (23) in the form

αΓ
s = −UΓ kΓ

1 + 〈UΓ kΓ
1 〉Γ + ω

(
LΓ

gΓ
− 1

)
, (24)

we note that we can determine αΓ for any curve Γ on the
surface S.

By adding such movement in the direction of tangent vec-
tor to the curves (in our case “deformed” meridians and
parallels), the final equation for the surface evolution, which
includes also tangential evolution of points, is given by

∂tx = ε (kN + f N) + 〈αΓ TΓ 〉, (25)

where 〈αΓ TΓ 〉 = ∑
Γ ∈MΓ αΓ TΓ /|MΓ | and MΓ is the set

of curves crossing in the point xwhichwewant to redistribute
and |MΓ | is a cardinality of the setMΓ . Since redistributions
on crossing curves do not have to be compatible, we take the
average value. In the continuous case, Eqs. (25) and (4) give
the same image of the evolving surface, but in the discrete
case we obtain almost uniform point redistribution by using
(25).

2.3 Numerical approximation of evolving surface

Let us assume that the surface is composed by ni meridi-
ans and n j parallels. A point of an intersection of the i-th
meridian and the j-th parallel in a time index t is denoted
by xi j t . Usually the time index is written as xti j , but in
Sect. 3 we consider it as a space index, so for consistency
we write it in this way. Let p, q ∈ {−1, 0, 1} and let
Nint denote a set of all (p, q), |p| + |q| = int, where int
denote an integer number. So points xi+p, j+q,t , (p, q) ∈ N1

are north, south, east, west neighbouring points and points
xi+p, j+q,t , (p, q) ∈ N2 are northeast, northwest, southeast,
southwest neighbouring points. If we do not specify (p, q)

that belongs to N1 or N2, we always consider that it belongs
to the set N1.

The resulting scheme for the surface evolution introduced
in this subsection is semi-implicit. Some of the unknowns
are taken from time t + 1, and others are taken from time t ,
so that the resulting system of equations is linear.

The surface is divided into finite volumes. A finite vol-
ume Vi jt is associated with the point xi j t . Note that in this
subsection this is not a 3D finite volume but a 2D space
finite volume in a “time” t . Vertices of the finite volume
are given by centres of line segments connecting points xi j t
and xi+p, j+q,t , (p, q) ∈ N1 and by centres of quadrilaterals
given by points xi j t , xi+p, j,t , xi, j+q,t , xi+p,, j+q,t , (p, q) ∈
N2. These vertices are denoted by xpq

i j t , see Fig. 3, and they
are computed by the formula
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Vi,j,t

xi,j,t

xi+1,j,txi−1,j,t

xi,j−1,t

xi,j+1,t

x1,1
i,jt

x1,−1
i,jt

x1,0
i,jt

e1,0,1i,jt

e1,0,−1
i,jt

Vi,j,t

n1,0,1
i,jt

n1,0,−1
i,jt

xi,j,t

xi+1,j,t

Fig. 3 Left finite volume with representative points and right finite volume with normals and edges

xpq
i j t = 1

4

∑

(l,m)∈B(p,q)

xi+l, j+m,t , (26)

where B(p, q) = {(p, q),(p, 0),(0, q),(0, 0)}.
A boundary between Vi jt and Vi+p, j+q,t , (p, q) ∈ N1

is kinked, so it is composed by two line segments. Let us
denote by epqri j t , (p, q) ∈ N1, r ∈ {−1, 1}, two line seg-
ments forming the boundary between the finite volumes Vi jt
and Vi+p, j+q,t . Let us define a function, which generate a
“corner” vertex of epqri j t

	(p, q, r) =
{

(r, q), p = 0

(p, r), q = 0
(27)

A line segment epqri j t is then given by points xpq
i j t and x	(p,q,r)

i, j,t .

Let us denote npqr
i j t an outer normal to the epqri j t . For better

understanding, see Fig. 3.
Let k be equal to one for simplicity. By integrating (25)

over the finite volumeVi jt , we get

∫

Vi jt
∂txdS =

∫

Vi jt
�sxdS +

∫

Vi jt
f NdS +

∫

Vi jt
〈αΓ TΓ 〉dS,

(28)

and by using Green’s theorem we have

∫

Vi jt
∂txdS =

∫

∂Vi jt
∇sx · ni j tds +

∫

Vi jt
f NdS

+
∫

Vi jt
〈αΓ TΓ 〉dS. (29)

Using definition of the finite volume, the first term on the
right-hand side of (29) can be rewritten as

∫

∂Vi jt
∇sx · ni j tds =

∑

(p,q)∈N1

∑

r∈{−1,1}

∫

epqri j t

∇sx · npqr
i j t ds

=
∑

(p,q)∈N1

∑

r∈{−1,1}

∫

epqri j t

∂x

∂npqr
i j t

ds. (30)

A derivative of x in the direction of npqr
i j t is considered con-

stant on the boundary epqri j t . In general, a vector xi+p, j+q,t −
xi j t is not in the direction of the normal vector npqr

i j t , so the
derivative in the direction of the normal vector is approxi-
mated by a derivative in a direction of xi+p, j+q,t − xi j t and
a derivative in a direction of the tangent vector to epqri j t . The

tangent vector to epqri j t is defined as

tp,q,r
i, j,k = x	(p,q,r)

i, j,k − xpq
i, j,k

|x	(p,q,r)
i, j,k − xpq

i, j,k |
. (31)

A unit vector spqi j t , which is pointing from the neighbouring
point xi+p, j+q,t to the point xi, j,t , is given by

spqi j t = xi+p, j+q,t − xi, j,t
|xi+p, j+q,t − xi, j,t | . (32)

An approximation of the normal vector to epqri j t is defined as

npqr
i j t = spqi j t × tp,q,r

i, j,k

|spqi j t × tp,q,r
i, j,k | × tp,q,r

i, j,k (33)

Since vectors spqi j t ,n
pqr
i j t and tpqri j t lie in the same plane, the

vector spqi j t can be expressed as a linear combination of npqr
i j t ,

tpqri j t and it holds

∇sx · spqri j t = ∇sx · (β
pqr
i j t npqr

i j t + γ
pqr
i j t tpqri j t )

= β
pqr
i j t ∇sx · npqr

i j t + γ
pqr
i j t ∇sx · tpqri j t , (34)
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where β
pqr
i j t = npqr

i j t · spqi j t and γ
pqr
i j t = tpqri j t · spqi j t . Thus, the

derivative in the normal direction can be expressed as

∇sx · npqr
i j t = 1

β
pqr
i j t

∇sx · spqri j t − γ
pqr
i j t

β
pqr
i j t

∇sx · tpqri j t , (35)

and approximated by

∇sx · npqr
i j t = 1

β
pqr
i j t

xi+p, j+q,t+1 − xi, j,t+1

|xi+p, j+q,t − xi, j,t |

−γ
pqr
i j t

β
pqr
i j t

x	(p,q,r)
i, j,t+1 − xpq

i, j,t+1

|x	(p,q,r)
i, j,t − xpq

i, j,t |
, (36)

Using this equation and because the length of epqri j t1 is equal
to

m(epqri j t1) = |x	(p,q,r)
i, j,t − xpq

i, j,t |, (37)

Eq. (30) can be approximated by

∑

(p,q)∈N1

∑

r∈{−1,1}

∫

epqri j t

∂x

∂npqr
i j t

ds ≈

∑

(p,q)∈N1

∑

r∈{−1,1}

(
m(epqri j t1)

β
pqr
i j t

xi+p, j+q,t+1 − xi, j,t+1

|xi+p, j+q,t − xi, j,t |

−γ
pqr
i j t

β
pqr
i j t

(
x	(p,q,r)
i, j,t+1 − xpq

i, j,t+1

))

. (38)

Because x	(p,q,r)
i, j,t+1 and xpq

i, j,t+1 are vertices of the finite
volume computed as in (26), the equation can be rewritten

∑

(p,q)∈N1

∑

r∈{−1,1}

(
m(epqri j t1)

β
pqr
i j t

xi+p, j+q,t+1 − xi, j,t+1

|xi+p, j+q,t − xi, j,t |

−γ
pqr
i j t

β
pqr
i j t

⎛

⎝1

4

∑

(l,m)∈B(	(p,q,r))

xi+l, j+m,t+1

−1

4

∑

(l,m)∈B(p,q)

xi+l, j+m,t+1

⎞

⎠

⎞

⎠ . (39)

A constant value of f Ni j t is considered on the finite vol-
ume Vi jt . So the second term on the right-hand side of Eq.
(29) can be rewritten as

∫

Vi jt
f NdS = m(Vi jt ) f Ni j t , (40)

where m(Vi jt ) is a 2D measure of Vi jt . In order to compute
Ni j t , we consider a vector kNi j t computed by Eq. (39), where

all values are taken at time index t . Then, the normal vector
to the surface is given by

Ni j t = kNi j t

|kNi j t | . (41)

Themeridians and parallels are curves according to which
we are going to redistribute points on the surface. Only one
meridian and one parallel go through the point xi j t . Let us
consider the i-th meridian and the j-th parallel. The point
xi j t is the i-th point on the j-th parallel and the j-th point on
the i-th parallel in time t . So we can write

∫

Vi jt
〈αΓ TΓ 〉dS =

∫

Vi jt

(
αiTi + α jT j

)
/2dS, (42)

where Ti (T j ) is the tangent vector to the i-th meridian ( j-th
parallel). Values of αiTi and α jT j are considered constant
on Vi jt , and we approximate them using central differences

∫

Vi jt

(
αiTi + α jT j

)
/2dS =

m(Vi jt )

(
αi
j t

xi, j+1,t+1 − xi, j−1,t+1

|xi, j+1,t − xi, j−1,t |
+α

j
i t

xi+1, j,t+1 − xi−1, j,t+1

|xi, j+1,t − xi, j−1,t |
)

/2, (43)

where αi
j t (α

j
i t ) is αi (α j ) in the j-th (i-th) point on the i-

th ( j-th) parallel in time t . A time derivative is considered
constant on the finite volume and is approximated by a finite
difference

∫

Vi jt
∂txdS = m(Vi jt )

(
xi, j,t+1 − xi j t

�t

)
. (44)

Using Eqs. (38), (40), (43) and (44), we get

m(Vi jt )

(
xi, j,t+1 − xi j t

�t

)
=

∑

(p,q)∈N1

∑

r∈{−1,1}

(
m(epqri j t1)

β
pqr
i j t

xi+p, j+q,t+1 − xi, j,t+1

|xi+p, j+q,t − xi, j,t |

−α
pqr
i j t

β
pqr
i j t

⎛

⎝1

4

∑

(l,m,)∈B(	(p,q,r))

xi+l, j+m,t+1

−1

4

∑

(l,m,)∈B(p,q)

xi+l, j+m,t+1

⎞

⎠

⎞

⎠ + m(Vi jt ) f Ni j t

+m(Vi jt )

(
αi
j t

xi, j+1,t+1 − xi, j−1,t+1

|xi, j+1,t − xi, j−1,t |
+α

j
i t

xi+1, j,t+1 − xi−1, j,t+1

|xi, j+1,t − xi, j−1,t |
)

/2. (45)
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We have a system of ni × n j equations with ni × n j

unknowns xi j,t+1, where i = 1, . . . , ni and j = 1, . . . , n j .

Values of αi
j t (α

j
i t , respectively) are computed before the

system of Eq. (45) is solved. We obtain these values by solv-
ing Eq. (24). Approximating the derivative in (24) by using
the backward difference and taking the right-hand side in the
discrete points, we get

αi
j t − αi

j−1,t

|xi, j t − xi, j−1,t | = (Ui
j−1/2,t k

i
1, j−1/2,t − 〈Ui

t k
i
1t 〉i

+ω

(
Li
t |xi, j t − xi, j−1,t |

n j
− 1

)

, (46)

where

kim, j−1/2,t =
(
kim, j t − kim,, j−1,t

)
/2,m = 1, 2 (47)

kim, j t = kNi
j t · Ni

m, j t ,m = 1, 2 (48)

Ni
1, j t = Ni

j t , (49)

Ni
2, j t = Ni

1, j t × Ti
j t , (50)

Ti
j t = xi, j+1,t − xi, j−1,t

|xi, j+1,t − xi, j−1,t | , (51)

kNi
j t =

xi, j+1,t − xi, j,t
|xi, j+1,t − xi, j,t | − xi, j,t − xi, j−1,t

|xi, j,t − xi, j−1,t |
(|xi, j+1,t − xi, j,t | + |xi, j,t − xi, j−1,t |)/2 ,

(52)

Ui
j−1/2,t =

(
Ui

j+1,t +Ui
j,t

)
/2, (53)

Ui
j,t = (εkNi j t + f Ni j t ) · Ni

1, j t , (54)

〈Uiki1〉i = 1

Li
t

n j∑

l=1

hil(U
i
l−1/2k

i
1,l−1/2), (55)

Li
t =

n j∑

i=1

|xi, j t − xi, j−1,t |. (56)

From (46), (55) and (56), we get

αi
j t = αi

j−1,t − |xi, j t − xi, j−1,t |
(
Ui

j−1/2,t k
i
1, j−1/2,t

)

+ |xi, j t − xi, j−1,t |
n j∑

l=1

|xi,lt

− xi,l−1,t |
(
Ui
l−1/2,t k

i
1,l−1/2,t

)

+ω

(
Li
t

n j
− |xi, j t − xi, j−1,t |

)
, (57)

Because αi
0,t = 0 (α j

0,t = 0), every value of αi
j t (α

j
i t ) can be

computed before solving system of Eq. (44).
The system of Eq. (45) can be solved using the BiCGStab

method (Sleijpen and Fokkema 1993).

3 Discretization of oblique derivative BVP for
Laplace equation

3.1 Approximation of the Laplace equation

Let us have Laplace equation on a three-dimensional domain
Ω with Dirichlet boundary conditions

−�T (x) = 0, x ∈ Ω (58)

T (x) = TDir, x ∈ ∂Ω. (59)

We discretize the domain Ω by the regular hexahedron
grid using the approach described in the previous section.
Vertices of hexahedron are the representative points of finite
volumes constructed later. Representative points are denoted
by xi, j,k . Hexahedron finite volumes are constructed around
inner (those that do not lie on the boundary ∂Ω) representa-
tive points. Let p, q, r ∈ {−1, 0, 1} and let Nint denote the
set of all (p, q, r),|p|+ |q|+ |r | = int . Vertices of the finite
volumes are denoted by x p,q,r

i, j,k ,where (p, q, r) ∈ N3, seeFig.

4. Vertex x p,q,r
i, j,k is constructed in such way that is located in

the centre of eight neighbouring representative points, i.e.

x p,q,r
i, j,k = 1

8

∑

(l,m,n)∈B(p,q,r)

xi+l, j+m,k+n, (60)

xi+1,j,k
xi,j,k

x
1,1,1
i,j,k

x
1,−1,1
i,j,kx

1,−1,−1
i,j,k

x
1,1,−1
i,j,k

f
1,0,0
i,j,k

t
1,0,0
i,j,k

s
1,0,0
i,j,k

n
1,0,0
i,j,k

Fig. 4 Finite volume
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where B(p, q, r) = {(p, q, r),(p, q, 0),(p, 0, r),(p, 0, 0),
(0, q, r),(0, q, 0),(0, 0, r),(0, 0, 0)}. Thefinite volumeasso-
ciated with the representative point xi, j,k is denoted by Vi, j,k .

By integrating Eq. (58) over the finite volume Vi jk , we
obtain

∫

Vi, j,k
−�T dx = 0. (61)

Using Green’s theorem, we obtain

∫

∂Vi, j,k
−∇T · ndτ = 0. (62)

Considering that the finite volume Vi, j,k has neighbouring
volumes Vi+p, j+q,k+r , (p, q, r) ∈ N1with nonzero measure
of the common boundary, and ep,q,r

i, j,k is the boundary between
volumes Vi, j,k and Vi+p, j+q,k+r , we can rewrite Eq. (62) to
the form

−
∑

(p,q,r)∈N1

∫

ep,q,r
i, j,k

∇T · ndτ = 0. (63)

Unknown values Ti, j,k are considered in points xi, j,k .
Unit vector sp,q,r

i, j,k , which is pointing from the neighbour-
ing point xi, j,k to the point xi+p, j+q,k+r , is given by

sp,q,r
i, j,k = xi+p, j+q,k+r − xi, j,k

|xi+p, j+q,k+r − xi, j,k | , (64)

where |x | is Euclidian norm of a vector x . Let us introduce
new operations on the set N1

⊕(p, q, r) =

⎧
⎪⎨

⎪⎩

(p, 1, 1),

(1, q, 1),

(1, 1, r),

p �= 0

q �= 0

r �= 0

,

(p, q, r) =

⎧
⎪⎨

⎪⎩

(p,−1,−1),

(−1, q,−1),

(−1,−1, r),

p �= 0

q �= 0

r �= 0

,

�(p, q, r) =

⎧
⎪⎨

⎪⎩

(p, 1,−1),

(1, q,−1),

(1,−1, r),

p �= 0

q �= 0

r �= 0

,

�(p, q, r) =

⎧
⎪⎨

⎪⎩

(p,−1, 1),

(−1, q, 1),

(−1, 1, r),

p �= 0

q �= 0

r �= 0

Thanks to our structure of finite volumes, the faces of finite
volumes are given by four vertices. These vertices are used
to compute tangent vectors. The first tangent vector tp,q,r

i, j,k to

the boundary between Vi, j,k and Vi+p, j+q,k+r is given by

tp,q,r
i, j,k = x⊕(p,q,r)

i, j,k − x(p,q,r)
i, j,k

|x⊕(p,q,r)
i, j,k − x(p,q,r)

i, j,k |
, (65)

where x⊕(p,q,r)
i, j,k and x(p,q,r)

i, j,k are crosswise diagonal vertices

of ep,q,r
i, j,k . The second tangent vector f p,q,r

i, j,k is given by other

two vertices of ep,q,r
i, j,k ,

f p,q,r
i, j,k = x�(p,q,r)

i, j,k − x�(p,q,r)
i, j,k

|x�(p,q,r)
i, j,k − x�(p,q,r)

i, j,k |
. (66)

The normal vector to the boundary of the finite volume is
then defined by

np,q,r
i, j,k = tp,q,r

i, j,k × f p,q,r
i, j,k . (67)

where np,q,r
i, j,k is the outer normal relative to the finite volume

Vi, j,k (see Fig. 4).
Since the vector spqri jk can be expressed as a linear recon-

struction of npqr
i jk , tpqri jk , fpqri jk , it holds

∇T · spqri jk = ∇T · (β
pqr
i jk npqr

i jk + α
pqr
i jk tpqri jk + γ

pqr
i jk fpqri jk )

= β
pqr
i jk ∇T · npqr

i jk + α
pqr
i jk ∇T · tpqri jk + γ

pqr
i jk ∇T · fpqri jk ,

(68)

where coefficients α
pqr
i jk , β pqr

i jk and γ
pqr
i jk are given by solving

a linear system of equations

spqri jk = β
pqr
i jk npqr

i jk + α
pqr
i jk tpqri jk + γ

pqr
i jk fpqri jk . (69)

Therefore, for the derivative in the direction of normal we
get

∇T · npqr
i jk = 1

β
pqr
i jk

(∇T · spqri jk −α
pqr
i jk ∇T · tpqri jk − γ

pqr
i jk ∇T · fpqri jk ).

(70)

Equation (70) is approximated by
1

β
pqr
i jk

(∇T · spqri jk − α
pqr
i jk ∇T · tpqri jk − γ

pqr
i jk ∇T · fpqri jk )

≈ 1

β
pqr
i jk

Ti jk − Ti+p, j+q,k+r

d pqr
i jk

− α
pqr
i jk

β
pqr
i jk

T⊕(p,q,r)
i, j,k −T(p,q,r)

i, j,k

|x⊕(p,q,r)
i, j,k −x(p,q,r)

i, j,k |

−γ
pqr
i jk

β
pqr
i jk

T�(p,q,r)
i, j,k − T�(p,q,r)

i, j,k

|x�(p,q,r)
i, j,k − x�(p,q,r)

i, j,k |
, (71)

where T⊕(p,q,r)
i, j,k are the values at the points x⊕(p,q,r)

i, j,k and

d pqr
i jk is the distance between x p,q,r

i, j,k and xi, j,k .
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Equation (63) can be rewritten using Eq. (71) in the form

−
∑

(p,q,r)∈N1

m(epqri jk )

(
1

β
pqr
i jk

Ti jk − Ti+p, j+q,k+r

d pqr
i jk

−α
pqr
i jk

β
pqr
i jk

T⊕(p,q,r)
i, j,k − T(p,q,r)

i, j,k

|x⊕(p,q,r)
i, j,k − x(p,q,r)

i, j,k |

−γ
pqr
i jk

β
pqr
i jk

T�(p,q,r)
i, j,k − T�(p,q,r)

i, j,k

|x�(p,q,r)
i, j,k − x�(p,q,r)

i, j,k |

)
= 0, (72)

wherem(epqri jk ) is the area of the face epqri jk . For the finite vol-
umes, that are adjacent to the boundary finite volumes, the
value Ti+p, j+q,k+r is given by the Dirichlet boundary con-

dition (59). Values T⊕(p,q,r)
i, j,k are not given in representative

points, but in points x⊕(p,q,r)
i, j,k , which are vertices of the finite

volume. They are at the centre of the corresponding repre-
sentative points (60). So values T⊕(p,q,r)

i, j,k are approximated
by

T⊕(p,q,r)
i, j,k = T (x⊕(p,q,r)

i, j,k )

= 1

8

∑

(l,m,n)∈B(⊕(p,q,r))

Ti+l, j+m,k+n, (73)

and values T(p,q,r)
i, j,k , T�(p,q,r)

i, j,k , T�(p,q,r)
i, j,k in Eq. (72) can be

expressed similarly.
Equation (73) is given for every inner finite volume Vi, j,k

with the unknown value Ti, j,k . Therefore, we have as many
equations as unknowns, and we get the linear system, which
can be solved, e.g. by BiCGStab method (Sleijpen and
Fokkema 1993). A numerical experiment for solving the
problem (58–59) in this way is presented in Sect. 4.

3.2 Approximation of the oblique derivative boundary
condition

Let us have the Laplace equation (58) on the domain Ω

with prescribed derivative in the direction v, pointing out-
ward from Ω , on the part of the domain boundary Ψ and the
Dirichlet boundary condition (59) on the rest of the bound-
ary. The oblique derivative boundary condition is thus given
by

v(x) · ∇T (x) = g(x), x ∈ Ψ. (74)

The computational domain is divided by finite volumes as
in the previous subsection. However, the finite volumes are
constructed also around representative points on the bound-
aryΨ . Vertices common to boundaryfinite volumes and inner
finite volumes are located at the centre of the representative
points, defined by (60). Other vertices of the boundary finite

volumes are obtained bymirroring of the former ones through
Ψ . The set of added finite volumes is denoted by O .

We understand Eq. (74) as advection equation, see LeV-
eque (2002), and we integrate it over the finite volume
Vi, j,k ∈ O:

∫

Vi, j,k
v · ∇T dx =

∫

p
gdx . (75)

Since

v · ∇T = ∇ · (vT ) − T∇ · v, (76)

where ∇· = div, we can rewrite Eq. (75) into the form

∫

Vi, j,k
∇ · (vT )dx −

∫

Vi, j,k
T∇ · vdx =

∫

Vi, j,k
gdx . (77)

Since T is considered constant on the finite volume, then

∫

Vi, j,k
∇ · (vT )dx − Ti, j,k

∫

Vi, j,k
∇ · vdx =

∫

Vi, j,k
gdx .

(78)

Using Green’s theorem, we have

∫

∂Vi, j,k
T v · n ds − Ti, j,k

∫

∂Vi, j,k
v · n ds =

∫

Vi, j,k
gdx . (79)

Suppose that g is constant on the finite volume and that T is
constant on the faces ep,q,r

i, j,k , then Eq. (79) takes the form

∑

(p,q,r)∈N1

T p,q,r
i, j,k

∫

ep,q,r
i, j,k

v · n ds

−Ti, j,k
∑

(p,q,r)∈N1

∫

ep,q,r
i, j,k

v · n ds = |Vi, j,k |g, (80)

where T p,q,r
i, j,k is the value on the boundary ep,q,r

i, j,k and |Vi, j,k |
is the volume of the finite volume Vi, j,k .

The upwind principle (LeVeque 2002) will be used in the
sequel. Let us define the integrated flux over ep,q,r

i, j,k by

v
p,q,r
i, j,k =

∫

ep,q,r
i, j,k

v · n ds. (81)

If v
p,q,r
i, j,k > 0, ep,q,r

i, j,k is an outflow face. Thus, T p,q,r
i, j,k should

be computed by using the information from inside of the
finite volume, T p,q,r

i, j,k := Ti, j,k + ∇Ti, j,k · (x p,q,r
i, j,k − xi, j,k),

where∇Ti, j,k is an approximation of the gradient in the finite
volume Vi, j,k . If v

p,q,r
i, j,k < 0, ep,q,r

i, j,k represents an inflow face;
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Ti,j,k + ∇T (̇x−1,0,0
i,j,k − xi,j,k)

vi,j,k

Ti,j,k + ∇T (̇x0,−1,0
i,j,k − xi,j,k)

Ti,j,k + ∇T (̇x1,00i,j,k − xi+1,j,k)

Ti,j,k + ∇T (̇x0,1,0i,j,k − xi,j+1,k)

Fig. 5 Neighbouring finite volume

thus, T p,q,r
i, j,k is computed using information from the neigh-

bouring finite volume. Hence, T p,q,r
i, j,k := Ti+p, j+q,k+r +

∇Ti+p, j+q,k+r · (x p,q,r
i, j,k − xi+p, j+q,k+r ), see Fig. 5.

Let us split the set N1 for (i, j, k) into N in
1 (i, j, k) and

N out
1 (i, j, k), where N in

1 (i, j, k) are indexes of neighbours for
which v

p,q,r
i, j,k < 0 and N out

1 (i, j, k) are indexes of neighbours

for which v
p,q,r
i, j,k > 0. Then, Eq. (80) becomes

∑

(p,q,r)∈Nin
1 (i, j,k)

(Ti+p, j+q,k+r

+∇Ti+p, j+q,k+r · (x p,q,r
i, j,k − xi+p, j+q,k+r ))v

p,q,r
i, j,k

+
∑

(p,q,r)∈Nout
1 (i, j,k)

(Ti, j,k

+∇Ti, j,k · (x p,q,r
i, j,k − xi, j,k))v

p,q,r
i, j,k

−
∑

(p,q,r)∈Nin
1 (i, j,k)

Ti, j,kv
p,q,r
i, j,k

−
∑

(p,q,r)∈Nout
1 (i, j,k)

Ti, j,kv
p,q,r
i, j,k = |Vi, j,k |g, (82)

where v
p,q,r
i, j,k is approximated by

v
p,q,r
i, j,k = |ep,q,r

i, j,k |(v · np,q,r
i, j,k ), (83)

where |ep,q,r
i, j,k | is the area of the face ep,q,r

i, j,k . By using the

functions max(0, v p,q,r
i, j,k ) and min(0, v p,q,r

i, j,k ), we can write

∑

(p,q,r)∈N1

[
(Ti+p, j+q,k+r

+∇Ti+p, j+q,k+r · (x p,q,r
i, j,k − xi+p, j+q,k+r ))min(0, v p,q,r

i, j,k )

+(Ti, j,k + ∇Ti, j,k · (x p,q,r
i, j,k − xi, j,k))max(0, v p,q,r

i, j,k )

−Ti, j,kv
p,q,r
i, j,k

]
= |Vi, j,k |g. (84)

The gradient on the finite volume Vi, j,k can be expressed
using derivatives in three linear independent directions. Let
us denote these directions p, q, r. For derivatives in these
directions apply

∂T

∂p
= ∇T · p = ∂T

∂x
px + ∂T

∂y
py + ∂T

∂z
pz,

∂T

∂q
= ∇T · q = ∂T

∂x
qx + ∂T

∂y
qy + ∂T

∂z
qz,

∂T

∂r
= ∇T · r = ∂T

∂x
rx + ∂T

∂y
ry + ∂T

∂z
rz . (85)

If we look at (85) as a system of linear equations for
unknowns ∂T

∂x , ∂T
∂y ,

∂T
∂z , we obtain the solution

∂T

∂x
= −−pzqy

∂T
∂r + pyqz

∂T
∂r − qz

∂T
∂p ry + pz

∂T
∂q ry + qy

∂T
∂p rz − py

∂T
∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

∂T

∂y
= − pzqx

∂T
∂r − pxqz

∂T
∂r + qz

∂T
∂p rx − pz

∂T
∂q rx − qx

∂T
∂p rz + px

∂T
∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

∂T

∂z
= −−pyqx

∂T
∂r + pxqy

∂T
∂r − qy

∂T
∂p rx + py

∂T
∂q rx + qx

∂T
∂p ry − px

∂T
∂q ry

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

(86)

and thus

∇Ti, j,k = p × q ∂T
∂r + q × r ∂T

∂p + r × p ∂T
∂q

det(p, q, r)
, (87)
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where

det(p, q, r) = det

⎛

⎝
px py pz
qx qy qz
rx ry rz

⎞

⎠ . (88)

If the finite volume, on which we want to reconstruct the
gradient, is the inner finite volume, p, q, r are defined by

p = xi+1, j,k − xi−1, j,k

|xi+1, j,k − xi−1, j,k | ,

q = xi, j+1,k − xi, j−1,k

|xi, j+1,k − xi, j−1,k | ,

r = xi, j,k+1 − xi, j,k−1

|xi, j,k+1 − xi, j,k−1| . (89)

Approximation of derivatives in these directions is

∂T

∂p
≈ Ti+1, j,k − Ti−1, j,k

|xi+1, j,k − xi−1, j,k | ,
∂T

∂q
≈ Ti, j+1,k − Ti, j−1,k

|xi, j+1,k − xi, j−1,k | ,
∂T

∂r
≈ Ti, j,k+1 − Ti, j,k−1

|xi, j,k+1 − xi, j,k−1| , (90)

On the other hand, if the finite volume is the boundary
finite volume, then one of the neighbouring finite volumes
does not exist. Let us sayfinite volumeVi−1, j,k does not exist.
Then, we cannot use Ti−1, j,k for reconstruction, but we can
use the oblique derivative g(xi jk) in direction v(xi jk). Let us
denote them g and v. Then, p, q, r are defined by

p = v,

q = xi, j+1,k − xi, j−1,k

|xi, j+1,k − xi, j−1,k | ,

r = xi, j,k+1 − xi, j,k−1

|xi, j,k+1 − xi, j,k−1| . (91)

Approximation of derivatives in these directions is

∂T

∂p
= g,

∂T

∂q
≈ Ti, j+1,k − Ti, j−1,k

|xi, j+1,k − xi, j−1,k | ,
∂T

∂r
≈ Ti, j,k+1 − Ti, j,k−1

|xi, j,k+1 − xi, j,k−1| , (92)

And so

∇Ti, j,k

=
v × q

Ti, j,k+1 − Ti, j,k−1

|xi, j,k+1 − xi, j,k−1| + q × r g + r × v
Ti, j+1,k − Ti, j−1,k

|xi, j+1,k − xi, j−1,k |
det(v, q, r)

.

(93)

Substituting (93) into the (84),we get equations for bound-
ary finite volumes Vi, j,k ∈ O . Due to the construction of our
scheme, the equations for these finite volumes may require
two neighbouring finite volumes in the directions of q and
r. For those which do not have such neighbours, we have
to prescribe Dirichlet boundary conditions, which is also in
accordance with the compatibility of boundary conditions
mentioned in the introduction. All these equations together
with equations from the discretization of the Laplace equa-
tion form a numerical scheme for solving the problem (1).

4 Numerical experiments

In this section, we present numerical experiments for the
geodetic BVP (1–3). An experimental order of convergence
is studied in the first two experiments. Next experiments
present a reconstruction of a harmonic function on and
above the complicated Earth’s topography, namely over
the Himalayas and in the area of Slovakia. This harmonic
function as well as all boundary conditions (BCs) is gener-
ated from the global geopotential models that are based on
the SH-based approach. The last experiment presents local
gravity field modelling in Slovakia using terrestrial gravity
data.

4.1 Experimental order of convergence

In the first experiment, we are solving the BVP (1–3) with
BCs obtained from an artificial harmonic function defined
on a computational domain, see Fig. 6. This computational
domain is bounded by four planar side boundaries, a spheri-
cal upper boundary and the bottom boundary, which is given
by a perturbed sphere. In order to test the numerical scheme,
we constructed the most coarse grid using the method pre-
sented in Sect. 2. Then, refined grids were constructed by
adding new representative points in between representative
points of the previous grid using Eq. (60). The exact solution
was chosen as T (x) = 1

|x−(0.1,0.2,0.3)| , and its values were
used to generate the oblique derivative and the Dirichlet BC.
The oblique derivative BC was prescribed on the perturbed
sphere as the bottom boundary. The vectors in the direc-
tion of ∇T (x) were rotated alternately by the angle of π/6
around x , y, z axes to get the vectors v, see Fig. 7. Then,
the FVM presented in Sect. 3 was used to solve this problem.
Table 1 depicts the L2-norm andmaximum norm of residuals
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Fig. 6 Computational domain for the first experiment

Fig. 7 Oblique derivative directions for the first experiment

between the obtained FVM solutions and the exact solution,
and the achieved experimental order of convergence (EOC)
of our FVM approach.

Table 1 L2 norm and max norm of residuals, and EOC of FVM for
the problem with the exact solution T (x) = |x − (0.1, 0.2, 0.3)|−1

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125 0.000229 0.00269

0.0642 7.00358e−05 1.761 0.00102 1.429

0.0324 2.43723e−05 1.545 0.000418 1.31582

0.0162 7.90755e−06 1.635 0.000153 1.45607

0.00817 2.44251e−06 1.702 5.23081e−05 1.56279

The EOC is defined as follows. Let us assume that the
error of the scheme in some norm is proportional to some
power of the grid size, i.e. ||eh || = Chα , with a constant C.
The error of the scheme eh is defined as a difference between
the exact and numerical solutions. Then, having two grids
with the maximal diameter of the finite volumes hmax1 and
hmax2 , where hmax1 > hmax2 , we can obtain numerically two
errors ||ehmax1

|| = Chα
max1 and ||ehmax2

|| = Chα
max2 . We can

see that

||ehmax1
||

||ehmax2
|| = Chα

max1

Chα
max2

=
(
hmax1

hmax2

)α

(94)

from where we can simply extract

α = log hmax1
hmax2

||ehmax1
||

||ehmax2
|| , (95)

which is called the experimental order of convergence (EOC)
of the scheme. We will use the numerical L2 norm for eval-
uating the EOC.

The second experiment is computed on the same computa-
tional domain with the exact solution taken from EGM2008
while using only the SH coefficients up to degree and order
5. The oblique derivative is generated as the first derivative
of the disturbing potential (the exact solution) in the radial
direction. This radial direction represents the oblique direc-
tion since it differs from the direction of the normal vector to
the bottom boundary. Table 2 shows the L2-norm and maxi-
mum norm of residuals between the obtained FVM solutions
and exact solution, and the achieved EOC. Both experiments
show that EOC of our FVM approach is about 1.6, which
means that if we decrease the maximal size of the finite
volumes by 2, then the error of our solution will decrease
approximately by 3 (21.6 ≈ 3.03).

4.2 Reconstruction of EGM2008 over the Himalayas

Next experiments aim to demonstrate the decreasing error
of our FVM solution with refining the computational grid
above the extremely complicated Earth’s topography in the
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Table 2 L2 norm and max norm of residuals, and EOC of FVM for
the problem with exact solution taken from the EGM2008 up to degree
and order 5

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125 9.25506e−05 0.000911

0.0642 2.39154e−05 2.01 0.000348 1.43

0.0324 8.80662e−06 1.462 0.0001389 1.349

0.0162 2.96979e−06 1.579 4.87918e−05 1.51659

0.00817 9.39478e−07 1.667 1.5969e−05 1.61833

Himalayas. The EGM2008 up to degree 2160 was used to
generate all BCs and the harmonic function.

These numerical experiments were performed in the
domain above theHimalayas bounded by 〈60◦, 110◦〉meridi-
ans and 〈20◦, 50◦〉 parallels. The 3D computational grid was
generated using method described in Sect. 2. The bottom
boundary was given by grid points that are located on the
Earth’s surface. Their spacing in horizontal directions was
uniform. Their heights were interpolated from the SRTM30
PLUS topographymodel (Becker et al. 2009), see Fig. 8a. An

Fig. 8 a Earth’s surface topography over the Himalayas (the bottom
boundary) (m), b the disturbing potential fromEGM2008 on the Earth’s
surface (m2s−2), c the disturbing potential from our FVM solution

(m2s−2), (d, e, f) residuals between the EGM2008 and our FVM solu-
tion, where grid density is d 501 × 301 × 25, e 1001 × 601 × 49, f
2001 × 1201 × 97 points (m2s−2)
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Table 3 Statistics of residuals
between our FVM solution and
the EGM2008 in the domain
above the Himalayas (m2s−2)

Resolution 0.1◦ × 0.1◦ × 10 km 0.05◦ × 0.05◦ × 5 km 0.025◦ × 0.025◦ × 2.5 km
grid density 501 × 301 × 25 1001 × 601 × 49 2001 × 1201 × 97

Min. value −5.07 −1.68 −0.44

Mean value 1.79 0.87 0.33

Max. value 23.05 11.98 3.90

St. deviation 2.3 1.09 0.37

upper boundary was chosen in the height of 240 km above
a reference ellipsoid corresponding to an average altitude of
the GOCE satellite orbits. The resulting 3D computational
grid constructed by our surface evolution method (see Sect.
2) is non-uniform. On the bottom boundary, the first deriva-
tives in the radial direction were prescribed that represented
the oblique derivative BC. On the rest of the boundary, the
Dirichlet BC in form of the disturbing potential was pre-
scribed. All these BCs were generated from the EGM2008
model up to degree 2160.

Three experiments with different grid densities were per-
formed, namely the grids with the densities 501× 301× 25,
1001 × 601 × 49 and 2001 × 1201 × 97 points. They
approximately correspond to spacing 0.1◦ × 0.1◦ × 10 km,
0.05◦ × 0.05◦ × 5 km and 0.025◦ × 0.025◦ × 2.5 km.

Figure 8b shows EGM2008 at points on the Earth’s
topography as the harmonic function that we are reconstruct-
ing. The obtained FVM solution for the most dense grid
is depicted in Fig. 8c. Residuals between EGM2008 and
our FVM solutions on the bottom boundary are shown in
Fig. 8c–e. The statistical characteristics of the correspond-
ing residuals are summarized in Table 3. It is evident that
refinements of the grid lead to higher accuracy of the FVM
solution giving better agreement with EGM2008. Standard
deviations (STDs) are decreasing from 2.3 to 0.37 m2 s−2

(∼ 2.3 dm to 3.7 cm) and the maximal values from
23.1 to 3.9 m2 s−2 (∼ from 2.3 m to 3.9 dm). Such an
improvement is achieved despite the fact that refinements of
the grids involve more detailed consideration of the topogra-
phy. This confirms efficiency of our approach.

4.3 Reconstruction of EIGEN-6C4 over Slovakia

The next local numerical experiment is similar to the previ-
ous one, but it was performed in the domain above Slovakia
and the EIGEN-6C4 model up to degree 2160 (Förste et al.
2014) was used to generate all BCs and the harmonic func-
tion. The domain was bounded by 〈16◦, 24◦〉 meridians and
〈47◦, 50◦〉 parallels. Due to the smaller area of the computa-
tional domain, the grid density is higher in this experiment;
namely, the resolution is 0.008◦×0.008◦×600m. The upper
boundary is at the same height of 240 km above the reference
ellipsoid. The heights of grid points on the bottom boundary
were interpolated from SRTM30 PLUS model, see Fig. 9a.

Here the first derivatives in the radial direction were pre-
scribed. On the rest of the boundary, the Dirichlet BCs in the
form of the disturbing potential were prescribed. All the BCs
were generated from the EIGEN-6C4 model up to degree
2160.

An experiment with the density 1001 × 376 × 401 was
performed using the FVM approach. The disturbing poten-
tial on the Earth’s topography generated from EIGEN-6C4
is depicted in Fig. 9b. The obtained FVM solution was
compared with EIGEN-6C4, see Fig. 9c. The statistical
characteristics of the residuals on the bottom boundary are
summarized in Table 4. High value of residuals, reaching up
to 0.25 m2s−2 (∼ 2.6 cm), are located in the area of Tatra
mountains (the north part of central Slovakia) most likely
due the complicated topography. Here further grid refine-
ments should be applied to achieve better results. However,
in the rest of the domain the residuals are below 0.1 m2 s−2

(∼ 1cm). The STD of all residuals is 0.022 m2 s−2 (∼ 2.2
mm). It confirms high accuracy of the presented method
taking into account that we solve the geodetic BVP on the
non-uniform grids above the very detailed Earth’s topogra-
phy.

4.4 Local gravity field modelling over Slovakia from
terrestrial gravity data

Finally, we present local gravity field modelling over Slo-
vakia using terrestrial gravity data. The goal of this exper-
iment is to compare efficiency of our new FVM scheme
with the previous ones developed on uniform grids, namely
with the central scheme (Macák et al. 2014) and an upwind
scheme (Macák et al. 2015). For these purposes, we used the
same sources of input data yielding the same BCs as in the
numerical experiments presented in those papers. Namely,
on the upper and side boundaries, the GOCO03S model up
to degree 250 (Mayer-Gurr et al. 2012) was used to gener-
ate the Dirichlet BCs. On the bottom boundary, we used the
surface gravity disturbances obtained from the available reg-
ular grid of gravity anomalies, with the resolution 20′′ ×30′′,
that was compiled from original gravimetric measurements
(Grand et al. 2001). To transform these gravity anomalies
into the gravity disturbances, we used the official digital
vertical reference model—DVRM (www.geoportal.sk). The
grid density in this experiment was adopted from the source
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Fig. 9 a Earth’s surface
topography over Slovakia, b the
disturbing potential on the
Earth’s surface generated from
EIGEN-6C4 (m2s−2), c
residuals between EIGEN-6C4
and our FVM solution (m2s−2)

dataset and was the same as in the aforementioned papers,
namely 20′′×30′′(�ϕ×�λ). The only difference was that in
our case such surface gravity disturbances were considered
on the Earth’s topography.

The domain was bounded by 〈16◦, 23◦〉 meridians and
〈47◦, 50.5◦〉 parallels. Similarly as in the experiments of the

aforementioned papers, the side boundaries were chosen suf-
ficiently far from the area of Slovakia in order to mitigate an
influence of the prescribed Dirichlet BC generated from the
satellite-only geopotential model. For more details about this
influence, see Fašková et al. (2010). The heights were inter-
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Table 4 Statistics of residuals
between our FVM solution and
EIGEN-6C4 (m2s−2)

Min. value 0.011

Mean value 0.021

Max. value 0.26

St. deviation 0.022

polated from SRTM30 PLUS model and the upper boundary
is again in the height of 240 km above the reference ellipsoid.

An experiment with the density 841×631×301 was per-
formed using the FVM approach. The obtained disturbing
potential on the Earth’s surface was transformed to the local
quasigeoid model of Slovakia. Its quality was tested using
GNSS-levelling. From the available dataset of 61 GNSS-
levelling benchmarks, three evident outliers were removed.
Hence, we tested the obtained local quasigeoid model as
well as the previous FVM-based models and EGM2008 at
58 points (Fig. 10).

Table 5 presents the statistical characteristics of the resid-
uals. They indicate that our FVM approach on non-uniform
grids gives better results than the previous FVM solutions
considered on uniform grids. Using our new FVM scheme,
we were able to reduce the standard deviation by 3mm and
the range by 2.2cm compared to the upwind scheme on

a uniform grid (Macák et al. 2015). Although EGM2008
outperforms our FVM local quasigeoid model in terms of
STD by 6mm, the range of residuals decreases by 6.1cm.
Nevertheless, we hope that a further refinement of the com-
putational grid will lead to more precise FVM solutions. An
obvious advantage of our approach is that the FVM solution
is obtained at points directly on the Earth’s topography.

5 Discussion and conclusions

In this paper,wehavepresented anoriginal numericalmethod
for solving the oblique derivative boundary value problem.
Namely, the finite volume method on non-uniform grids
above the Earth’s topography has been developed, in which
the oblique derivative boundary condition has been treated
as a stationary advection equation. A new method for dis-
cretization of the computational domain has been proposed
that is based on an evolution of the Earth’s surface depending
on its mean curvature. It involves a tangential redistribu-
tion of the evolving surface discretization points leading to
a construction of a more regular non-uniform 3D hexahe-
dron grid. Then, we have introduced a discretization of the
Laplace equation and oblique derivative boundary condition

Fig. 10 GNSS-leveling test (m) at 58 points in area of Slovakia-set of points used for testing are visualised

Table 5 GNSS-leveling test (m)
at 58 points in area of Slovakia

FVM

EGM2008 Neum. BC* Oblique derivative BC

Central sch.* Upwind sch.**
uniform grid

Upwind sch.
non-uniform grid

Min value 0.301 0.104 0.168 0.173 0.227

Mean value 0.437 0.236 0.277 0.282 0.323

Max value 0.584 0.393 0.419 0.417 0.450

Range 0.283 0.288 0.251 0.244 0.222

STD 0.044 0.068 0.054 0.053 0.050

*Results published in Macák et al. (2014), ** results published in Macák et al. (2015)
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on such non-uniform grids. It consists of a reconstruction
of the normal derivative to the finite volume using deriva-
tives in the tangential directions. To treat numerically the
oblique derivativeBCas an advection equation, a newhigher-
order upwind method has been introduced for non-uniform
grids.

The presented numerical experiments have aimed to
demonstrate efficiency of our proposed numerical method.
The first experiments have confirmed that the numerical dis-
cretization converges to the exact solutions when refining
the grid with the experimental order of convergence equal
approximately to 1.6. This indicates an apparent improve-
ment when comparing with the previous scheme derived and
tested on the uniform grids, where the experimental order of
convergence was about 1.0 (Macák et al. 2015).

The next numerical experiment, dealing with the recon-
struction ofEGM2008as a harmonic function, has shown that
the proposed numerical method converges to the exact solu-
tion also on extremely complicated computational domains,
namely above the Himalayas. However, the convergence of
the chosen BiCGStab linear solver has been slow in this
case, which can be caused by complicated shapes of the
non-uniform 3D hexahedron grids in the neighbourhood of
such extremely mountainous topography. To improve such
slower convergence, some efficient preconditioning should
be implemented into the linear solver.

The last numerical experiment has been dealing with the
local gravity field modelling over Slovakia using terrestrial
gravity data. TheGNSS-levelling test has shown an improve-
ment in the standard deviation and range of residuals when
comparing with the previous FVM numerical schemes. This
test has indicated that the new upwind scheme has approx-
imated the oblique derivative BC more accurately than the
central scheme (Macák et al. 2014) or the first-order upwind
scheme on uniform grids (Macák et al. 2015) while the
same level of discretization has been considered. Based on
these achieved results, we expect that a further refinement
of the computational grid could lead to even more accu-
rate results. For this goal, a parallelization using the MPI
procedures as well as efficient preconditioning should be
implemented.

Finally, it is worth to note that the developed method for
discretization of the computational domain into non-uniform
grids can be useful for other applications in geosciences as
well. It may provide an important basis for solving numer-
ically various geoscientific problems described by partial
differential equations.
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