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Vojtěch Minárik1, Jan Kratochv́ıl2, Karol Mikula3, and Michal Beneš1
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Introduction The aim of this contribution is to present the current state of our re-
search in the field of numerical simulation of dislocations moving in crystalline materials.
The simulation is based on recent theory treating dislocation curves and dipolar loops
interacting by means of forces of elastic nature and hindered by the lattice friction. The
motion and interaction of one dislocation curve and one dipolar loop placed in 3D space is
considered. Equations of motion for a parametrically described dislocation curve are dis-
cretized by the flowing finite volume method in space. The interaction force is computed
for each dipolar loop and along the discretized curve. The resulting system of ordinary
differential equations is solved by a higher order time solver.

Physical background Plastic deformation of crystalline solids is a result of the motion
of dislocations. The theory of dislocations is described in number of text books, e.g. [8].
Here we recall only the basic mobile properties of dislocations and the nature of their
mutual interactions.

A dislocation is a line defect of the crystal lattice. Along the dislocation line the regu-
lar crystallographic arrangement of atoms is disturbed. The dislocation line is represented
by a closed curve or a curve ending at the surface of the crystal. At low homologous tem-
peratures the dislocations can move only along crystallographic planes (the slip planes)
with the highest density of atoms. The motion results in mutual slipping of the neigh-
boring parts of the crystal along the slip planes. The slip displacement carried by a
single dislocation, called Burgers vector, is equal to one of the vectors connecting the
neighboring atoms.

The displacement field of atoms from their regular crystallographic positions around
a dislocation line can be treated (except the close vicinity of the line) as elastic stress
and strain fields. On the other hand, a stress field exerts a force on a dislocation. The
combination of these two effects causes the elastic interaction among dislocations.

One of the most distinguished features of plastic deformation at the microscale is a
great overproduction of dislocations during a deformation process. Only a small fraction
of generated dislocations is needed to carry plastic deformation, the rest is stored in the
crystal. The deformed crystals supersaturated with dislocations tend to decrease the in-
ternal energy by mutual screening of their elastic fields. If dislocations possess a sufficient
maneuverability provided by easy cross-slip (solids with wavy slip) the leading mecha-
nism is an individual screening. The dislocations are stored in the form of dipoles which
are transformed to prismatic dislocation dipolar loops of the prevailing edge character or
such loops are directly formed (the experimental evidence is summarized in [9]).
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The glide dislocations and the dislocation loops have much different characteristic
length scales and mobile properties:
– While the segments of glide dislocations extend over distances of micrometers, the size

of the prismatic dipolar loops is of the order of 10 nm.
– The glide dislocations are moved by the shear stress resolved in the slip plane, while

the loops are drifted by stress gradients and/or swept by the glide dislocations. The
loops being prismatic they can move along the direction parallel to the direction of
their Burgers vector only.

– During deformation, the glide dislocations become curved. The local curvature of the
glide dislocations seems to be one of the leading factors controlling the pattering [11,
12]. The loops can be approximately treated as rigid objects.

Due to the above mentioned complexity the formation of dislocation structures as a
consequence of the interactions among dislocations is still an open problem. In this paper
we will be concerned with a particular case: a dislocation curve interacting with a dipolar
loop.

Dislocation Curve and Dipolar Loop We consider a plane dislocation segment with
fixed ends; the segment represented by a plane curve can bow in a slip plane which is
identified with the xz-plane of the coordinate system, i.e. y = 0. If the dislocation segment
approaches a loop, the curve can pass by or the curve and the loop start to move together
or the curve is stopped by the loop [13].
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Fig. 1. Dislocation dynamics problem geometry: (a) Dislocation curve and dipolar loop inter-
action; (b) Dipolar loop geometry

As the loop is allowed to move along the direction parallel to its Burgers vector b

only (see Fig. 1a) just the force component in that direction causes the loop motion.
Additionally, the lattice friction acts against the motion. The detailed condition for the
dislocation curve and the loop is specified in Sect. .

The position of the loop is represented by 3 coordinates of its center. There are two
types of dipolar loops: a vacancy dipolar loop and an interstitial dipolar loop; each type
in two stable configurations [10] (see Fig. 2).

In vacancy loops a strip of atoms in regular crystallographic positions is missing. On
the other hand; in interstitial loops an extra strip of atoms is added. For that reason
the vacancy and interstitial loops produce different stress fields. The Burgers vectors
of vacancy and interstitial loops have opposite directions. This fact we incorporate into
our model by using negative value for the x-axis component of the Burgers vector for
interstitial loop.

We denote the dipolar loop types and stable configurations by V1, V2 for the vacancy
loop, and I1, I2 for the interstitial loop, respectively (see Fig. 2). In the mathematical
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Fig. 2. Types and stable configurations of a dipolar loop. Longer sides of dipolar loop are
parallel to the z-axis and lie in different layers of the atomic lattice

model we represent the dipolar loop as a small rectangle with two longer sides parallel to
the z-axis and two shorter sides parallel either to [1, 1, 0] or [1,−1, 0] depending on the
type of loop. The dimensions of dipolar loop are 2l and 2

√
2h, respectively, see Fig. 1b.

Stress Field of Dipolar Loop Each type of dipolar loop produces a stress field.
The formula for this field will be needed in the numerical simulation of the dislocation
dynamics. In this work we use the stress field σij presented by Kroupa et al [6, 7] (using
Einstein’s symbolic rule for sums):

σij = − µ

4π(1 − ν)

∫∫

A

1

%3

{

[

3(1 − 2ν)

%2
bk%kνn%n + (4ν − 1)bkνk

]

δij (1)

+(1 − 2ν) (biνj + bjνi) +
3ν

%2
[bk%k(νi%j + νj%i) + νk%k(bi%j + bj%i)]

+
3(1 − 2ν)

%2
bkνk%i%j −

15

%4
bk%kνn%n%i%j

}

dA .

In (1) we introduce following symbols (i, j, k, n ∈ {1, 2, 3}):
σij σij = σij(x, y, z) — components of the stress field tensor, depending on the

position in space
µ shear modulus
ν Poisson’s ratio

A area of the dipolar loop, with dA = 2h
√

2dt

bi, bj , bk components of the Burgers vector
%i, %j , %k, %n components of the relative position vector, %1 = x, %2 = y, %3 = z

% relative distance from the dipolar loop, % =
√

%2
1 + %2

2 + %2
3

νi, νj , νk, νn components of the dipolar loop normal vector
δij Kronecker symbol

The normal unit vector ν is chosen to be 1√
2

[1, 1, 0] for dipolar loops of type V1 and I1,

and ν = 1√
2

[1,−1, 0] for dipolar loops of type V2 and I2.

Dipolar Loop and Dislocation Curve Interaction The interaction force per unit
length of dislocation line is given by the Peach-Koehler equation, which written for the
i-th component reads:

fi = εijkσjmbmsk , (2)
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where we denote:
fi i-th component of the interaction force per the unit length of the dislocation line

εijk Levi-Civita symbol
σjm components of the stress field tensor at the dislocation position
bm components of the Burgers vector
sk components of unit vector s which has the direction of the dislocation line

Mathematical Model The dynamics of the system of a dislocation curve and a dipolar
loop is governed by a system of two equations describing their motion. The motion law
for the dislocation curve is represented by the well-known mean curvature flow equation
(see e.g. [4, 1, 3])

Bν = κ + F (3)

where ν is the normal velocity of evolving curve, κ its curvature, B (drag coefficient) is
a constant given by material and F represents external driving force.

The moving dislocation curve Γt can be parameterized by a smooth time dependent
vector function X : I × S → R2, i.e., at any time t it is given as the Image(X(., t)) =
{X(u, t), u ∈ S} where S is a fixed parametrization interval and I is a time interval.
For a smooth curve |Xu| > 0 and for unit arc-length parametrization s, ds = |Xu|du.
Then Xs and X⊥

s represent unit tangent and normal vectors, respectively. Using Frenet’s
formulae, the evolution equation (3) can be rewritten to the form of intrinsic diffusion
equation [4, 1, 3, 5]

BXt = Xss + FX⊥
s (4)

for the position vector X. If we denote by Xx(t, s) and Xz(t, s) the components of the
dislocation curve position vector in the xz-plane, then X⊥

s = [Xz
s ,−Xx

s ]. The equation
(4) will be solved numerically to model a complicated dislocation curve dynamics.

Now we must explain exactly what is covered by the term F in (4). We know that F

incorporates the interaction between the dislocation curve and the dipolar loop. To get
detailed knowledge of F , we must go back to the Peach-Koehler equation (2). Assuming
the dislocation curve can move only in the xz-plane and the dipolar loop can glide along
the x-axis, we need to put fx and fz from the Peach-Koehler equation into the governing
equations. Denoting the Burgers vectors of the dislocation curve and the dipolar loop
bcurve = [bcurve, 0, 0] and b = [b, 0, 0], respectively, we get

fx = σxybcurvesz , fz = −σxybcurvesx , (5)

where σxy = σ12, and sx, sz are the components of the dislocation curve’s tangential
vector, which can be also written as

[sx, sy, sz] = X⊥
s = [Xz

s , 0,−Xx
s ] . (6)

Thus, the term F = σextbcurve +σxybcurve covers the stress of the dipolar loop exerted on
the dislocation curve, as well as any external stresses which may the material be exposed
to. To be more precise, in order to obtain force vector acting at given position of the
dislocation curve, one needs to multiply F and the dislocation curve’s normal vector X⊥

s

at that position. We also explicitly write the dependence of F on the dislocation curve
Γt because the curve position is required for the evaluation of its relative position to the
dipolar loop. The obtained relative position is then used in the evaluation of σxy.

The stress σxy is given by (1), but we can simplify this formula for our specific
situation – Burgers vector has only one non-zero component and the dipolar loop is a
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rectangle which has one of the two possible configurations. Under the assumption that the
dipolar loop parameter h is very small, we can use Taylor expansion in (1) and integrate
it to obtain an algebraic formula for the stress:

σxy(x, y, z) = − µhb

2π(1 − ν)

{[

l − z

%−
+

l + z

%+

] [

x ± y

(x2 + y2)2

(

±x + y − 8
x2y

x2 + y2

)]

(7)

+

[

l − z

%−3
+

l + z

%+
3

] [

±ν +
xy

(x2 + y2)2
(

y2 − 3x2 ∓ 4xy
)

]

+

[

l − z

%−5
+

l + z

%+
5

] [

−3x2y(x ± y)

x2 + y2

] }

,

where
%− =

√

x2 + y2 + (l − z)2 , %+ =
√

x2 + y2 + (l + z)2 . (8)

With the upper sign in (7) we get the stress formula for the dipolar loops V1 and I1,
while with the lower sign we get the formula for V2 and I2 dipolar loops.

In order to obtain the equation governing the motion of the dipolar loop we have to
sum all the stress contributions of the dislocation curve. It is enough to consider only
the contributions in the x-axis direction because it is the only direction the dipolar loop
is allowed to glide in.

The stress contribution of the dislocation curve can be obtained according to the
action-reaction principle by simple reversing the sign of fx in (5) and integrating along
the dislocation curve:

F c
x =

∫

Γt

σxybcurvenxds , (9)

where nx is the x-axis component of the dislocation curve element normal vector. Note it
can be replaced using the derivatives of X with respect to the parametrization s since it
holds nx = Xz

s . Besides F c
x there is one other kind of force — the friction force F0 which

is a constant given by the material and which acts against the gliding of the dipolar loop.
Giving all the above information together, we come to the equation governing the gliding
of the dipolar loop:

dx

dt
=

1

BP
Fx,total(Γt, x(t)) , (10)

where x(t) is the x-axis position of the dipolar loop, P = 4(l +
√

2h) is the perimeter of
the dipolar loop, and

Fx,total(Γt, x(t)) =











F c
x − F0 if F c

x > F0

0 if |F c
x | < F0

F c
x + F0 if F c

x < −F0 .

(11)

The complete dislocation dynamics problem for one dislocation curve and one dipolar
loop then follows when we put (4) and (10) together with initial and boundary conditions.

Numerical Scheme For discretization of the problem described earlier, we use the
flowing finite volume method [5] in space and the method of lines [2] in time. Discrete
solution is represented by a moving polygon given, at any time t, by plane points Xi, i =
0, ...,M . The values X0 and XM are prescribed in case of fixed ends of the curve. The
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Fig. 3. Piecewise linear approximation of the dislocation curve.

segments [Xi−1,Xi] are called flowing finite volumes. We construct also dual volumes

Vi =
[

Xi− 1
2
,Xi

]

∪
[

Xi,Xi+ 1
2

]

, i = 1, ..,M − 1, where Xi− 1
2

= Xi−1+Xi

2
(see Fig. 3).

Integrating evolution equation (4) in dual volume Vi we obtain

∫

Vi

B
∂X

∂t
ds =

∫

Vi

∂2X

∂s2
ds +

∫

Vi

F

(

∂X

∂s

)⊥
ds. (12)

Then we simply get

B
di + di+1

2

dXi

dt
=

[

∂X

∂s

]X
i+ 1

2

X
i−

1
2

+ Fi

[

X⊥]
X

i+ 1
2

X
i−

1
2

(13)

where

di = |Xi − Xi−1| =
√

(Xx
i − Xx

i−1
)2 + (Xz

i − Xz
i−1

)2 (14)

and Fi is a constant approximation of F in dual volume Vi, Fi = σxy(Ri)bcurve, where
Ri = Xi − [x(t), y, z] is the relative positional vector of Xi and the dipolar loop center.
If we replace the terms on the right-hand side by finite differences and averaged values,
respectively, we end up with the system of ordinary differential equations

B
dXi

dt
=

2

di + di+1

(

Xi+1 − Xi

di+1

− Xi − Xi−1

di

)

+
2

di + di+1

Fi

X⊥
i+1 − X⊥

i−1

2
, (15)

i = 1, . . . ,M − 1 .

In discretization of the governing equation (9) for the dipolar loop we sum contributions
of every curve segment to obtain

F c
x =

M−1
∑

i=0

σxy

(

Xx
i+ 1

2

− x(t),−y,Xz
i+ 1

2

− z
)

bcurve

(

Xz
i+1 − Xz

i

)

, (16)

where [x(t), y, z] is the center of the dipolar loop at time t. Next, we use formula (11)
applied to discrete F c

x defined above and get

dx

dt
=

1

BP
Fx,total(X0, . . . ,XM , x). (17)

The complete discrete problem consists of (15) and (17) with accompanying initial and
boundary conditions.

Results of Numerical Experiments We made several numerical simulations in which
we used different settings. For the basic physical parameters we used values which were
experimentally measured for nickel crystals at room temperature [10]: average length
and width of the dipolar loop l = 60 nm, h = 4 nm, Burgers vector b = 0.26 nm, shear
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modulus µ = 80 GPa, and Poisson’s ratio ν = 0.33. When not specified otherwise, we
used drag coefficient B = 10−5 Pa s.

In the simulations we were changing not only the type and initial position of the
dipolar loop, but also the initial shape of the dislocation curve and the value of friction
force. We observed following facts (not all of them can be demostrated here):

– For the dislocation curve with fixed ends the curvature acts against the external stress.
Therefore, there exists some equilibrium shape the dislocation curve tends to.

– When no external stress is applied, the dislocation curve of any initial shape tends to
the straight line (potential energy minimization). Adding dipolar loop, an oscillating
motion (Fig. 4) of the dipolar loop as well as the dislocation curve can occur.

– The direction in which the dipolar loop leaves the dislocation curve’s interaction region
depends on the type of the dipolar loop. Simply, V2 shifts to the left where V1 shifts
to the right.
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Fig. 4. Dipolar loop oscillations. Dipolar loop of type V1 starts to glide to the left of the
dislocation curve (timelevels T = 15.02, T = 25.022, T = 35.028). Then it reverses as the
attractive force of the dislocation curve gains the control over the system for some time (T =
45.048, T = 55.068). Second reversing occurs before T = 63.084
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Fig. 5. Dipolar loop swept by the curve; on the other hand, the curve is distorted by the
stress field of the loop. In this test there were used: µ = 80 GPa, ν = 0.33, B = 10−4 Pa s,
b = 0.707 nm, l = 35 nm, h =

√

2 nm, F0 = 4 MPa m, applied stress σa = −1.155 MPa. Initial
position of dipolar loop was [0, 40,−30]. The subsequent stages are shown for increasing time T


