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Solution of nonlinear curvature driven evolution
of plane convex curves

Karol Mikula 1

Slovak Technical University, Department of Mathematics, Radlinskeho 11, 813 68 Bratislava, Slovakia

Abstract

The numerical approximation scheme for solving the nonlinear initial value problem

∂tb(v) = ∂xxβ(x, v) + β(x, v)

with periodic boundary conditions is presented. Local existence and uniqueness of a solution and convergence
of approximations is a consequence of the results of Mikula and Kačur (1996), where the anisotropic curvature
driven evolution of plane convex curves is studied. The considered problem is a nonlinear generalization of
plane convex curves evolution depending on curvature, known as curve shortening flow. It corresponds to the
evolution equation

ν = β(θ, k),

where ν is the normal velocity of the curve, k its curvature and θ the angle of the tangent to the curve with
horizontal axis. It arises in the theory of image and shape multiscale analysis introduced by Alvarez, Guichard,
Lions and Morel and Sapiro and Tannenbaum, and also in anisotropic interface motions proposed by Angenent
and Gurtin.  1997 Elsevier Science B.V.

Keywords: Mean curvature flow; Curve shortening; Image and shape multiscale analysis; Phase interface;
Nonlinear degenerate parabolic equations; Blow-up; Numerical solution

1. Introduction and approximation scheme

Evolution of plane convex curves, which depends in a nonlinear and anisotropic way on curvature,
can be modeled by the following double-nonlinear initial-boundary value problem. Let v(x, t) be a
smooth function which satisfies

∂tb(v) = ∂xxβ(x, v) + β(x, v),

v(x, t) = v(x+ 2πν, t), (1.1)

v(x, 0) = v0(x),
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for x ∈ R and t ∈ [0, T ), where ν ∈ N, v0 is an initial function and

b(s) ∈ C2(−∞, a), a <∞, satisfying b′(s) > 0, (H1)

b(s)→ a1 and b′(s)→ 0 for s→ −∞,

b(s)→∞ and b′(s)→∞ for s→ a−,
(H2)

β(x, s) = S(x)γ(s) + U(x), (H3)

S > q > 0, Sx, Sxx, U are bounded measurable functions, periodic in interval [0, 2πν],

γ is C2-function in R− {a} with γ′(s) > 0, s 6= a, γ′(a) > 0, (H4)

γ(a) = a. (H5)

The nonlinearities are represented by the increasing functions b(s), β(x, s) admitting asymptotical
degeneracies expressed by the hypotheses (H2)–(H4). The special form of the problem causes a
possible blow-up of the solution in a finite time. Asymptotical degeneracy of “slow diffusion type”
(b′ = ∞, γ′ = 0) is related to the parts of the curves where curvature is close to 0 and plays a
role in the presence of anisotropy and porous-medium-like nonlinearity (e.g., γ(s) = sm, m > 1).
Asymptotical degeneracy of “fast diffusion type” (b′ = 0, γ′ =∞) is related to both large and small
curvatures, and plays a role near the shrinking, singularities formation and influences a more shape
preserving evolution (see the numerical experiments of Section 2).

Provided b(s) = −1/s and in the case of initial closed and convex plane curve, the problem (1.1)
is related to the curve evolution equation

V = β(θ, k), (1.2)

where V ≡ V(Q, t) is the normal velocity, k(Q, t) the curvature of the curve and θ(Q, t) the angle of
tangent to the curve with horizontal axis at a point Q and time t.

Let the initial curve r0 be parameterized by θ. Let k0(θ) be its curvature and ν ∈ N be its index.
Following the lines of Gage and Hamilton [14] or using the results of Angenent and Gurtin [7, (2.23)]
we have that the flow r(θ, t) of the curves, which solves the problem (1.2) with the initial curve r0,
is given uniquely up to translation by the formula

r(θ0, t) = r(0, t)−
θ0∫

0

eiθ

k(θ, t)
dθ, (1.3)

in which the curvature k(θ, t) is the solution of (1.1) with initial condition given by k0(θ). Note here,
that by convention introduced in [7], the curvature of strictly convex curves is negative.

Geometrical equations like (1.2) describe several phenomena in physics, material sciences, computer
vision and artificial intelligence. There are two main fields, where the curve motions play an important
role. First, there is the multiscale analysis of images and shapes, which is closely related to signal
smoothing, edge detection and image representation (see, e.g., [2,4,22]). The second is the Stefan
problem with surface tension and related anisotropic interface motion models (see, e.g., [7,8,25,29]).
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Fig. 1. The scanned emblem—Podolinec (left) and its smoothed version (right).

Fig. 2. The scanned emblem—Žilina (left) and its smoothed version (right).

In the context of image processing, the so-called morphological image multiscale analysis is widely
used. This analysis is represented by a viscosity solution [10,11,13] of the following nonlinear degen-
erate parabolic equation in a two-dimensional rectangular domain

ut = |∇u|F
(
div
(
∇u/|∇u|

))
, (1.4)

where F is a nondecreasing function [2,4,23]. The initial condition corresponds to the processed image
and the solution u to its scaling version (t is understood as an abstract parameter—scale). The classical
mean curvature equation is obtained in the case F (s) = s. The silhouette (boundary of a shape) in
the image corresponds to a level line of u. Eq. (1.4) leads to the evolution equation for image level
lines (see, e.g., [4]):

V = F (k). (1.5)

The scaling of silhouettes by Eq. (1.5) is called morphological shape multiscale analysis. In the vision
theory, affine invariant multiscale space, which is a natural generalization of linear mean curvature
motion and is given by F (k) = k1/3, is of special interest (see, e.g., [2,28]). We present Figs. 1
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and 2 for a demonstration of the practical usage of models like (1.4) in image processing. The ancient
emblems of two Slovak towns (Podolinec and Žilina) are scanned from the book with neither paper
nor colors of good quality. The damage of the images is removed—smoothed versions of emblems
are obtained by solving numerically [16] a certain regularization of the PDE

ut = q
(
|∇u|

)
|∇u|div

(
∇u/|∇u|

)
, (1.6)

with zero Neumann boundary conditions and with an initial condition given by the scanned picture.
The choice of the threshold function q(s) equals, e.g., 1/(1 + s2), causes stopping of the motion
of silhouettes on which the gradient is large (i.e., important edges) and of classical curvature driven
motion of other level lines of image, which implies the smoothing of required regions [3].

In the context of multiphase thermomechanics with interfacial structure, there arises the curve
evolution model

h(θ)V = g(θ)k − f, (1.7)

which describes anisotropic motion of phase interfaces. The functions h, g, f come from the constitu-
tive description of the interface and represent physical quantities such as kinetic coefficient, interfacial
free energy and energy difference of phases, respectively (see, e.g., [7,8]). Dependence on θ yields
the anisotropy to the model. Interesting properties of isotropic linear curve shortening flow are given
in [1,5,14,15]. The general model (1.2) was studied analytically in [6] in the case of evolution on
arbitrary surfaces.

The main goal of this paper is to apply the computational method developed in [25] to a new
class of geometrical equations (1.2) arising recently in the theory of image and shape analysis. We
adapt an existing numerical approximation [25, (2.8)–(2.10)], successful for the case γ(s) = s, to the
double-nonlinear case (1.1).

If we denote I = (0, T ), Ω = (0, 2πν), QT = I ×Ω, V = {w ∈W 1
2 (Ω): w(0) = w(2πν)}, V ∗

its dual space, and assume that γ(v0) ∈ V , we can define the weak solution of (1.1) as a function
v ∈ L2(I, L2) with ∂tb(v) ∈ L2(I, V ∗) for which β(x, v) ∈ L2(I, V ), v(0) = v0 and∫

I

〈
∂tb(v), ϕ

〉
+

∫
I

(
∂xβ(x, v), ϕx

)
=

∫
I

(
β(x, v), ϕ

)
, ∀ϕ ∈ L2(I, V ).

Defining

b̃(s) := b
(
γ−1(s)

)
,

β̃(x, s) := β
(
x, γ−1(s)

)
= S(x)s+ U(x),

we can transform (1.1) into the form

∂tb̃(w) = ∂xxβ̃(x,w) + β̃(x,w),

w(x, t) =w(x+ 2πν, t), (1.8)

w(x, 0) =w0(x),

which is included in the framework of the model equation

∂tb̃(v) =
(
A(x)vx

)
x

+
(
B(x)v

)
x

+D(x)v +G(x)
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studied numerically in [25]. Following the idea of [25], we can regularize (1.8) by considering globally
Lipschitz continuous function b̃R(s) instead of b̃(s). The regularization is chosen so that b̃R and b̃ are
the same for arguments in the interval (−R, a− 1/R), where R is a (large) regularization parameter
(let us denote λ = b̃′(−R) > 0). Theorem 2.1 of [25] guarantees existence and uniqueness of the weak
solution w of the regularized (1.8) problem. Theorem 2.2 of [25] then transfers the results locally in
time to the unregularized problem (1.8), and due to the properties of γ also to the original problem
(1.1). We briefly recall the idea. Let w(x, 0) ∈ L∞(Ω) ∩ V and

−R+ δ < w(x, 0) < a− 1
R
− δ.

Then we have obtained L∞-estimates for w and b̃R(w), which imply the existence of 0 < T1 < ∞
such that

−R 6 w(x, t) 6 a− 1
R

(1.9)

hold for every t ∈ (0, T1), a.e. x ∈ Ω (see [25, Theorem 2.2]). The functions b̃R and b̃ are the same
for the arguments satisfying (1.9), so the solutions of regularized and unregularized problems are the
same in time interval (0, T1).

Let us solve numerically the problem (1.1) in the time interval (0, T ) (where T = T1). Note that, if
the regularization parameter R is chosen sufficiently large, T can be rather near to the blow-up time
of curvature. We use the following approximation.

Approximation scheme
Let n ∈ N, τ = T/n, ti = iτ for i = 0, . . . , n, v0 = v0(x), u0 = γ(v0). For i = 1, . . . , n we look

for functions ui ∈ V (ui ≈ γ(vi)), µi ∈ L∞(Ω) such that(
µi
(
ui − γ(vi−1)

)
, ϕ
)

+ τ
(
∂xβ̃(x, ui), ϕx

)
= τ

(
β̃(x, ui), ϕ

)
, ∀ϕ ∈ V, (1.10)

provided the “convergence condition”

α
λ

2
6 µi 6

b(γ−1(αui + (1− α)γ(vi−1)))− b(vi−1)

ui − γ(vi−1)
, (1.11)

holds with 0 < α < 1 (α close to 1). The function vi is obtained by the “algebraic correction”

b(vi) := b(vi−1) + µi
(
ui − γ(vi−1)

)
. (1.12)

The suggested approximation is based on special semidiscretization in time (see also [9,17–21,24])
which reduces (1.1) to a succession of linear elliptic equations coupled with algebraic correction due to
nonlinearity. The nonlinearity of equation is treated by “optimal choice” of special relaxation function
corresponding to ∂s(b ◦ γ−1), constructed in an iterative way.

Remark. The scheme (1.10)–(1.12) used here is nothing else than “copy-paste” of the one (2.8)–(2.10)
from [25]. However, the form (1.10)–(1.12) naturally respects the double-nonlinear structure of (1.1).
In this sense, it is close also to approximation suggested in [20]. There, double-nonlinear degenerate
parabolic problems are studied, but the blow-up phenomenon cannot be included in the framework.

The scheme (1.10)–(1.12) is linear but not explicit due to ui, µi. The question is how to find
in a constructive way this couple simultaneously satisfying (1.10)–(1.11). From the background of
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the method, reaching realistic and precise numerical results requires to force the relaxation function
very near to the difference quotient on the right hand side of (1.11). It corresponds to the value of
b′(ξ)/γ′(ξ), where ξ ∈ (vi−1, vi). To determine µi, ui in that way, we use iterations(

µi,k−1
(
ui,k − γ(vi−1)

)
, ϕ
)

+ τ
(
∂xβ̃(x, ui,k), ϕx

)
= τ

(
β̃(x, ui,k), ϕ

)
, (1.13)

µi,k =
b(γ−1(αui,k + (1− α)γ(vi−1)))− b(vi−1)

ui,k − γ(vi−1)
, (1.14)

µi,k := µi,k, for 1 6 k 6 k0, µi,k := min{µi,k, µi,k−1}, for k = k0 + 1, . . . ,

starting with

µi,0 = b′(vi−1)/γ′(vi−1). (1.15)

By construction (1.14) with k0 > 1, the sequence {µi,k} is forced to be monotone and hence
convergent. In practical implementations k0 can be chosen in accordance with the shape of b and β
(e.g., sufficiently large, if numerical convergence is observed as in our case). The iterations (1.13)–
(1.15) converge to functions ui and µi satisfying simultaneously (1.10)–(1.11) (see [25, Theorem 2.5]).
In practice this convergence is very fast. Practical realization of “algebraic correction” in our case of
nonlinear curve shortening is simple, because the inverse function b−1(s) can be determined explicitly.
After time discretization, in each iteration, the scheme requires to solve the linear convection–diffusion
equation (with convective term only in the presence of anisotropy). For this purpose we use the so-
called “power-law scheme” described in [27], which respects the “up-wind” principle.

From vi, ui obtained in each time step of (1.10)–(1.12), the Rothe functions

v̄(n)(t) = vi, for ti−1 < t 6 ti, i = 1, . . . , n, v̄(n)(0) = v0,

un(t) = ui, for ti−1 < t 6 ti, i = 1, . . . , n, un(0) = u0

(1.16)

are constructed. Then due to [25, Theorems 2.3 and 2.4] we have

v̄(n) → v in L2(QT ), un → γ(v) in L2(I, V ),

where v is a unique bounded weak solution of the problem (1.1).

2. Discussion on numerical computations

This section is devoted to the presentation of the numerical results obtained by approximation
scheme (1.10)–(1.12) in solving problem (1.1) in the case of anisotropic nonlinear curvature driven
evolution (1.2). In each time step we use a few iterations (1.13)–(1.15) to find a couple ui, µi satisfying
the convergence condition (1.11). After that, using algebraic correction (1.12), we obtain the function
vi, which corresponds to the unknown curvature k(θ, t) in time instant ti.

Below, we document graphically the computed results. In plotting time moments, the curves are
reconstructed from the computed curvature function by the formula (1.3); the integral there is evaluated
numerically. Because the curves are given by (1.3) uniquely up to a translation, for determining the
real evolution we need to know the motion of at least one point of the curve. For this purpose we
use (1.2) or some other criterion, e.g., conservation of the center of the mass. The numerical flow of
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curves computed by our technique (which is not based on computing the position vector) satisfies the
closeness condition

2πν∫
0

eiθ

k(θ, t)
dθ = 0

very precisely in all presented cases. Thus no curve on figures is split. This rather surprising property
of the scheme is an indicator of its correctness and effectiveness.

For simplicity, in the following lines, we will write only β(k) in the cases without anisotropy. It is
an easy computation that a special solution of (1.2) with β(k) = km, m > 0, is a circle shrinking in
selfsimilar form to the center; its radius R(t) is given by

R(t) =
(
R(0)m+1 − (m+ 1)t

)1/(m+1)
.

From this formula we obtain exact blow-up time for curvature. Table 1 expresses the relation between
exact and numerically computed blow-up times. For the power m in the function β, we list the exact
blow-up time T , and numerically computed ones for τ = 0.01, τ = 0.001, respectively. The written
equidistant time step is used in computations until a time when the curvature starts to growth very
rapidly (e.g., for m = 1/3 we use τ = 0.01 up to 0.73 and τ = 0.001 up to 0.748, respectively) and
then, we adaptively refine the time step to obtain numerical blow-up (curvature of order 103).

In Figs. 3–8, we plot the evolution of the initial ellipse, with halfaxes a = 2, b = 1, governed by
(1.2), with several choices of β.

Fig. 3 represents the classical linear curve shortening, when the circle is asymptotical shape of
evolution [14].

The next figure represents the behaviour for β(k) = km, m > 1; the asymptotical motion is similar
to the previous one, the extinction is faster and the “slow diffusion effect” known from solving the

Table 1

m 1/10 1/4 1/3 1/2 2 4

T—exact 0.9090 0.8 0.75 0.66 0.33 0.2

τ = 0.01 0.9069 0.7959 0.7449 0.6592 0.3185 0.1825

τ = 0.001 0.9084 0.7994 0.7493 0.6659 0.3315 0.1981

Fig. 3. β(k) = k, the numerical blow-up T = 1.0006, plotting step τg = 0.1.
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Fig. 4. β(k) = k4, the numerical blow-up T = 0.713, plotting step τg = 0.05.

Fig. 5. β(k) = k1/3, the numerical blow-up T = 1.1908, plotting step τg = 0.1.

Fig. 6. β(k) = k1/10, the numerical blow-up T > 1.054, plotting step τg = 0.1 and 1.054.

porous-medium equation is expressed here in a very slow motion of the points in which the curvature
is close to 0.

In the special case β(k) = k1/3 (Fig. 5), the arbitrary ellipse is a selfsimilar solution (see [2,28]).
This phenomenon is respected also in our numerical computations. We check it by time evolution of
the ratio a/b on which there are practically no changes up to times very near to shrinking, and also
by the time evolution of the isoperimetric ratio

Iso =
L

4πS
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Fig. 7. β(k)-combination of k1/2, k2, k1/3, the numerical blow-up T = 0.895, plotting step τg = 0.1 up to 0.7 and then
0.75, 0.85, 0.88, 0.895.

Fig. 8. β(k) = k1/3, the numerical blow-up T = 1.8917, plotting step τg = 0.2.

Fig. 9. β(θ, k) = (1− (8/9) cos θ)k1/3, the numerical blow-up T = 0.9398, plotting step τg = 0.1.

Fig. 10. β(k) = k.
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Fig. 11. β(k) = k1/3.

Fig. 12. β(k) = k1/3.

(L—length of the curve, S—enclosed area) computed for evolving shapes. It is invariant for the
numerical solution, too. The conservation of the previous two quantities is observed also in the more
complicated experiment (a/b = 4) documented in Fig. 8. For those experiments, the exact blow-up
time can be computed [26] and is equal to (3/4)(ab)2/3. So in the first case the exact one is equal
1.19055 while the numerically computed is 1.1908; in the second case we have 1.88988 and 1.8917,
respectively.

Choosing β(k) = k1/m, with m large, the motion of points with small curvature is fast and we
obtain behaviour as in Fig. 6.

In Fig. 7 the function β is given as a joining of k1/2, k2, k1/3 functions in intervals [0, 1), [1, 2),
[2,∞), respectively. (Note that such β is a little bit worse than assumed in (H3)–(H4).) In this case,
we see several changes in the evolving shape and, only after that, shrinking to the center in ellipse-like
form.

Fig. 9 represents an anisotropic version of the evolution from Fig. 5, β(θ, k) = (1−(8/9) cos θ)k1/3.
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Fig. 13. β(k) = k1/3.

Fig. 14. β(k) = k1/3.

In all previous graphically documented numerical experiments (shrinking of ellipses) the time step
τ = 0.001 (in the sense of description above Table 1), the space discretization step h = 2π/200, and
in the labels of figures we print the form of β, numerical blow-up time T and time steps in which the
solutions are plotted.

If the index ν of an initial closed convex curve is greater than 1, then the corresponding solution
can become singular without shrinking to a point. Such process for linear curve shortening flow was
studied in [5] and from a numerical point of view in [25].
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Fig. 15. β(k) = k2.

Symmetric shape, like 4-petal, forms four singularities at the same time (see also [25, Fig. 6a]) for
any choice of β(k). If we apply affine transformation on that initial curve and then use the linear
model for motion, less than four singularities are formed finally at the same time—see Fig. 10.

In spite of this, if we choose β(k) = k1/3, the behaviour of the affine transformed initial curve
corresponds to the behaviour of the original 4-petal. Figs. 11–13 illustrate the fact that the blow-
up of the curvature in four subintervals of Ω occurs at the same time again. This phenomenon is an
interesting demonstration of the affine invariantness of the Alvarez, Guichard, Lions and Morell model
of multiscale shape analysis.

From the linear isotropic curve shortening, the existence of selfintersecting selfsimilar solutions,
Abresch–Langer functions, is known. The evolution of one of them for β(k) = k1/3 and β(k) = k2,
respectively, is documented in Figs. 14 and 15. The formation of singularities in the first case and
rounding the circle and then shrinking to the point in the second one were computed (for selfsimilar
motion see [25, Fig. 8d]).

The interesting open question is how to use some modification of the computational method pre-
sented here for computing the general nonconvex curve evolution. The other successful technique [12]
for computing linear curve shortening flow can be, at least from an implementation point of view, also
adapted to solve (1.2) [26].
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