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Abstract

We propose a new finite volume numerical scheme for the approximation of regularised mean

curvature flow level set equations, which ensures the maximum principle, and which is shown to

converge to the solution of the problem. The convergence proof uses the monotonicity of the operator,

in order to get the strong convergence of the approximation of the gradient. Numerical examples

provide indications about the accuracy of the method. Applications to noisy image filtering show less

diffusive behaviour than the classical finite difference scheme.
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1 Introduction

We consider the following problem: find an approximate solution to the equation

ut − g(|∇u|)div

( ∇u
f(|∇u|)

)
= r, a.e. (x, t) ∈ Ω × (0, T ) (1)

with the initial condition
u(x, 0) = u0(x), a.e. x ∈ Ω, (2)

and the boundary condition
u(x, t) = 0, a.e. (x, t) ∈ ∂Ω × R+, (3)

under some hypotheses on the real functions f , g, the initial data u0, the right hand side r, and on the
domain Ω, which are detailed below. Note that the case of Neumann boundary conditions on a part of
the boundary or on the whole boundary, instead of (3), is interesting as well, and that it does not add
specific difficulties to the present study. The standard mean curvature flow level set equation, which is
obtained by setting r = 0 and

f(x) = g(x) = x, ∀x ∈ R+ (4)

in (1), has numerous applications in science, engineering and technology, ranging from free boundary
problems in material sciences and computational fluid dynamics to filtering and segmentation algorithms
in image processing and computer vision. We refer to [29] for the original mean curvature flow level
set equation, to [1, 3, 6, 23, 32] for some generalisations in various frameworks; in image processing
applications, equation (1-4), called the curvature filter, is generalised and used in adaptive image filtering
[9], image segmentation by the geodesic active contours [6, 23] and the (generalised) subjective surfaces
method [31, 26, 10, 24].
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The analysis of numerical algorithms for solving (1-4) and related problems is a difficult task due to its
nonlinear character and non-divergent form. In [11, 12, 13], the error estimates for geometric quantities
like the regularised normal to the level set of solution and its normal velocity have been established using
the finite element method. Such estimates are very useful for the free boundary problems when dealing
with the motion of one particular level curve or level surface.
On the other hand, e.g. in image processing applications when the evolution of the whole level set function
representing an image intensity is used in practice, the convergence of a numerical approximation to the
solution u itself is an important point. In this way, the classical fully explicit finite difference scheme,
which is widely used in image processing applications [33, 28], is significantly modified in [27] for getting
a convergence property to the viscosity solution of (1-4).
Note that the smoothness of the numerical solution is implicitly assumed by classical finite difference
schemes, which are based on second order Taylor’s expansions with respect to the space variable. This is
no longer the case with finite volume schemes: such schemes are defined by first order Taylor’s expansions
at the boundary of the finite volumes, corresponding to the pixels of the image, thus respecting the
structure of digital images. This is shown in [25], where such a finite volume approach to image processing
is introduced for the regularised Perona-Malik equation [30, 7], and a convergence analysis is proposed
in [14] for the coherence enhancing nonlinear tensor diffusion.
The mathematical analysis of finite volume methods for mean curvature flow level set equation is partly
proposed in [22, 26, 21], applied to the co-volume scheme initially proposed by Walkington [34]. In this
scheme, one first replaces (4) by

f(x) = g(x) =
√
x2 + a2, ∀x ∈ R+, (5)

for a small value a > 0. This regularisation, known as the Evans-Spruck regularisation of the problem
(1-4), is used to prevent from the occurrence of zero denominators in the numerical scheme (note that it
has first been used in [16, 8] to show the existence of the viscosity solution to (1-4)). Walkington’s initial
scheme is nonlinear and its linear semi-implicit variant is suggested in [22]. Such semi-implicit scheme is
proved to be efficient, as keeping all theoretical properties of Walkington’s scheme. It is used in solving
various practical 2D and 3D (large-scale) image analysis problems [10, 24, 5]. In [22, 26] the L∞ stability
of the solution and the L1 stability of its gradient are given. Moreover, in [21], the consistency of the
scheme is proved using the Barles and Souganidis [4] approach for solving nonlinear PDEs. However, the
convergence of the co-volume semi-implicit scheme to the exact solution remains an open problem.
Note that the convergence of finite volume methods for the solution of the stationary version of (1), has
been proved in [2, 15, 19], under the assumptions

(LL1) the function x 7→ x/f(x) is strictly increasing on R+,

(LL2)
dx

c+ xp−1
≤ f(x) ≤ Cx2−p for given c, d, C > 0, p > 1 and all x ∈ R+,

(LL3) g constant.

We get under assumptions (LL1)-(LL2) that the function u 7→ −div (∇u/f(|∇u|)) is a Leray-Lions
operator, whose monotonicity properties allow for the use of Minty and Leray-Lions tricks for the proof
of the convergence. Note that property (LL1) holds for the choice (5) for f , but not (LL2). On the
contrary, (LL1)-(LL2) hold if we consider for example

f(x) = g(x) = min(
√
x2 + a2, b), ∀x ∈ R+, (6)

for given reals 0 < a ≤ b, setting p = 2, c = 1, d = a and C = b. In the choice (6), the use of the bound
b is in accordance with image processing applications. Indeed, on discrete grids, the gradient norms are
lower than Q

h
, where Q is a quantisation parameter and h is the side length of a pixel. This acts in a

similar way to the convolution used in [7] for regularising the Perona-Malik equation. Nevertheless, the
problem approximated in [2, 15, 19] is stationary and conservative; new difficulties arise in approximating
(1), which is transient and non-conservative. In order to be able to overcome these difficulties, we consider
in this paper the following hypotheses, called hypotheses (H) in the following.
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1. Ω is a finite connected open subset of R
d, d ∈ N

⋆, with boundary ∂Ω defined by a finite union of
subsets of hyperplanes of R

d,

2. u0 ∈ H1
0 (Ω),

3. r ∈ L2(Ω × (0, T )) for all T > 0,

4. g ∈ C0(R+; [a, b]), with 0 < a < b,

5. f ∈ C0(R+; [a, b]) is a Lipschitz continuous (non-strictly) increasing function, such that the function
x 7→ x/f(x) is strictly increasing on R+.

It is worth noticing that the functions f and g given by (6) satisfy (H4-5). The hypothesis (H2) is
restrictive when considering image processing applications where e.g. characteristic functions of shapes
can be used. However, this theoretical restriction can be relaxed in practice and the finite volume schemes
can also be used in such cases, see Section 5.

Definition 1.1 (Weak solution of (1)-(2)-(3)) Under hypotheses (H), we say that u is a weak solution
of (1)-(2)-(3) if, for all T > 0,

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω × (0, T )) (hence u ∈ C0(0, T ;L2(Ω))).

2. u(·, 0) = u0

3. the following holds

∫ T

0

∫

Ω

(
ut(x, t)v(x, t)

g(|∇u(x, t)|) +
∇u(x, t) · ∇v(x, t)
f(|∇u(x, t)|)

)
dxdt =

∫ T

0

∫

Ω

r(x, t)v(x, t)

g(|∇u(x, t)|)dxdt,

∀v ∈ L2(0, T ;H1
0 (Ω)).

(7)

Since any function u weak solution of (1)-(2)-(3) in the sense of Definition 1.1 satisfies div
(

∇u
f(|∇u|)

)
∈

L2(Ω × (0, T )), we immediately get the following lemma.

Lemma 1.1 (Property of weak solutions of (1)-(2)-(3)) Under Hypotheses (H), u is a weak solu-
tion of (1)-(2)-(3) in the sense of Definition 1.1 if and only if u satisfies, for all T > 0:

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω × (0, T )) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,

3. div
(

∇u
f(|∇u|)

)
∈ L2(Ω × (0, T )),

4. ut − g(|∇u|)div
(

∇u
f(|∇u|)

)
= r a.e. in Ω × (0, T ).

Remark 1.1 The framework of this paper does not easily allow for using uniqueness results, deduced
from the viscosity solution sense. Difficulties arise, when considering general functions f and g, initial
data only in H1

0 (Ω), Lipschitz-continuous boundary for Dirichlet boundary condition. Moreover, the
monotonicity of the problem has to be checked, and the relation between a solution in the viscosity sense
and the sense of Definition 1.1 is not straightforward. Hence the uniqueness of the weak solution of
(1)-(2)-(3) in the sense of Definition 1.1 is at this time an open problem.

We consider in this paper two different time discretisations of a new finite volume scheme for solving (1)
under Hypotheses (H). The main result of this paper, i.e. the strong convergence of both schemes to a
solution of (7), is proved thanks to the following property. Let F be the function defined by

∀s ∈ R+, F (s) =

∫ s

0

z

f(z)
dz ∈

[
s2

2 b
,
s2

2 a

]
. (8)

3



Then, for any sufficiently regular function u, it holds

d

dt

∫

Ω

F (|∇u(x, t)|)dx =

∫

Ω

∇u(x, t) · ∇ut(x, t)
f(|∇u(x, t)|) dxdt. (9)

Therefore, assuming that this function u is solution of (1) with r = 0 for the sake of simplicity, we get,
by taking v = ut in (7), that ∇u ∈ C0([0, T ];L2(Ω)) and

∫ T

0

∫

Ω

(
ut(x, t)

2

g(|∇u(x, t)|)

)
dxdt+

∫

Ω

F (|∇u(x, T )|)dx =

∫

Ω

F (|∇u0(x)|)dx. (10)

The discrete equivalent of this property is shown in Lemma 3.2 for the semi implicit scheme (using the
fact that f is increasing). The hypothesis that x 7→ x/f(x) is strictly increasing is used by Minty and
Leray-Lions tricks; unfortunately, although it is possible to extend some of these properties to the case
f(x) = x, the convergence study provided in this paper does not hold in this framework, nor Lemma 1.1.

This paper is organised as follows. In Section 2, we present the discretisation tools. Then in Section 3,
we show some estimates that are crucial in the convergence proof, given in Section 4. Numerical results
are given in Section 5. Conclusions concerning the compared properties of finite volume schemes and the
finite difference scheme proposed in [33] are drawn in Section 6. Finally, an appendix containing a few
classical technical results is proposed.

2 The finite volume schemes

In order to describe the schemes, we now introduce some notations for the space discretisation.

Definition 2.1 (Space discretisation) Let Ω be a polyhedral open bounded connected subset of R
d,

with d ∈ N \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretisation of Ω, denoted by D, is defined as the
triplet D = (M, E ,P), where:

1. M is a finite family of nonempty connected open disjoint subsets of Ω (the “control volumes”) such
that Ω = ∪p∈Mp. For any p ∈ M, let ∂p = p\p be the boundary of p; let |p| > 0 denote the measure
of p and let hp denote the diameter of p and hD denote the maximum value of (hp)m∈M.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E, σ
is a nonempty open subset of a hyperplane of R

d, whose (d− 1)-dimensional measure |σ| is strictly
positive. We also assume that, for all p ∈ M, there exists a subset Ep of E such that ∂p = ∪σ∈Epσ.
For any σ ∈ E, we denote by Mσ = {p ∈ M, σ ∈ Ep}. We then assume that, for all σ ∈ E,
either Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces, called boundary
interfaces, is denoted by Eext) or Mσ has exactly two elements (the set of these interfaces, called
interior interfaces, is denoted by Eint). For all σ ∈ E, we denote by xσ the barycentre of σ. For all
p ∈ M and σ ∈ Ep, we denote by np,σ the unit vector normal to σ outward to p.

3. P is a family of points of Ω indexed by M, denoted by P = (xp)p∈M, such that for all p ∈ M, xp ∈ p
and p is assumed to be xp-star-shaped, which means that for all x ∈ p, the inclusion [xp, x] ⊂ p
holds. Denoting by dpσ the Euclidean distance between xp and the hyperplane including σ, one
assumes that dpσ > 0. We then denote by Dp,σ the cone with vertex xp and basis σ.

4. We make the important following assumption:

dpσnp,σ = xσ − xp, ∀p ∈ M, ∀σ ∈ Ep. (11)

Remark 2.1 The preceding definition applies to triangular meshes if d = 2, with all angles acute, and
to meshes build with orthogonal parallelepipedic control volumes (rectangles if d = 2).
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We denote

θD = min
p∈M

min
σ∈Ep

dpσ
hp

. (12)

Definition 2.2 (Space-time discretisation) Let Ω be a polyhedral open bounded connected subset of
R
d, with d ∈ N

⋆ (where N
⋆ denotes the set N \ {0}) and let T > 0 be given. We say that (D, τ) is a

space-time discretisation of Ω × (0, T ) if D is a space discretisation of Ω in the sense of Definition 2.1
and if there exists NT ∈ N with T = (NT + 1)τ .

Let (D, τ) be a space-time discretisation of Ω×(0, T ). We define the set HD ⊂ R
M×R

E such that uσ = 0
for all σ ∈ Eext. We define the following functions on HD:

Np(u)
2 =

1

|p|
∑

σ∈Ep

|σ|
dpσ

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD. (13)

Let us recall that
‖u‖2

1,D =
∑

p∈M

|p|Np(u)2 (14)

defines a norm on HD (see [20]). We then define the set HD,τ of all u = (un+1)n=0,...,NT such that
un+1 ∈ HD for all n = 0, . . . , NT , and we set

‖u‖2
1,D,τ =

NT∑

n=0

τ‖un+1‖2
1,D, ∀u ∈ HD,τ . (15)

We now define two numerical schemes. The fully implicit scheme is defined by

u0
p =

1

|p|

∫

p

u0(x)dx, ∀p ∈ M, (16)

rn+1
p =

∫ (n+1)τ

nτ

∫

p

r(x, t)dxdt, ∀p ∈ M, ∀n ∈ N, (17)

and

|p|
τ g(Np(un+1))

(un+1
p − unp ) −

1

f(Np(un+1))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) =
rn+1
p

τ g(Np(un+1))
,

∀p ∈ M, ∀n ∈ N,

(18)

the following relation is given for the interior edges,

un+1
σ − un+1

p

f(Np(un+1)) dpσ
+

un+1
σ − un+1

q

f(Nq(un+1)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N, (19)

and the boundary condition is fulfilled thanks to

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N. (20)

The semi-implicit scheme is defined by (16),

u0
σ =

1

|σ|

∫

σ

u0(x)ds(x), ∀σ ∈ E , (21)

(17), (20) and

|p|
τ g(Np(un))

(un+1
p − unp ) −

1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) =
rn+1
p

τ g(Np(un))
,

∀p ∈ M, ∀n ∈ N,

(22)
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where the following relation is given for the interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (23)

In the following, for the sake of shortness and clarity, all properties concerning the fully implicit scheme
will be only sketched in remarks, focusing on the semi-implicit scheme. Hence, now considering a family
of values (unp )p∈M,n∈N, given by (16), (17), (20) and (21), (22), (23), we define the approximate solution
uD,τ in Ω × R+ by

uD,τ (x, 0) = u0
p, uD,τ (x, t) = un+1

p , for a.e. x ∈ p, ∀t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n ∈ N. (24)

We then define wD,τ , zD,τ , ND,τ and ÑD,τ by

wD,τ (x, t) = − un+1
p − unp

τ g(Np(un))
+

rn+1
p

|p| τ g(Np(un))
, zD,τ (x, t) =

un+1
p − unp

τ
,

ND,τ (x, t) = Np(u
n+1), ÑD,τ (x, t) = Np(u

n),
for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N.

(25)

Finally, we define GD,τ , HD,τ and H̃D,τ by

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ,

HD,τ (x, t) = d
un+1
σ − un+1

p

dpσf(Np(un+1))
npσ, H̃D,τ (x, t) = d

un+1
σ − un+1

p

dpσf(Np(un))
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N,

(26)

(recall that Dpσ is the cone with vertex xp and basis σ and npσ is the normal unit vector to σ outward
to p). Note that uD,τ is the solution of

− 1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) = |p| wn+1
p ,∀p ∈ M, ∀n ∈ N, (27)

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, ∀σ = p|q ∈ Eint, ∀n ∈ N, (28)

and
un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N. (29)

The next section is devoted to the study of some estimates satisfies by the discrete solution. These
estimates in particular allow for the proof of the existence and uniqueness of the discrete solution. These
estimates also give rise to a brief review of a few properties in the case of Crank-Nicolson versions of
these schemes, which are confirmed by the numerical tests shown in section 5.

3 Estimates

Let us now state the L∞ stability of the scheme.

Lemma 3.1 (L∞ stability of the scheme, existence and uniqueness of the discrete solution)
Under Hypotheses (H), let (D, τ) be a space-time discretisation of Ω × (0, T ) in the sense of Definition
2.2. We denote by

|u0|D,∞ = max
p∈M

|u0
p|, (30)
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and by

|r|D,τ,∞ = max

{
|rn+1
p |
τ |p| , p ∈ M, n = 0, . . . , NT

}
(31)

(note that, if u0 ∈ L∞(Ω) and r ∈ L∞(Ω×R+), then |u0|D,∞ ≤ ‖u0‖L∞(Ω) and |r|D,τ,∞ ≤ ‖r‖L∞(Ω×(0,T ))).
Let (unp )p∈M,n∈N be a solution of (16), (17), (20) and (21), (22), (23). Then it holds:

|unp | ≤ |u0|D,∞ + |r|D,τ,∞ n τ ≤ |u0|D,∞ + |r|D,τ,∞ T, ∀p ∈ M, ∀n = 0, . . . , NT .

As a straightforward consequence, there exists one and only one solution to the semi-implicit scheme (21),
(17), (20), (22), (23).

Proof. Suppose that for fixed time step (n + 1) the maximum of all un+1
p is achieved at the finite

volume p. Let us write (22) in the following way:

un+1
p +

τ g(Np(u
n))

|p| f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
p − un+1

σ ) = unp +
rn+1
p

|p| . (32)

Since the value un+1
σ satisfies the equality

un+1
σ =

un+1
p f(Nq(u

n))dqσ + un+1
q f(Np(u

n))dpσ

f(Np(un))dpσ + f(Nq(un))dqσ
, (33)

which is a convex linear combination of points un+1
p , un+1

q , we obtain

un+1
p − un+1

σ =
f(Np(u

n))dpσ(u
n+1
p − un+1

q )

f(Np(un))dpσ + f(Nq(un))dqσ
,

which is non-negative. This leads to

un+1
p ≤ unp + |r|D,τ,∞ τ. (34)

Then, we recursively get the estimate (34), similarly reasoning for the minimum values. �

Remark 3.1 The above proof also applies for the fully implicit scheme, only replacing n by n+ 1 in the
arguments of functions f and g, allowing for a proof of existence of at least one discrete solution, thanks
to Brouwer’s fixed point theorem. Note that the uniqueness of such a discrete solution is not proved.

Lemma 3.2 L2(Ω × (0, T )) estimate on ut and L∞(0, T ;HD) estimate. Let Hypotheses (H) be
fulfilled. Let (D, τ) be a space-time discretisation of Ω × (0, T ) in the sense of Definition 2.2 and let
θ ∈]0, θD[, where θD is defined by (12). Let (unp )p∈M,n∈N be the solution of (16), (17), (20) and (21),
(22), (23). Then there exists Cθ > 0, only depending on θ, such that it holds:

1

2b

m−1∑

n=0

τ
∑

p∈M

|p|
(
un+1
p − unp

τ

)2

+
∑

p∈M

|p| F (Np(u
m))

+
1

2b

m−1∑

n=0

∑

p∈M

|p| (Np(u
n+1) −Np(u

n))2 ≤
Cθ‖u0‖2

H1(Ω) + ‖r‖2
L2(Ω×(0,T ))

2 a
, ∀m = 1, . . . , NT .

(35)

Proof. We multiply the scheme by un+1
p − unp and sum over p. We obtain T1 + T2 = T3, where

T1 =
∑

p∈M

|p|
τg(Np(un))

(un+1
p − unp )

2,

7



T2 =
∑

p∈M

1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(un+1
σ − un+1

p − (unσ − unp )),

T3 =
∑

p∈M

rn+1
p

τ g(Np(un))
(un+1
p − unp )

where we have used the properties of the finite volume scheme. We first remark that, thanks to Young’s
inequality and to the Cauchy-Schwarz inequality

T3 ≤
∑

p∈M

(rn+1
p )2

2|p| τ g(Np(un))
+

1

2
T1 ≤ 1

2a

∫ (n+1)τ

nτ

∫

Ω

r(x, t)2dxdt+
1

2
T1.

Let us turn to the study of T2. Using Definition (8) of function F , we have:

F (Np(u
n+1)) − F (Np(u

n)) =

Np(u
n+1)∫

Np(un)

zdz

f(z)
.

We remark that, thanks to Hypothesis (H5),

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
+

(d− c)2

2f(c)
≤ d

f(c)
(d− c). (36)

Indeed, we set, for c, d ∈ R+, Φc(d) = d
f(c) (d − c) − (d−c)2

2f(c) −
∫ d
c
zdz
f(z) . We have Φc(c) = 0, and Φ′

c(d) =
d
f(c) − d

f(d) , whose sign is that of d− c since f is (non-strictly) increasing. Hence Φc(d) ≥ 0 and we get

F (Np(u
n+1)) − F (Np(u

n)) +
1

2b
(Np(u

n+1) −Np(u
n))2 ≤ Np(u

n+1)

f(Np(un))
(Np(u

n+1) −Np(u
n)).

Note that the Cauchy-Schwarz inequality implies

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(unσ − unp ) ≤ |p| Np(u
n)Np(u

n+1),

which in turn implies

∑

p∈M

|p| (F (Np(u
n+1)) − F (Np(u

n)) +
1

2b

∑

p∈M

|p| (Np(u
n+1) −Np(u

n))2 ≤ T2.

Finally we obtain

1

2b
τ
∑

p∈M

|p|
(
un+1
p − unp

τ

)2

+
∑

p∈M

|p| F (Np(u
n+1)) +

1

2b

∑

p∈M

|p| (Np(u
n+1) −Np(u

n))2

≤
∑

p∈M

|p| F (Np(u
n)) +

1

2a

∫ (n+1)τ

nτ

∫

Ω

r(x, t)2dxdt,

(37)

and summing this inequality over n = 0, . . . ,m− 1 for all m = 1, . . . , NT , we get that

1

2b

m−1∑

n=0

τ
∑

p∈M

|p|
(
un+1
p − unp

τ

)2

+
∑

p∈M

|p| F (Np(u
m))

+
1

2b

m−1∑

n=0

∑

p∈M

|p| (Np(u
n+1) −Np(u

n))2

≤
∑

p∈M

|p| F (Np(u
0)) +

1

2a

∫ mτ

0

∫

Ω

r(x, t)2dxdt,

8



where we define u0
σ by (21). We then use the following inequality, proved in [18]: there exists Cθ > 0,

only depending on θ, such that

|p| Np(u0)2 ≤ Cθ‖u0‖2
H1(p), ∀p ∈ M. (38)

We thus get (35). �

Remark 3.2 A property, similar to that stated in Lemma 3.2, can be shown for the fully implicit scheme.
One should remark that, in this case, there is no term in (Np(u

n+1) −Np(u
n))2 in the discrete relation

issued from the computations, which rely on the monotonicity of the function x 7→ x/f(x) and not on that
of f . This estimate then also allows for proving the existence of at least one solution to the fully implicit
scheme, using the topological degree argument.

Remark 3.3 (Case of the non-regularised level set equation) If we use the hypothesis s/f(s) ≤ a
(which holds for f(s) = s) instead of a ≤ f(s), assumed in this paper, the above computations provide
an L∞(0, T ;L1(Ω)) estimate on the discrete gradient instead of an L∞(0, T ;L2(Ω)) estimate. It would
nevertheless be possible to get some of the results proved during the convergence study, but not all of them.
This is not surprising, since for the level set equation, there is no weak/strong sense, and we should refer
to the viscosity solution sense. Hence the convergence study for f(s) = s remains open.

Consequences on Crank-Nicolson -like versions of the schemes

In this paper, we could as well, for a given α ∈ [12 , 1], replace (22) and (23) by

|p|
τ g(Np(un))

(un+1
p − unp ) −

1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(ûn+1
σ − ûn+1

p ) =
rn+1
p

τ g(Np(un))
,

ûn+1
p = αun+1

p + (1 − α)unp ,
∀p ∈ M, ∀n ∈ N,

(39)

and
ûn+1
σ − ûn+1

p

f(Np(un)) dpσ
+

ûn+1
σ − ûn+1

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (40)

We then define the so-called “α-scheme” version of the above semi-implicit scheme, which provides the
Crank-Nicolson scheme for α = 1

2 and (22), (23) for α = 1. The convergence properties proved in this
paper for α = 1 can be immediately generalised to the case α ∈]12 , 1] for the semi-implicit scheme, since
the crucial property (36) is modified into

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
+ (α− 1

2
)
(d− c)2

f(c)
≤ αd+ (1 − α)c

f(c)
(d− c),

which holds under the same hypothesis f increasing.

On the contrary, if, for a given α ∈ [12 , 1], we replace (18) and (19) by

|p|
τ g(Np(ûn+1))

(un+1
p − unp ) −

1

f(Np(ûn+1))

∑

σ∈Ep

|σ|
dpσ

(ûn+1
σ − ûn+1

p ) =
rn+1
p

τ g(Np(ûn+1))
,

ûn+1
p = αun+1

p + (1 − α)unp ,
∀p ∈ M, ∀n ∈ N,

(41)

and
ûn+1
σ − ûn+1

p

f(Np(ûn+1)) dpσ
+

ûn+1
σ − ûn+1

q

f(Nq(ûn+1)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N, (42)

we have to replace the fact that the function s 7→ s/f(s) is increasing by

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
≤ αd+ (1 − α)c

f(αd+ (1 − α)c)
(d− c),

which is not satisfied for all α ∈ [ 12 , 1] by the example given in (6) (indeed, for α = 1
2 , it implies that the

function s 7→ s/f(s) is concave).
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4 Convergence

Thanks to the estimates proved in the above section, we are now in position for proving the convergence
of the scheme, using the monotonicity properties of the operators. We first present a few properties which
are useful in the convergence study. In this paper, we use the notations “⇀ weakly” for denoting weak
convergence and → for strong convergence.

Lemma 4.1 Let Ω be a bounded connected open subset of R
d, with d ∈ N

⋆ and let T > 0. Let
(Dm, τm)m∈N be a sequence of space-time discretisations of Ω in the sense of Definition 2.2 such that
hDm tends to 0 as m −→ ∞. Let (um)m∈N be such that um ∈ HDm,τm , such that ‖um‖1,Dm,τm ≤ C for all
m ∈ N and such that there exists ū ∈ L2(Ω × (0, T )) such that the sequence of functions uDm,τm defined,
for u = um, D = Dm and τ = τm, by

uD,τ (x, t) = un+1
p , for a.e. x ∈ p, t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT ,

satisfies uDm,τm −→ ū in L2(Ω × (0, T )) as m −→ ∞.

Then ū ∈ L2(0, T ;H1
0 (Ω)). Moreover, defining Gm ∈ L∞(0, T ;L2(Ω)) by

Gm(x, t) = d
un+1
σ − un+1

p

dpσ
npσ

for a.e. x ∈ Dpσ, and a.e. t ∈]nτ, (n+ 1)τ [, then Gm ⇀ ∇ū weakly in L2(Ω × (0, T ))d as m −→ ∞.

Proof. We first notice that

‖Gm‖2
L2(Ω×(0,T ))d =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ| dpσ
d

∣∣∣∣∣d
un+1
σ − un+1

p

dpσ
npσ

∣∣∣∣∣

2

,

which provides
‖Gm‖2

L2(Ω×(0,T ))d = d (‖um‖1,Dm,τm)
2
.

Prolonging Gm (and um) by 0 outside Ω× (0, T ), we get that there exists Ḡ ∈ L2(Rd× (0, T ))d such that
Gm ⇀ Ḡ (weakly, up to a subsequence) in L2(Rd × (0, T ))d as m −→ ∞. Moreover, Ḡ(x, t) = 0 for a.e.
x /∈ Ω × (0, T ). Let ψ ∈ C1

c (R
d × (0, T ))d. Let us define, for D = Dm and τ = τm,

ψn+1
σ =

1

|σ|τ

∫ (n+1)τ

nτ

∫

σ

ψ(x, t)ds(x)dt, σ ∈ E , n = 0, . . . , NT ,

and ψm by
ψm(x, t) = ψn+1

σ ,

for a.e. x ∈ Dp,σ, all p ∈ M, σ ∈ Ep, a.e. t ∈]nτ, (n+1)τ [ and all n = 0, . . . , NT . Thanks to the regularity
properties of ψ, we get that ψm → ψ in L∞(Rd × (0, T ))d as m −→ ∞. Moreover, we have

∫ T

0

∫

Rd

Gm(x, t) · ψm(x, t)dxdt =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ| dpσ
d

d
un+1
σ − un+1

p

dpσ
npσ · ψn+1

σ ,

which gives, thanks to the fact that the terms un+1
σ are multiplied by 0 for all σ ∈ Eint and using∫ (n+1)τ

nτ

∫
p
div ψ(x, t)dxdt = τ

∑
σ∈Ep

|σ|ψn+1
σ · npσ,

∫ T

0

∫

Rd

Gm(x, t) · ψm(x, t)dxdt = −
∫ T

0

∫

Rd

um(x, t)div ψ(x, t)dxdt.
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Passing to the limit in the above expression, we get, using weak/strong convergence for the left hand side,

∫ T

0

∫

Rd

Ḡ(x, t) · ψ(x, t)dxdt = −
∫ T

0

∫

Rd

ū(x, t)div ψ(x, t)dxdt.

This proves that ∇ū ∈ L2(Rd × (0, T ))d and that ∇ū = Ḡ for a.e. (x, t) ∈ R
d × (0, T ). Since Ḡ(x, t) = 0

for a.e. x /∈ Ω× (0, T ), we get that ū ∈ L2(0, T ;H1
0 (Ω)). Since ∇ū ∈ L2(Rd× (0, T ))d is uniquely defined,

we get that the whole sequence Gm ⇀ ∇ū weakly in L2(Rd × (0, T ))d, which concludes the proof. �

Lemma 4.2 Strong convergence of the approximate gradient norm of regular function in-
terpolation.
Let Ω be a bounded connected open subset of R

d, with d ∈ N
⋆ and let T > 0. Let (D, τ) be a space-time

discretisation of Ω × (0, T ) in the sense of Definition 2.2. For any ϕ ∈ C∞
c (Ω × (0, T )), we define the

discrete interpolation of ϕ, denoted v ∈ HD,τ , by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ), and we define ND,τ

by
ND,τ (x, t) = Np(v

n+1), for a.e. x ∈ p, t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT , (43)

Then ND,τ → |∇ϕ| in L∞(Ω × (0, T )) as hD and τ tend to 0.

Proof. We have, for any vector w ∈ R
d,

|p| w =
∑

σ∈Ep

|σ|w · (xσ − xp)np,σ. (44)

Hence we get that

|p| |w|2 =
∑

σ∈Ep

|σ|w · (xσ − xp)np,σ · w =
∑

σ∈Ep

|σ|dpσ(np,σ · w)2,

thanks to condition (11). This provides that

|p| |∇ϕ(xp, t)|2 =
∑

σ∈Ep

|σ|dpσ(np,σ · ∇ϕ(xp, t))
2.

Writing that

np,σ · ∇ϕ(xp, t) =
ϕ(xσ, t) − ϕ(xp, t)

dpσ
+ Cp(t)hD, (45)

with Cp(t) bounded independently of the discretisation, we conclude the proof of the lemma. �

Lemma 4.3 (Strong approximate of the gradient of ϕ) For all ϕ ∈ C∞
c (Ω× (0, T )), we denote by

vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). We introduce the approximation

∇n+1
pσ ϕ =

vn+1
σ − vn+1

p

dpσ
npσ + ∇ϕ(xp, (n+ 1)τ) − (∇ϕ(xp, (n+ 1)τ) · npσ)npσ, (46)

and ∇D,τϕ(x, t) = ∇n+1
pσ ϕ for x ∈ Dpσ, t ∈ [nτ, (n+ 1)τ ].

Then ∇D,τϕ→ ∇ϕ in L∞(Ω × (0, T )) as hD and τ tend to 0.

Proof. The proof relies on (45). �

Let us denote by (HC) the following hypotheses:

• Hypotheses (H) are fulfilled.

• The sequence (Dm, τm)m∈N denotes a sequence of space-time discretisations of Ω × (0, T ) in the
sense of Definition 2.2 such that hDm and τm > 0 tends to 0 as m −→ ∞.
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• There exists some θ > 0 with θ < θDm for all m ∈ N, where θD is defined by (12).

• For all m ∈ N, the family (unp )p∈M,n∈N is such that (16), (17), (20) and (21), (22), (23) hold and
the function uDm,τm is defined by (24).

We can now state the following Lemma, using the compactness properties issued from the above estimates.

Lemma 4.4 (Convergence properties) Let Hypotheses (HC) be fulfilled.
Then there exists a subsequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, there exists a function
ū ∈ L∞(0, T ;H1

0 (Ω)) ∩ C0(0, T ;L2(Ω)), such that ūt ∈ L2(Ω × (0, T )), u(., 0) = u0, and uDm,τm tends to
ū ∈ L∞(0, T ;H1

0 (Ω)) in L∞(0, T ;L2(Ω)), and there exists functions H̄ ∈ L2(Ω × (0, T ))d, w̄ ∈ L2(Ω ×
(0, T )) such that HDm,τm ⇀ H̄ and H̃Dm,τm ⇀ H̄ weakly in L2(Ω × (0, T ))d (see definition (26)), and
such that wDm,τm ⇀ w̄ and zDm,τm ⇀ ūt weakly in L2(Ω× (0, T )) as m→ ∞. Moreover, GDm,τm ⇀ ∇ū
weakly in L2(Ω × (0, T ))d (see definition (26)), NDm,τm − ÑDm,τm → 0 in L2(Ω × (0, T )) (see definition
(25)) and the following relation holds:

lim
m→∞

∫ T

0

∫

Ω

NDm,τm(x, t)2

f(NDm,τm(x, t))
dxdt =

∫ T

0

∫

Ω

H̄(x, t) · ∇ū(x, t)dxdt. (47)

Proof. From the definition of F and Hypotheses (H) (which imply F (s) ≥ s2/2b), uDm,τm(·, t) is
uniformly bounded in HD for all t ∈ [0, T ]. Hence we can apply Theorem 6.1, which is a generalisation
of Ascoli’s theorem and shows that the convergence property uDm,τm(·, t) → ū ∈ C0(0, T ;L2(Ω)) holds
in L∞(0, T ;L2(Ω)). Thanks to (16), we have ū(·, 0) = u0. We also get, thanks to Lemma 4.1, that
ū ∈ L∞(0, T ;H1

0 (Ω)) and that GD,τ ⇀ ∇ū weakly in L2(Ω × (0, T ))d.
From Lemma 3.2 we get that wD,τ remains bounded in L2(Ω × (0, T )) for all m ∈ N. Therefore there
exists a function w̄ ∈ L2((Ω × (0, T )) such that, up to a subsequence of the preceding one, wm ⇀ w̄
weakly in L2(Ω × (0, T )). Similarly, we have zDm,τm ⇀ ūt weakly in L2(Ω × (0, T )), which shows that

ūt ∈ L2(Ω × (0, T )). Similarly, H̃Dm,τm ⇀ H̄ weakly in L2(Ω × (0, T ))d, up to a subsequence of the
preceding one. Note that in the proof below, we drop some indices m for the simplicity of notation.

Let us first focus on the difference between NDm,τm and ÑDm,τm on one hand, and that between H̃Dm,τm

and HDm,τm on the other hand. We have, for x ∈ p and t ∈]nτ, (n+ 1)τ [,

ND,τ (x, t) − ÑD,τ (x, t) = Np(u
n+1) −Np(u

n).

Using (35), we get the existence of C > 0 independent of m such that

‖NDm,τm − ÑDm,τm‖2
L2(Ω×(0,T )) ≤ Cτm,

which provides
lim
m→∞

‖NDm,τm − ÑDm,τm‖L2(Ω×(0,T )) = 0. (48)

Using the Cauchy-Schwarz inequality, we have

∫ T

0

∫

Ω

|H̃Dm,τm(x, t) −HDm,τm(x, t)|dxdt ≤ ‖GD‖L2(Ω×(0,T ))d

∥∥∥∥∥
1

f(ÑDm,τm)
− 1

f(NDm,τm)

∥∥∥∥∥
L2(Ω×(0,T ))d

,

which proves that H̃Dm,τm −HDm,τm → 0 in L1(Ω × (0, T ))d thanks to (48). Note that this shows that
HDm,τm ⇀ H̄ weakly in L2(Ω × (0, T )). One of the difficulties is now to identify H̄ with ∇u/f(|∇u|).
This will be done in further lemmas, thanks to the property (47) stated in the present lemma, that we
have now to prove.

Let ϕ ∈ C∞
c (Ω × (0, T )) be given. We denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). Multiplying (27)

by τvn+1
p , summing on n and p, we get T1m = T2m with

T1m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

un+1
σ − un+1

p

f(Np(un))
(vn+1
σ − vn+1

p ),
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and

T2m =

NT∑

n=0

τ
∑

p∈M

|p| wn+1
p vn+1

p .

Using the approximation ∇D,τϕ of ∇ϕ provided in Lemma 4.3, we can write that

T1m =

∫ T

0

∫

Ω

H̃D,τ · ∇D,τϕdxdt.

Hence, by weak/strong convergence,

lim
m→∞

T1m =

∫ T

0

∫

Ω

H̄ · ∇ϕdxdt.

We have on the other hand

lim
m→∞

T2m =

∫ T

0

∫

Ω

w̄ϕdxdt.

Hence ∫ T

0

∫

Ω

H̄ · ∇ϕdxdt =

∫ T

0

∫

Ω

w̄ϕdxdt.

Since the above equality holds for all ϕ ∈ C∞
c (Ω×(0, T )), it also holds by density for all v ∈ L2(0, T ;H1

0 (Ω)).
Hence we get ∫ T

0

∫

Ω

H̄ · ∇ūdxdt =

∫ T

0

∫

Ω

w̄ūdxdt. (49)

We now multiply (27) by τun+1
p , sum on n and p. We get T̃3m = T4m with T̃3m defined by

T̃3m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )2

f(Np(un))
=

∫ T

0

∫

Ω

ND,τ (x, t)
2

f(ÑD,τ (x, t))
dxdt, (50)

and

T4m =

NT∑

n=0

τ
∑

p∈M

|p| wn+1
p un+1

p .

We have, by weak/strong convergence,

lim
m→∞

T4m =

∫ T

0

∫

Ω

w̄ūdxdt,

which leads, using (49), to

lim
m→∞

T3m =

∫ T

0

∫

Ω

w̄ūdxdt =

∫ T

0

∫

Ω

H̄ · ∇ūdxdt,

We now define

T3m =

∫ T

0

∫

Ω

NDm,τm(x, t)2

f(NDm,τm(x, t))
dxdt =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )2

f(Np(un+1))
,

again dropping some indices m for the simplicity of notation. Let us now prove that T̃3m and T3m have
the same limit. Writing

T̃3m − T3m = −τ
∑

p∈M

|p| Np(u
NT+1)2

f(Np(uNT+1))
+

NT∑

n=0

τ
∑

p∈M

|p| Np(u
n+1)2 −Np(u

n)2

f(Np(un))
+ τ

∑

p∈M

|p| Np(u
0)2

f(Np(u0))
,
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we get, using (35) for the study of the first term in the right hand side of the above equation, (48) for
the study of the second term and (38) for the third one, that

lim
m→∞

(T̃3m − T3m) = 0,

Hence we also get that

lim
m→∞

T3m =

∫ T

0

∫

Ω

w̄ūdxdt =

∫ T

0

∫

Ω

H̄ · ∇ūdxdt,

which completes the proof of (47). �

The problem is now to show the strong convergence in L2(Ω × (0, T )) of ND(uD,τ ) to |∇ū|. This will
result from property (47), from Minty trick and from Leray-Lions trick. Let us start with the following
property:

Lemma 4.5 For all u, v ∈ HD,

∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥ 0.

Proof. We have that

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp)

=
∑

σ∈Ep

( |σ|
dpσ

(uσ − up)
2

f(Np(u))
+

|σ|
dpσ

(vσ − vp)
2

f(Np(v))
− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(u))
− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(v))

)
.

Applying the Cauchy-Schwarz inequality, we get

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥

|p| Np(u)2
f(Np(u))

+
|p| Np(v)2
f(Np(v))

−|p| Np(u)Np(v)
f(Np(u))

− |p| Np(u)Np(v)
f(Np(v))

,

which gives
∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥

|p|
(

Np(u)

f(Np(u))
− Np(v)

f(Np(v))

)
(Np(u) −Np(v)) .

This last expression is non negative thanks to the hypotheses (H). �

We now continue with the use of Minty trick.

Lemma 4.6 Let Hypotheses (HC) be fulfilled. We assume that the sequence (Dm, τm)m∈N denotes an
extracted sub-sequence, the existence of which is provided by Lemma 4.4. Let ϕ ∈ C∞

c (Ω × (0, T )) be
given. We denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ) and by

Tm =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))
− vn+1

σ − vn+1
p

f(Np(vn+1))
)

)
(un+1
σ − un+1

p − vn+1
σ + vn+1

p ). (51)

Then the following holds

lim
m→∞

Tm =

∫ T

0

∫

Ω

(H̄ − ∇ϕ
f(|∇ϕ|) )(∇ū−∇ϕ)dxdt, (52)
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and ∫ T

0

∫

Ω

H̄ · ∇vdxdt =

∫ T

0

∫

Ω

∇ū
f(|∇ū|) · ∇vdxdt, ∀v ∈ L2(0, T ;H1

0 (Ω)). (53)

Proof. We remark that Tm = T3m − T5m − T6m + T7m, with T3m defined by (50) and

T5m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))
)

)
(vn+1
σ − vn+1

p ),

T6m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(vn+1))
)

)
(un+1
σ − un+1

p ),

T7m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(vn+1))
)

)
(vn+1
σ − vn+1

p ).

We have that ND(vD,τ ) → |∇ϕ| in L∞(Ω × (0, T )), which leads to

lim
m→∞

T5m =

∫ T

0

∫

Ω

H̄ · ∇ϕdxdt

lim
m→∞

T6m =

∫ T

0

∫

Ω

∇ϕ
f(|∇ϕ|) · ∇ūdxdt,

lim
m→∞

T7m =

∫ T

0

∫

Ω

∇ϕ
f(|∇ϕ|) · ∇ϕdxdt.

Hence, gathering the above results, we get (52). We have that Tm ≥ 0 thanks to Lemma 4.5. Hence (52)
provides ∫ T

0

∫

Ω

(H̄ − ∇ϕ
f(|∇ϕ|) )(∇ū−∇ϕ)dxdt ≥ 0,

and therefore we get by density

∀v ∈ L2(0, T ;H1
0 (Ω)),

∫ T

0

∫

Ω

(H̄ − ∇v
f(|∇v|) )(∇ū−∇v)dxdt ≥ 0. (54)

We can now apply Minty trick, taking in (54) v = ū− λψ, with λ > 0 and ψ ∈ C∞
c (Ω × (0, T )). We get,

dividing by λ, ∫ T

0

∫

Ω

(H̄ − ∇(ū− λψ)

f(|∇(ū− λψ)|) )∇ψdxdt ≥ 0.

We can let λ −→ 0 in the above inequality, using Lebesgue’s dominated convergence theorem. We then
get ∫ T

0

∫

Ω

(H̄ − ∇ū
f(|∇ū|) )∇ψdxdt ≥ 0.

Since this also holds for −ψ, we get

∫ T

0

∫

Ω

(H̄ − ∇ū
f(|∇ū|) )∇ψdxdt = 0.

The above equality can again be extended to all v ∈ L2(0, T ;H1
0 (Ω)), which achieves the proof of (53).

�

We have now the following lemma, which uses Leray-Lions trick.
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Lemma 4.7 Under the same hypotheses as Lemma 4.6, NDm,τm → |∇ū| in L2(Ω × (0, T )) as m tends
to ∞.

Proof. For a given m ∈ N, we drop the indices m in D, τ in order to lighten the notation. Let
ϕ ∈ C∞

c (Ω × (0, T )), we denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). Let us denote

T8m =

NT∑

n=0

τ
∑

p∈M

|p|
(

Np(u
n+1)

f(Np(un+1))
− Np(v

n+1)

f(Np(vn+1))

)(
Np(u

n+1) −Np(v
n+1)

)
.

We have

T8m =

∫ T

0

∫

Ω

(
ND(uD,τ )

f(ND(uD,τ ))
− ND(vD,τ )

f(ND(vD,τ ))

)
(ND(uD,τ ) −ND(vD,τ )) dxdt.

From the proof of lemma 4.5, we have
0 ≤ T8m ≤ Tm.

We write T8m = T9m − T10m − T11m, with

T9m =

∫ T

0

∫

Ω

(
ND(uD,τ )

f(ND(uD,τ ))
− |∇ū|
f(|∇ū|)

)
(ND(uD,τ ) − |∇ū|) dxdt,

T10m = −
∫ T

0

∫

Ω

( |∇ϕ|2
f(|∇ϕ|) − |∇ū|2

f(|∇ū|)

)
dxdt

+

∫ T

0

∫

Ω

ND(uD,τ )

f(ND(uD,τ ))
(|∇ϕ| − |∇ū|) dxdt

+

∫ T

0

∫

Ω

ND(uD,τ )

( |∇ϕ|
f(|∇ϕ|) − |∇ū|

f(|∇ū|)

)
dxdt,

T11m =

∫ T

0

∫

Ω

( |∇ϕ|2
f(|∇ϕ|) − ND(vD,τ )

2

f(ND(vD,τ ))

)
dxdt

−
∫ T

0

∫

Ω

ND(uD,τ )

f(ND(uD,τ ))
(|∇ϕ| −ND(vD,τ )) dxdt

−
∫ T

0

∫

Ω

ND(uD,τ )

( |∇ϕ|
f(|∇ϕ|) − ND(vD,τ )

f(ND(vD,τ ))

)
dxdt,

We then deduce, using Cauchy-Schwarz inequalities and estimates on the scheme,

0 ≤ T9m ≤ Tm + C‖|∇ϕ| − |∇ū|‖L2(Ω×(0,T )) + C‖|∇ϕ| −ND(vD,τ )‖L2(Ω×(0,T )).

Hence, passing to the limit m→ ∞, since ND(vD,τ ) → |∇ϕ| in L∞(Ω × (0, T )), we get

0 ≤ lim sup
m→∞

T9m ≤
∫ T

0

∫

Ω

(
∇ū

f(|∇ū|) − ∇ϕ
f(|∇ϕ|) )(∇ū−∇ϕ)dxdt+ C‖|∇ϕ| − |∇ū|‖L2(Ω×(0,T )).

Since this holds for any ϕ ∈ C∞
c (Ω × (0, T )), we can let ϕ→ ū in L2(0, T ;H1

0 (Ω)). Then the right hand
side of the above inequality tends to 0, and we get

lim
m→∞

∫ T

0

∫

Ω

(
NDm(uDm,τm)

f(NDm(uDm,τm))
− |∇ū|
f(|∇ū|)

)
(NDm(uDm,τm) − |∇ū|) dxdt = 0.

Simple conclusion of the proof in the case where
(

c
f(c) − d

f(d)

)
(c− d) ≥ α(c− d)2 (this holds if the

function x 7→ x/f(x) has its derivative greater or equal to α > 0; this is satisfied by the example provided
in (6)). We immediately get the conclusion of the lemma.
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More complex conclusion of the proof in the general case. Let us now apply lemma (6.1). We get
that NDm(uDm,τm) converges a.e. to |∇ū|. We then remark that, thanks to (47) and (53), we have

lim
m→∞

∫ T

0

∫

Ω

NDm(uDm,τm)2

f(NDm(uDm,τm))
dxdt =

∫ T

0

∫

Ω

|∇ū|2
f(|∇ū|)dxdt.

We now apply lemma 6.2, which shows that
NDm (uDm,τm )2

f(NDm (uDm,τm )) → |∇ū|2

f(|∇ū|) in L1(Ω × (0, T )). This L1-

convergence gives the equi-integrability of the family of functions
NDm (uDm,τm )2

f(NDm (uDm,τm )) , which, in turn, gives

that the family of functions NDm(uDm,τm)2 is equi-integrable. Finally, we obtain (using Vitali’s theorem)
the convergence of NDm(uDm,τm) to |∇ū| in L2(Ω), as m→ ∞. This completes the proof. �

We can now conclude the convergence of the scheme. We introduce the following strongly convergent
approximation for the gradient of the unknown:

ĜD,τ (x, t) =
1

|p|
∑

σ∈Ep

|σ|(un+1
σ − un+1

p )npσ,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N.

(55)

(recall that GD,τ (x, t) is only weakly convergent).

Theorem 4.1 Let Hypotheses (HC) be fulfilled. We assume that the sequence (Dm, τm)m∈N denotes an
extracted sub-sequence, the existence of which is provided by Lemma 4.4.
Then the function ū ∈ L∞(0, T ;H1

0 (Ω)), such that uDm,τm → ū in L∞(0, T ;L2(Ω)), is a weak solution

of (1)-(2)-(3) in the sense of Definition 1.1. Moreover, ĜDm,τm → ∇ū in L2(Ω× (0, T ))d (see (55)) and

NDm,τm → |∇ū|, ÑDm,τm → |∇ū| in L2(Ω × (0, T )).

Proof.

Using Lemma (4.6), we get that

∫ T

0

∫

Ω

∇ū
f(|∇ū|) · ∇vdxdt =

∫ T

0

∫

Ω

w̄vdxdt, ∀v ∈ L2(0, T ;H1
0 (Ω)), (56)

Thanks to Lemma 4.7, we get that w̄ = (r − ut)/g(|∇u|), and the proof that ū is a weak solution of
(1)-(2)-(3) in the sense of Definition 1.1 is complete.

Let us turn to the proof of the strong convergence of ĜDm,τm . Let us first remark that, thanks to (44),

the expression of ĜD,τ , applied to the interpolation of some regular function ϕ, is strongly consistent
with ∇ϕ.
We can then follow the reasoning of [20] in order to prove the strong convergence of ĜDm,τm to ∇ū.
Indeed, let ϕ ∈ C∞

c (Ω × (0, T )) be given (this function is devoted to approximate ū in L2(0, T ;H1
0 (Ω))).

We define, for m ∈ N, p ∈ Mm and σ ∈ Em, the values vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ), which are
used in the definition of

∇̂Dm,τmϕ(x, t) =
1

|p|
∑

σ∈Ep

|σ|(vn+1
σ − vn+1

p )npσ,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N.

(57)

Thanks to the Cauchy-Schwarz inequality, we have

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt ≤ 3 (T12m + T13m + T14m),
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with T12m =
∫ T
0

∫
Ω
|ĜDm,τm(x, t)−∇̂Dm,τmϕ(x, t)|2dxdt, T13m =

∫ T
0

∫
Ω
|∇̂Dm,τmϕ(x, t)−∇ϕ(x, t)|2dxdt,

and T14m =
∫ T
0

∫
Ω
|∇ϕ(x, t)−∇ū(x, t)|2dxdt. In a similar way as in Lemma 4.2, we have limm→∞ T13m =

0. Using the Cauchy-Schwarz inequality, we have

T12m ≤ d〈uDm,τm − vDm,τm , uDm,τm − vDm,τm〉, (58)

defining 〈·, ·〉 by

〈u, v〉 =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(vn+1
σ − vn+1

p ).

Developing equation (58), we obtain

T12m ≤ d (〈uDm,τm , uDm,τm〉 − 2〈uDm,τm , vDm,τm〉 + 〈vDm,τm , vDm,τm〉).

Since, from the definitions (26) and (46), we have

〈uDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

GDm,τm(x, t) · ∇Dm,τmϕ(x, t)dxdt,

using the convergence properties of GDm,τm and ∇Dm,τmϕ, we obtain

lim
m→∞

〈uDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

∇ū(x, t) · ∇ϕ(x, t)dxdt.

Since 〈vD,τ , vD,τ 〉 =
∫ T
0

∫
Ω
ND,τ (x, t)

2dxdt, Lemma 4.2 states that

lim
m→∞

〈vDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

|∇ϕ(x, t)|2dxdt.

Since 〈uD,τ , uD,τ 〉 =
∫ T
0

∫
Ω
ND,τ (x, t)

2dxdt, we get from Lemma 4.7 that

lim
m→∞

〈uDm,τm , uDm,τm〉 =

∫ T

0

∫

Ω

|∇ū(x, t)|2dxdt.

Gathering the above results, we get that

lim
m→∞

〈uDm,τm − vDm,τm , uDm,τm − vDm,τm〉 =

∫ T

0

∫

Ω

|∇ū−∇ϕ|2dxdt,

which yields

lim sup
m→∞

T12m ≤ d

∫ T

0

∫

Ω

|∇ū−∇ϕ|2dxdt.

From the above results, we obtain that

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt ≤ 3(d+ 1)

∫ T

0

∫

Ω

|∇ϕ(x, t) −∇ū(x, t)|2dxdt+ T15m,

with (noting that ϕ is fixed) limm→∞ T15m = 0. Let ε > 0; we may choose ϕ such that
∫ T
0

∫
Ω
|∇ϕ(x, t)−

∇ū(x, t)|2dxdt ≤ ε, and we may then choose m large enough so that T15m ≤ ε. This completes the proof
that

lim
m→∞

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt = 0. (59)

�

Remark 4.1 The above convergence theorem also holds for the fully implicit scheme, under almost the
same hypotheses (the hypothesis that f is non-decreasing is not necessary).
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5 Numerical experiments

In this section we present several examples to illustrate the numerical properties of the proposed finite
volume (FV) schemes. In particular, we investigate the comparison of these properties with those ob-
tained using the classical finite difference (FD) approach, cf. [33], Chapter 6. We focus on experimental
convergence orders in Section 5.1, and on examples of image processing in Section 5.2.

5.1 Comparison of experimental convergence orders

In the examples handled in this section, we consider the square domain Ω = [−1.25, 1.25] × [−1.25, 1.25]
and we approximate Problem (1)-(2)-(3), where the functions f and g are given by (6). The parameter
b is then chosen large enough, such that the second regularisation does not play any role in the finite
volume schemes (this is possible since the discrete gradient cannot exceed C/h where h is the space step
of the discretisation). Therefore the functions f and g are in fact given by (5). We study below the
sensitivity of the methods with respect to the first regularisation parameter a.
The number of finite volumes along each boundary side is denoted by n, which means that n2 is the total
number of finite volumes, and correspondingly the total number of grid points in the finite difference
scheme given in [33], used for the purpose of comparison. Then h = 2.5/n is the length of the side of
each square finite volume.
Since the solution of the finite volume schemes is obtained through the resolution of linear algebraic
system (once in semi-implicit and several times in fully-implicit case) at every discrete time step, we used
the Successive Over Relaxation (SOR) iterative solver. The numerical convergence of the SOR solver
as well as that of the nonlinear iterations is measured through the square of relative residual drops.
Typically, about 20 SOR iterations inside semi-implicit scheme in each time step, and additionally about
5 nonlinear iterations in every time step in case of fully implicit finite volume scheme, are needed for
obtaining the results presented in this section,
In the tables below we present the errors committed by the numerical schemes on various examples, the
experimental order of convergence (EOC) in several functional spaces and CPU times (in seconds) for
the methods. The considered errors are E2 = ‖uD,τ − ū‖L2(Ω×(0,T )), E∞ = ‖uD,τ − ū‖L∞(0,T ;L2(Ω)),

EG2 = ‖ĜD,τ −∇ū‖L2(Ω×(0,T ))2 and EG∞ = ‖ĜD,τ −∇ū‖L∞(0,T ;L2(Ω))2 .

Example 1. In this example, the exact solution is a paraboloid moving up in time, given by u(x, y, t) =
1
2 (x2 + y2) + t, which is the solution to (1)-(2)-(5) with a2 = 1/2, r(x, y, t) = − 1

2 (x2 + y2 + 1
2 )−

3
2 ,

u0(x, y) = 1
2 (x2 + y2) and (3) is replaced by the exact non-homogeneous Dirichlet boundary conditions

provided by the solution. We consider the time interval [0, T ] = [0, 0.3125].
For this simple quadratic polynomial example, the finite difference scheme happens to be exact. So only
the results for the semi-implicit and fully implicit finite volume schemes are summarised in Table 1.
We can observe that the fully implicit scheme is about three times more precise than the semi-implicit
one using the same time step size. On the other hand the semi-implicit scheme is about three times
faster.
We also tested the Crank-Nicolson α-schemes (39)-(40) for the semi-implicit scheme and (41)-(42) for the
fully implicit scheme.
With α = 0.6, the α scheme slightly improves the accuracy of the semi-implicit one and does not signif-
icantly modify that of the fully implicit scheme. Since the results are very similar to the previous ones
(all schemes have the same experimental order of convergence which is, for the coupling τ = h2, equal
to 2 for the solution error and equal to 1 for the gradient error) we do not include the tables reporting
them.
We also tested the α-schemes with α = 0.5 instead of 0.6 and τ = h. In such case we got a very poor
order of convergence close to 0.8 for the semi-implicit scheme and a divergent behaviour for the fully
implicit one, that is compatible with the expectations of the end of Section 3.

Example 2. In this example, the truncated paraboloid function shrinking in time, given by u(x, y, t) =
min{ 1

2 (x2 + y2 − 1) + t, 0} [27] is the exact viscosity solution to (1)-(2)-(3)-(4) with r = 0 and u0(x, y) =
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU
10 6.25e-02 4.84e-02 - 1.12e-01 - 4.21e-01 - 8.82e-01 - -
20 1.5625e-02 1.71e-02 1.504 4.03e-02 1.478 2.03e-01 1.055 4.04e-01 1.126 -
40 3.90625e-03 5.14e-03 1.731 1.18e-02 1.770 8.88e-02 1.192 1.67e-01 1.278 1.0e-01
80 9.76563e-04 1.41e-03 1.867 3.17e-03 1.899 3.81e-02 1.220 6.94e-02 1.265 1.6e-00
160 2.44141e-04 3.68e-04 1.936 8.19e-04 1.953 1.68e-02 1.180 3.03e-02 1.198 2.4e+01
320 6.10352e-05 9.45e-05 1.963 2.09e-04 1.967 7.73e-03 1.121 1.39e-02 1.128 4.1e+02

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU
10 6.25e-02 3.89e-02 - 7.25e-02 - 3.40e-01 - 6.62e-01 - -
20 1.5625e-02 1.01e-02 1.944 1.83e-02 1.984 1.51e-01 1.171 2.77e-01 1.255 7.0e-02
40 3.90625e-03 2.53e-03 1.996 4.55e-03 2.011 6.69e-02 1.176 1.20e-01 1.206 9.4e-01
80 9.76563e-04 6.31e-04 2.004 1.13e-03 2.007 3.08e-02 1.120 5.51e-02 1.126 1.0e+01
160 2.44141e-04 1.57e-04 2.004 2.82e-04 2.005 1.47e-02 1.071 2.62e-02 1.071 1.6e+02
320 6.10352e-05 3.93e-05 2.002 7.04e-05 2.002 7.14e-03 1.038 1.28e-02 1.038 1.9e+03

Table 1: Example 1, error reports, EOCs and CPU times for the semi-implicit FV scheme (top) and the
fully implicit FV scheme (bottom).

min{ 1
2 (x2 +y2−1), 0} (which is the non-regularised mean curvature flow level set equation), again during

the time interval [0, T ] = [0, 0.3125]. The initial condition and exact solution at time T = 0.3125 are
plotted in Figure 1. Numerical results, for n = 160, T = 0.3125, obtained by the finite difference and
finite volume methods are plotted in Figure 2. Since the gradient of the solution is discontinuous along
a shrinking circle, a second order accuracy cannot be expected in this case. For the FV schemes, we set
τ = h2 and for the finite difference scheme, due to stability reasons, we have to set τ = h2/4.

Figure 1: Example 2, the initial condition (left) and exact solution at time T=0.3125

Figure 2: Example 2, numerical solutions by semi-implicit FV (left) and FD (right) schemes, n = 160,
T = 0.3125.

For the numerical implementation, the Evans-Spruck type regularisation (5) has been used (this is needed,
since the solution contains flat regions). The results obtained, using the fixed regularisation parameter
a2 = 10−6, with the semi-implicit and fully implicit finite volume schemes and with the classical finite
difference method for the mean curvature flow level set equation are summarised in Table 2.
The results obtained, using the coupling a = h2 with the space step, with the semi-implicit and fully
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 6.25e-02 5.11e-02 - 1.16e-01 - 2.65e-01 - 5.39e-01 - -

20 1.5625e-02 2.97e-02 0.785 7.05e-02 0.713 2.17e-01 0.287 4.52e-01 0.254 1.0e-02

40 3.90625e-03 1.60e-02 0.894 3.84e-02 0.879 1.73e-01 0.328 3.47e-01 0.384 1.4e-01

80 9.76563e-04 8.39e-03 0.928 2.00e-02 0.938 1.38e-01 0.328 2.71e-01 0.355 2.3e+00

160 2.44141e-04 4.35e-03 0.949 1.04e-02 0.949 1.10e-01 0.331 2.14e-01 0.342 3.2e+01

320 6.10352e-05 2.27e-03 0.935 5.44e-03 0.932 8.72e-02 0.332 1.69e-01 0.337 5.2e+02

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 6.25e-02 1.61e-02 - 3.36e-02 - 1.69e-01 - 3.53e-01 - 0.0e-00

20 1.5625e-02 8.31e-03 0.952 1.95e-02 0.784 1.53e-01 0.140 3.56e-01 -0.01 1.0e-01

40 3.90625e-03 4.35e-03 0.934 9.93e-03 0.973 1.30e-01 0.239 2.77e-01 0.362 1.6e+00

80 9.76563e-04 2.35e-03 0.890 5.28e-03 0.912 1.10e-01 0.244 2.29e-01 0.277 1.9e+01

160 2.44141e-04 1.30e-03 0.850 3.01e-03 0.809 9.06e-02 0.273 1.83e-01 0.321 3.0e+02

320 6.10352e-05 7.98e-04 0.707 1.94e-03 0.637 7.51e-02 0.271 1.48e-01 0.306 3.2e+03

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 1.5625e-2 2.11e-02 - 4.80e-02 - 2.23e-01 - 4.78e-01 - -

20 3.90625e-03 1.22e-02 0.793 2.84e-02 0.760 1.83e-01 0.287 3.77e-01 0.344 4.8e-270

40 9.76563e-04 7.15e-03 0.768 1.60e-02 0.830 1.50e-01 0.284 2.98e-01 0.338 3.0e-01

80 2.44141e-04 4.30e-03 0.733 9.42e-03 0.762 1.25e-01 0.266 2.47e-01 0.272 2.0e-00

160 6.10352e-05 2.60e-03 0.727 5.69e-03 0.727 1.05e-01 0.258 2.05e-01 0.272 1.6e+01

320 1.52584e-05 1.59e-03 0.709 3.52e-03 0.695 8.75e-02 0.257 1.71e-01 0.260 2.4e+02

Table 2: Example 2, errors, EOC and CPU times with a2 = 10−6, for semi-implicit FV scheme (top),
fully implicit FV scheme (middle), explicit FD scheme (bottom).

implicit finite volume schemes and with the classical finite difference method for the mean curvature flow
level set equation are summarised in Table 3. For the finite volume schemes such coupling seems optimal
with respect to obtained precision and experimental order of convergence, in the finite difference scheme
it does not play and important role.
These results seem to indicate that the numerical schemes experimentally converge also in this singular
example. For the fine grids the precision of the finite difference and semi-implicit finite volume scheme is
comparable, which is also observable in Figure 2, where the results show similar smoothing of the gradient
jump. Note that the fully implicit FV scheme is about three times more precise than the other ones.

Example 3. In this example, the exact viscosity solution of (1)-(2)-(3)-(4) is, at any time t ∈ [0, 1
2 ],

equal to the characteristic function of Rt = {(x, y) ∈ R
2, x2 + y2 + 2t ≤ 1} (the inside of the circle with

centre (0, 0) and radius r(t) =
√

1 − 2t). We consider the numerical approximation of this solution during
the time interval [0, T ] = [0, 0.25].
The circle with radius r(t) is plotted by red dashed line in Figure 3 in order to compare the diffusive
behaviours of the fully implicit FV scheme (setting τ = h2) and classical finite difference scheme (setting
τ = h2/4) at times t = 0, t = 0.25, using n = 50 and n = 250. This figure shows that that FV scheme
is significantly less diffusive on both coarse and fine grids. Moreover, for the finite difference method the
minimum-maximum principle is not fulfilled in this discontinuous case: there are always about 2 percents
overshoot and undershoot in the solution which remain stable, even with smaller time steps. In Table 4
we report the errors E1 = ‖uD,τ − ū‖L1(Ω×(0,T )), E∞ = ‖uD,τ − ū‖L∞(0,T ;L1(Ω)) for different grid sizes,
selecting for each method the optimal regularisation a in (5). Table 4 shows that the finite volume scheme
is more precise, especially for the L∞(0, T ;L1(Ω)) norm. We do not report in details the results of the
semi-implicit finite volume scheme, which behaves in a similar way to the fully implicit scheme, provided
that τ = h2/16. This restriction on the time step makes the CPU time of the semi-implicit FV scheme
similar to that of the fully implicit scheme.
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 6.25e-02 5.72e-02 - 1.29e-01 - 2.60e-01 - 5.25e-01 - -

20 1.5625e-02 3.16e-02 0.856 7.51e-02 0.778 2.14e-01 0.280 4.44e-01 0.244 1.0e-03

40 3.90625e-03 1.63e-02 0.951 3.93e-02 0.935 1.72e-01 0.315 3.45e-01 0.365 1.4e-01

80 9.76563e-04 8.39e-03 0.963 2.00e-02 0.973 1.38e-01 0.319 2.71e-01 0.346 2.3e-00

160 2.44141e-04 4.25e-03 0.979 1.01e-02 0.982 1.10e-01 0.327 2.15e-01 0.337 3.5e+01

320 6.10352e-05 2.15e-03 0.984 5.10e-03 0.990 8.79e-02 0.325 1.71e-01 0.330 5.2e+02

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 6.25e-02 3.45e-02 - 8.10e-02 - 1.96e-01 - 3.90e-01 - -

20 1.5625e-2 1.20e-02 1.528 2.95e-02 1.457 1.60e-01 0.289 3.80e-01 0.038 1.0e-01

40 3.90625e-03 4.96e-03 1.270 1.17e-02 1.340 1.32e-01 0.281 2.84e-01 0.421 1.6e-00

80 9.76563e-04 2.34e-03 1.082 5.26e-03 1.146 1.10e-01 0.269 2.29e-01 0.312 2.0e+01

160 2.44141e-04 1.17e-03 1.007 2.61e-03 1.012 8.94e-02 0.293 1.80e-01 0.345 3.1e+02

320 6.10352e-05 5.87e-04 0.990 1.32e-03 0.982 7.22e-02 0.308 1.42e-01 0.341 3.6e+03

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC CPU

10 1.5625e-2 3.14e-02 - 7.79e-02 - 2.33e-01 - 4.98e-01 - -

20 3.90625e-03 1.37e-02 1.196 3.35e-02 1.220 1.83e-01 0.351 3.81e-01 0.384 1.0e-04

40 9.76563e-04 7.31e-03 0.910 1.65e-02 1.020 1.50e-01 0.283 2.98e-01 0.355 1.0e-02

80 2.44141e-04 4.30e-03 0.766 9.41e-03 0.809 1.25e-01 0.263 2.47e-01 0.272 2.0e+00

160 6.10352e-05 2.56e-03 0.746 5.58e-03 0.755 1.05e-02 0.257 2.04e-01 0.273 1.6e+01

320 1.52588e-05 1.53e-03 0.743 3.32e-03 0.748 8.79e-02 0.253 1.71e-01 0.255 2.4e+02

Table 3: Example 2, errors, EOC and CPU times with a = h2 for semi-implicit FV scheme (top), fully
implicit FV scheme (middle), explicit FD scheme (bottom).

n τ E1 EOC E∞ EOC CPU

50 6.25e-04 1.000e-01 - 4.341e-01 - 5.000e-02

100 1.5625e-4 6.596e-02 0.600 3.002e-01 0.532 8.300e-01

200 3.90625e-05 4.496e-02 0.553 2.090e-01 0.522 1.317e+01

n τ E1 EOC E∞ EOC CPU

50 2.50e-03 4.750e-02 - 2.081e-01 - 1.773e+01

100 6.25e-04 2.859e-02 0.732 1.315e-01 0.662 2.632e+02

200 1.5625e-04 1.757e-02 0.703 8.278e-02 0.668 5.353e+03

Table 4: Example 3, errors, EOC and CPU times for the explicit FD scheme with a2 = 10−14 and
τ = h2/4 (top), and for the fully implicit FV scheme with a = h2 and τ = h2 (bottom).

5.2 Image processing examples

We now turn to the assessment of the behaviour of the schemes in the framework of image processing
applications. More particularly, one of the best applications of filtering by mean curvature flow models
happens to be the filtering of salt-and-pepper noise. Indeed, the small level sets of image intensity
disappear much faster than larger objects (e.g. unit circle given by its characteristic function). In fact
due to curvature blow-up phenomenon in the mean curvature flow models, there is an infinite speed of
shrinking before the extinction of an object. The following examples show a comparison of finite volume
and finite difference schemes used for this denoising task.

Example 4. In this example, we consider the same data as Example 3, adding 20 percent salt-and-
pepper noise to the initial data and setting n = 200. Figure 4 shows the filtering effect of the fully
implicit finite volume scheme after one and three time steps with τ = h2. In accordance with analytical
mean curvature flow theory, the small separated spots are disappearing fast and three steps are sufficient
to get filtering result with no noise and no unit circle deterioration. Due to stability reasons, the condition
τ = h2/4 must hold for the finite difference scheme, and a greater number of time steps (corresponding
to approximately three times longer time) is needed for smoothing out the noise. This fact together with
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Figure 3: Example 3, initial condition in the form of characteristic function of the unit circle (top left),
fully implicit FV with n = 50 (top middle), fully implicit FV with n = 250 (top right), explicit FD with
n = 50 (bottom middle), explicit FD with n = 250 (bottom right) at time 0.25.

more diffusive scheme behaviour causes a blurring of the edge.

Example 5. In this example we add 20 percent salt-and-pepper noise to the characteristic function of a
quatrefoil, and we set again n = 200. Figure 5 shows almost perfect quatrefoil reconstruction using the
fully implicit finite volume scheme, whereas a much more diffused reconstruction is obtained using the
finite difference scheme, especially in the central part.

Example 6. In the last example we add 50 percent salt-and-pepper noise to the characteristic function
of the quatrefoil. Figure 6 shows again very good quatrefoil reconstruction using the fully implicit finite
volume scheme. The slightly diffused central part in the filtering result corresponds to ”blurred” part
visible also in noisy image due to high level of noise. The finite difference scheme cannot get rid of the
noise without adding too much diffusion.

6 Conclusions

The mathematical properties proved in this paper show that the fully implicit and the semi-implicit
schemes have interesting mathematical and numerical properties. It remains the difficult task of extending
these convergence properties to the non-regularised mean curvature motion model.
From the point of view of numerical applications, the numerical examples presented here seem to show
that the precision of the finite difference scheme is between that of the semi-implicit and fully implicit
finite volume schemes. The finite difference scheme is the fastest due to its simplicity, although it requires
smaller time steps in these examples (on some examples, the CPU ratio can be about only two). On
the other hand, there is no guarantee of stability for the finite difference scheme which is, in opposite,
the advantage of both semi-implicit and fully implicit finite volume schemes (this is checked on some
discontinuous problems).
Finally, considering image processing purposes, the examples proposed here are showing that the finite
volume schemes are substantially less diffusive during salt-and-pepper noise filtering than the finite dif-
ference method proposed in [33]. Thus finite volume schemes significantly improve the capability to filter
noisy images without blurring edges, using nonlinear diffusion methods based on mean curvature flow.
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Figure 4: Example 4, initial noisy image with 20 percent salt-and-pepper noise (top extreme left), filtering
result by the fully implicit FV scheme with τ = h2 after one (top middle right) and three (top extreme
right) time steps, filtering result by the explicit FD scheme after 2 (bottom extreme left), 4 (bottom
middle left), 12 (bottom middle right) and 40 (bottom extreme right) time steps, τ = h2/4.
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Appendix

Lemma 6.1 Let b be a continuous strictly increasing function from R to R. Let (βn)n∈N be a sequence
in R and β ∈ R such that (b(βn) − b(β))(βn − β) −→ 0 as n −→ ∞. Then, βn −→ β as n −→ ∞.

Proof. We first remark that the mapping s 7→ (b(γ+sδ)−b(γ))δ is increasing, for all δ, γ ∈ R. This will
be used to prove that the sequence (βn)n∈N is bounded. Indeed, if the sequence (βn)n∈N is unbounded, we
can assume, up to a subsequence, that |βn| −→ ∞ as n −→ ∞ and then, once again up to a subsequence,
that |βn − β| ≥ 1 for all n ∈ N and βn−β

|βn−β|
−→ γ as n −→ ∞ (for some γ ∈ R with |γ| = 1). Therefore,

one has:

(b(βn) − b(β))(βn − β) ≥
(
b(β +

βn − β

|βn − β| ) − b(β)

)
βn − β

|βn − β| .

Then, passing to the limit as n −→ ∞,

0 = lim
n−→∞

(b(βn) − b(β))(βn − β) ≥ (b(β + γ) − b(β)) · γ > 0.

which is impossible.
Since the sequence (βn)n∈N is bounded, we can assume, up to a subsequence, that βn −→ γ, as n −→ ∞,
for some γ ∈ R. Then, since (b(βn) − b(β))(βn − β) −→ 0, one has (b(γ) − b(β))(γ − β) = 0, which gives
γ = β and the convergence of the whole sequence (βn)n∈N to β follows.
�

Lemma 6.2 Let (Fn)n∈N be a sequence non-negative functions in L1(Ω). Let F ∈ L1(Ω) be such that
Fn −→ F a.e. in Ω and

∫
Ω
Fn(x)dx −→

∫
Ω
F (x)dx, as n −→ ∞. Then, Fn −→ F in L1(Ω) as n −→ ∞.
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Figure 5: Example 5, initial noisy image with 20 percent salt-and-pepper noise (top extreme left), filtering
result by the fully implicit FV scheme with τ = h2 after one (top middle right) and three (top extreme
right) time steps, filtering result by the explicit FD scheme after 2 (bottom extreme left), 4 (bottom
middle left), 12 (bottom middle right) and 40 (bottom extreme right) time steps, τ = h2/4.

Proof. The proof of this lemma is very classical. Applying the Dominated Convergence Theorem
to the sequence (F − Fn)

+ leads to
∫
Ω
(F (x) − Fn(x))

+dx −→ 0 as n −→ ∞. Then, since |F − Fn| =
2(F − Fn)

+ − (F − Fn), we conclude that Fn −→ F in L1(Ω) as n −→ ∞.
�

Theorem 6.1 (A variant of Ascoli’s theorem) Let Ω be a polyhedral open bounded connected subset
of R

d, with d ∈ N \ {0} and T > 0. Let u0 ∈ H1
0 (Ω) be given. Let (um,Dm, τm)m∈N be a sequence such

that, for all m ∈ N, (Dm, τm) is a space-time discretisation of Ω × (0, T ) in the sense of Definition 2.2,
um ∈ HDm,τm and hDm and τm tend to 0 as m −→ ∞. For all m ∈ N, setting D = Dm and τ = τm, we
define the functions uD,τ (x, t), for all t ∈ [0, T ] and a.e. x ∈ Ω by

uD,τ (x, 0) = u0
p =

1

|p|

∫

p

u0(x)dx,

uD,τ (x, t) = un+1
p , for a.e. x ∈ p, ∀t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT ,

(60)

and the function zD,τ by

zD,τ (x, t) =
un+1
p − unp

τ
, for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N, (61)

with u0
p defined by (60). We assume that there exists C > 0 (hence independent of m) such that

‖un+1
m ‖1,Dm ≤ C for all n = 0, . . . , NTm and ‖zDm,τm‖2

L2(Ω×(0,T )) ≤ C .

Then there exists ū ∈ C0(0, T ;L2(Ω)) with ū(·, 0) = u0 and a subsequence of (um,Dm, τm)m∈N, again
denoted (um,Dm, τm)m∈N, such that

lim
m→∞

sup
t∈[0,T ]

‖uDm,τm(t) − u(t)‖L2(Ω) = 0. (62)

Proof.
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Figure 6: Example 6, initial noisy image with 50 percent salt-and-pepper noise (top extreme left), filtering
result by the fully implicit FV scheme after 1 (top middle left), 2 (top middle right) and 6 (top extreme
right) time steps, τ = h2, filtering result by the explicit FD scheme after 2 (bottom extreme left), 10
(bottom middle left), 100 (bottom middle right) and 500 (bottom extreme right) time steps, τ = h2/4.

We first remark that, for m ∈ N, denoting D = Dm and τ = τm and for all t1 ∈](n1 − 1)τ, n1τ ] and
t2 ∈](n2 − 1)τ, n2τ ], for n1, n2 = 0, . . . , NT with n2 > n1 and a.e. x ∈ p, we have

(uD,τ (x, t1) − uD,τ (x, t2))
2 ≤

(
n2−1∑

n=n1

|un+1
p − unp |

)2

≤ (n2 − n1)τ

n2−1∑

n=n1

(un+1
p − unp )

2

τ
.

Hence we get that

∫

Ω

(uDm,τm(x, t1) − uDm,τm(x, t2))
2dx ≤ C (|t2 − t1| + τm), ∀t1, t2 ∈ [0, T ], ∀m ∈ N. (63)

The proof can now follow that of Ascoli’s theorem. Let (tk)k∈N be a dense sequence in [0, T ]. For t = t0,
if tO > 0, we can use the result given in [17] since ‖un+1

m ‖1,Dm ≤ C for all n = 0, . . . , NT :

‖uDm,τm(· + ξ, t0) − uDm,τm(·, t0)‖2
L2(Ω×(0,T )) ≤ C|ξ|(|ξ| + 4hDm), ∀ξ ∈ R

d.

Hence we can extract, thanks to Kolmogorov’s theorem, a subsequence of (um,Dm, τm)m∈N, denoted by
(uψ0(m),Dψ0(m), τψ0(m))m∈N, where ψ0 is an increasing injection from N to N, such that uDψ0(m),τψ0(m)

(·, t0)
converges in L2(Ω) to some function. Note also that, thanks to (60), uDm,τm(·, 0) converges in L2(Ω)
to u0. Similarly, for t = t1, one extracts, again thanks to Kolmogorov’s theorem, a subsequence
of (uψ0(m),Dψ0(m), τψ0(m))m∈N, denoted (uψ1(m),Dψ1(m), τψ1(m))m∈N such that uDψ1(m),τψ1(m)

(·, t1) con-

verges in L2(Ω) to some function. We reproduce this mechanism by induction for all k ∈ N, allowing
to consider the diagonal sequence (uψm(m),Dψm(m))m∈N, which is then such that uDψm(m),τψm(m)

(·, tk)
converges in L2(Ω) as m→ ∞ for all k ∈ N (recall that the sequence (uψm(m),Dψm(m), τψm(m))m∈N is ex-
tracted from (uψk(m),Dψk(m), τψk(m))m∈N,m≥k). We now denote, for simplicity, (um,Dm, τm)m∈N instead
of (uψm(m),Dψm(m), τψm(m))m∈N.
Then the property (63) allows to show that, for all t ∈ R+, (uDm,τm(t))m∈N is a Cauchy sequence
in L2(Ω). Indeed, for ε ∈]0, 1[, one first chooses k ∈ N such that |t − tk| ≤ ε2, then n0 ∈ N such
that τm ≤ ε2 for all n ≥ n0, and ‖uDn,τn(tk) − uDp,τp(tk)‖L2(Ω) ≤ ε for all n, p ≥ n0. The inequality
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‖uDn,τn(t)−uDp,τp(t)‖L2(Ω) ≤ ‖uDn,τn(t)−uDn,τn(tk)‖L2(Ω)+‖uDn,τn(tk)−uDp,τp(tk)‖L2(Ω)+‖uDp,τp(tk)−
uDp,τp(t)‖L2(Ω) ≤ (2

√
2C + 1)ε for all n, p ≥ n0 follows.

One then defines, for all t ∈ R+, ū(t) as the limit of (uDm,τm(t))m∈N. Passing to the limit m → ∞ in
(63) provides

‖ū(t2) − ū(t1)‖2
L2(Ω) ≤ C |t2 − t1|, ∀t1, t2 ∈ [0, T ], ∀T > 0, (64)

which shows that u ∈ C0(R+;L2(Ω)). Then (62) is again an easy consequence of (63). Indeed, let
T ≥ 0 and ε > 0 be given. Since, for all k = 0, . . . , ⌊T/ε2⌋ (where ⌊x⌋ denotes the greater integer
lower of equal to x), the sequence (uDm,τm(kε2))m∈N converges to u(kε2), let n0 ∈ N be such that
‖uDm,τm(kε2) − u(kε2)‖L2(Ω) ≤ ε for all k = 0, . . . , ⌊T/ε2⌋ and all m ≥ n0, and such that τm ≤ ε2

for all m ≥ n0. Then, for all t ∈ [0, T ] and m ≥ n0, letting k = ⌊t/ε2⌋, we get using (64) and
(63), ‖ū(t) − uDm,τm(t)‖L2(Ω) ≤ ‖ū(t) − ū(kε2)‖L2(Ω) + ‖ū(kε2) − uDm,τm(kε2)‖L2(Ω) + ‖uDm,τm(kε2) −
uDm,τm(t)‖L2(Ω) ≤ (

√
C + 1 +

√
2C)ε, which concludes the proof of (62). �
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