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Abstract. The objective of this article is to propose a novel numerical scheme

for solving the partial differential equation arising in the Heston stochastic
volatility model. We discretize the governing advection-diffusion-reaction equa-

tion using the finite volume technique. The diffusion tensor is treated by means
of the diamond–cell approximation. A theoretical result concerning the exis-

tence and uniqueness of the solution to the corresponding system of linear

equations is proved. Numerical experiments regarding accuracy and order of
convergence are shown.

1. Introduction. The classical Black-Scholes model (cf. [2, 16]) assumes the un-
derlying asset S > 0 to follow the geometric Brownian motion dS = µSdt+ σSdw
while the volatility σ > 0 is constant. However, empirical evidence suggests (cf.
[3]) that it is necessary to relax the volatility restriction and allow it to follow a
stochastic process as well. One of the stochastic volatility models, introduced by
Heston (cf. [12]) uses a mean reverting square root process, originally proposed
by Cox, Ingersoll and Ross (cf. [5]), to capture the dynamics of the underlying’s
variance v > 0:

dS = µSdt+
√

vSdw, (1)

dv = κ(θ − v)dt+ σ
√

vdz (2)

Processes w and z are Wiener stochastic processes mutually correlated by E[dwdz] =
ρdt. The list of other parameters reads as follows: ρ ∈ [−1, 1] is the correlation
parameter, κ > 0 is the reversion speed, σ > 0 is the volatility of variance, θ > 0
denotes the long-term variance and µ represents the drift of the process for the
stock.

Analogously as in the derivation of the original Black-Scholes equation we can
justify the final form of the Heston pricing equation by the nonarbitrage argument.
The main difference in its derivation is that one has to hedge away not only the
risk associated with the change in the underlying (∆) but also the risk stemming
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from the change of its variance (Υ). Using the concept of a well-hedged synthetic
portfolio results into the following PDE for the unknown option price V (S, v , t), cf.
[14] :

∂V

∂t
+ rS

∂V

∂S
+

1

2
vS2 ∂

2V

∂S2
+ ρσvS

∂2V

∂S∂v

+
1

2
σ2v

∂2V

∂v2
+ [κ(θ − v)− λv ]

∂V

∂v
− rV = 0

(3)

with λ representing the so-called market price of volatility risk and r > 0 the risk-
free interest rate.

In order to complete the formulation of the problem let us define our domain of
interest by Ω̈ = (0,∞) × (0,∞) and impose terminal and boundary conditions for
a particular financial derivative. In this article we shall focus on the European call
option which is a derivative giving the holder the right to purchase the underlying
asset S for a predetermined strike price E at the expiration time T . The terminal
condition for this derivative has the form

V (S, v , T ) = max(0, S − E). (4)

The boundary conditions, due to Heston (cf. [12]), look as follows:

V (0, v , t) = 0, (5)

∂V

∂S
(S →∞, v , t) = 1, (6)

∂V

∂t
(S, 0, t) + rS

∂V

∂S
(S, 0, t) + κθ

∂V

∂v
(S, 0, t)− rV (S, 0, t) = 0, (7)

V (S, v →∞, t) = S. (8)

The boundary condition (5) for S = 0 follows from the stochastic differential
equation (1). Particularly, if the price of the stock is zero, then the change of the
stock price dS through time interval dt is zero. The second boundary condition (6)
for S → ∞ stems from the fact that if the stock price is very high in comparison
with the strike price, one can almost neglect the effect of the strike price. On the
boundary where v = 0 Heston imposes the hyperbolic equation (7) which can be
derived directly from the governing equation (3) by inserting zero variance v . The
last boundary condition (8) comes form the fact that option price can never exceed
the price of the underlying.

Interestingly enough, note that although Heston imposes a Dirichlet boundary
condition for S = 0 and a first-order hyperbolic equation on the boundary v = 0,
we must take the so-called Fichera condition (cf. [8]) into account in order to judge
whether it is necessary or not to specify these boundary conditions. The following
Remark summarizes the main ideas, however the details may be found in Kútik’s
dissertation thesis, cf. [14].

Remark 1 (Fichera Conditions). For the sake of further analysis let us write the
equation (3) with the diffusion terms in the divergent form and accordingly adjusted
velocity vector. We also revert the time by the transformation τ = T − t and obtain

∂V

∂τ
+ ~α · ∇V −∇ · B̃∇V + rV = 0 (9)

where

~α = −
(

rS − vS − 1
2ρσS

κ(θ − v)− λv − 1
2σ

2 − 1
2ρσv

)
(10)
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and

B̃ =

(
1
2 vS2 1

2ρσvS
1
2ρσvS 1

2σ
2v

)
. (11)

Denoting the unit outer normal vector relative to the domain boundary ∂Ω̈ by
~n, the Fichera conditions apply everywhere the vector B̃T~n vanishes. Then, partic-
ularly for the parabolic Heston equation (3) the Fichera conditions read as follows:
If for S = 0

lim
S→0

~α ·
(
−1
0

){ ≥ 0 then no b.c. at S = 0 is needed,
< 0 then b.c. at S = 0 is needed,

(12)

in order to guarantee solution uniqueness. And if for v = 0

lim
v→0

~α ·
(

0
−1

){ ≥ 0 then no b.c. at v = 0 is needed,
< 0 then b.c. at v = 0 is needed,

(13)

in order to guarantee solution uniqueness. Since (12) is always zero, no boundary
condition is needed at S = 0. In the case of (13) we must not prescribe any boundary
condition at v = 0 if κθ − 1

2σ
2 ≥ 0.

The purpose of this paper is to present a general finite volume discretization
defined on a rectangular grid for the numerical solution of the described two-factor
PDE vauation model. A finite volume discretization technique for the advection-
diffusion-reaction PDEs of the type (3) has already been proposed by Zvan, Forsyth
and Vetzal in [17]. In their approach they were however using a nonconservative
discretization for this type of equation. Observing that the governing PDE (3)
can be rewritten into a divergent form, the resulting conservative discretization by
means of finite volume method becomes more natural in this context. Another
justification for the finite volume approach is that the underlying PDE degenerates
to a first-order hyperbolic equation on the boundary where v = 0. The finite volume
discretization enables us to handle such cases, when there is no diffusion normal to
the boundary, without any difficulties. And finally, if we intended to find a solution
for some exotic options, which often requires a nonstandard computational domain,
the finite volume method would support the use of unstructured triangular meshes,
cf. [9].

One of the immediate questions, that arise after applying divergence theorem
onto the the diffusion term, is associated with gradient approximation. In order to
deal with this problem we use the so-called diamond-cell approximation which has
already been applied in [6]. Moreover, error estimates and convergence rate have
already been studied in the article of Coudiere, Vila and Villedieu, cf. [4].

Note that there are also other methods of solving the Heston PDE. Among others,
the finite difference ADI schemes (cf. [13]) and Monte Carlo simulation methods
(cf. [1]). In this paper, however we restrict ourselves to the study of the finite
volume method.

An outline of the paper is as follows. Main focus of the second section is on the
derivation of the numerical scheme. It consists of the discretization of the domain,
implementation of the boundary conditions and the equation discretization. At the
end of this section, we include a theoretical study of the existence and uniqueness
of a solution to the corresponding system of linear equations. Then, we included a
short section dealing with a numerical experiment showing that the scheme exhibits
second order convergence in space. Finally, we conclude the paper and express our
acknowledgments.
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2. Numerical Scheme. Let us now deal with the application of the finite vol-
ume discretization method to the linear advection-diffusion-reaction equation (3)
accompanied with the terminal condition (4) as well as a suitable discretized form
of boundary conditions (5)-(8). In order to apply the finite volume discretization
procedure, thus the Green’s theorem, it is convenient to transform the governing
equation (3) into a form with the diffusion term in divergent form, cf. [14] . In or-
der to avoid variable coefficients in our scheme we introduce moreover a logarithmic
transformation for the spatial variable x = ln

(
S
E

)
. The other variables are y = v

and reverted time τ = T − t. We can rewrite equation (3) in a matrix form for the
unknown function u(x, y, τ) = V (S, v , t)/E as follows:

∂u

∂τ
+ ~A · ∇u = ∇ · (B∇u)− ru, (14)

where

B =
1

2
y

(
1 ρσ
ρσ σ2

)
(15)

and

~A = −
(

r − 1
2y −

1
2ρσ

κ(θ − y)− λy − 1
2σ

2

)
. (16)

Note that with the aforementioned transformation of variables the space-time
domain Ω̈ changed to Ω̇ = (−∞,∞) × (0,∞). Before constructing the numeri-
cal scheme for the PDE (14) this infinite domain has to be shrunk appropriately
to Ω = (Xl, Xr) × (0, Y ) where Xl, Xr denote left and right bounds for the x-
domain and Y denotes the upper bound of the y-domain. Furthermore, let p

Figure 1. A detail of the finite volume mesh.

be a finite volume and σpq be an
edge between p and q, q ∈ N(p),
where N(p) is set of all neighbour-
ing cells, i.e. finite volumes which
have a common one-dimensional
face with p. Let us define an admis-
sible mesh Th of the domain Ω ⊂
R2, in the sense of [7], i.e. there
exists a representative point xp in
the interior of every finite volume p
such that the joining line between
xp and xq, q ∈ N(p), is orthogo-
nal to σpq. The discretization of Ω
to Th satisfies Ω̄ =

⋃
p∈Th p. Since

we consider Ω to be a bounded
rectangular domain, the admissi-
ble mesh Th will consist of simple
uniform rectangular finite volumes.
Let Nx, Ny ∈ N and hx, hy ∈ R
such that hx = (Xr − Xl)/Nx and
hy = Y/Ny where hx and hy denote the uniform lengths of each rectangular finite
volume in the x- and y-direction, respectively. Thus, in this case the measure of
any finite volume p equals m(p) = hx hy. Now, let us define

x 1
2

= Xl, xi+ 1
2

= xi− 1
2

+ hx, for i = 1, . . . , Nx, (17)

y 1
2

= 0, yj+ 1
2

= yj− 1
2

+ hy, for j = 1, . . . , Ny. (18)
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Obviously, the upper bounds of each interval are defined as xNx+ 1
2

= Xr and

yNy+ 1
2

= Y . Then, the whole domain Ω is a union of Nx × Ny disjunct finite

volumes

pij = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
), for i = 1, . . . , Nx and j = 1, . . . , Ny. (19)

Let us define the center of each finite volume pij by xp = (xi, yj) as follows:

xi = xi− 1
2

+
hx
2
, for i = 1, . . . , Nx,

yj = yj− 1
2

+
hy
2
, for j = 1, . . . , Ny

If we enlarge the set N(p) by all finite volumes which have a common ver-
tex with the cell p we obtain the set N ′(p). In the 2-dimensional case, N ′(p) =
{e, ne, n, nw,w, sw, s, se} denotes east, north-east, north, north-west, west, south-
west, south and south-east neighbouring cell of the finite volume p. Let the inter-
section point of σpq and line connecting xp and xq, q ∈ N(p) be denoted by xpq.
We denote this orthonormal direction, i.e. the unit outer normal vector to σpq with
respect to p, by ~npq.

Concerning the time discretization, we use uniform discrete time step k in order
to discretize the time interval [0, T ]. By introduction of the time stepping k = T/Nts
we can define the set of all discrete time layers τn = nk , n = 0, 1, . . . , Nts where
Nts denotes the number of all discrete time steps. Finally the constant numerical
solution within a finite volume p at time step n is denoted by unp ≈ u (xp, τ

n).

2.1. Boundary Conditions. In order to obtain theoretical results and to perform
numerical experiments we have to transform the terminal and boundary conditions
to be consistent with the domain boundary ∂Ω. Using the same transformations

x = ln( SE ), y = v, τ = T − t and u(x, τ) = V (S,t)
E as before we easily deduce that the

terminal condition (4) for a European call option transforms to the following initial
condition:

u(x, y, 0) = max(ex − 1, 0). (20)

The first boundary condition (5) after transformation would be u(−∞, y, τ) = 0.
Note that according to Remark 1 and (12), prescribing any boundary condition
at S = 0 respectively at x → −∞ would be redundant. However, recall that we
have approximated the infinite computational domain Ω̇ by a finite one, namely by
Ω = (Xl, Xr)× (0, Y ). The Fichera condition derived in Remark 1 does not apply
at x = Xl and thus some artificial boundary condition must be prescribed. In our
case it is natural to impose the original homogenous Dirichlet boundary condition:

u(Xl, y, τ) = 0. (21)

The case of the boundary condition at S → ∞ respectively x → ∞ must be
treated similarly. Since we shrunk the domain Ω̇ to a finite domain Ω we should
not neglect the substantial effect of the discounted strike price Ee−rτ . Hence the
boundary term after transformation looks as follows:

u(Xr, y, τ) = eXr − e−rτ . (22)

Even though Heston imposes the boundary condition (7) at v = 0, one must
follow the consequences of the Fichera condition. As we have written in Remark 1,
in case when the condition κθ− 1

2σ
2 ≥ 0 holds—and we shall keep this restriction in

the experimental part—there is no boundary condition needed for v = 0 and thus
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for y = 0. Particularly, along the boundary y = 0, the equation (14) reduces to a
hyperbolic PDE since the diffusion tensor (15) is zero here. The consequence is that
the information on this boundary is transported only due to advection. And since
the advection velocity vector (16) projected onto the unit outer normal vector is
nonnegative only an outflow is realized at this point. In other words, no information
can enter the domain from the region where y < 0.

In the numerical implementation part we extend the computational domain Ω
to include a few additional so-called ghost cells pi0 = (xi, y0), i = 1, . . . , Nx where
y0 = −hy/2 (see [15]) and determine the ghost cell values unpi0 , i = 1, . . . , Nx by
extrapolation from the interior solution. The simplest approach is to take zero order
extrapolation, meaning extrapolation by a constant function:

unpi0 = unpi1 , i = 1, . . . , Nx. (23)

The last condition y → ∞ is also affected by shrinking of the interval (0,∞) →
(0, Y ). We will not use the Dirichlet boundary condition (8) imposed by Heston
since it would cause an unnatural jump in the solution. In order to implement our
scheme for y = Y we will simply assume that for a substantially large y = O(1),
the solution is independent from y (see (8)). Hence, it is natural to impose artificial
homogenous Neumann boundary conditions which can be implemented in the form
of the constant extrapolation described above. By defining another set of ghost
cells piNy+1, i = 1, . . . , Nx with yNy+1 = yNy + hy, we can write

unpiNy+1
= unpiNy , i = 1, . . . , Nx. (24)

Note that from a practical point of view, the hot-spot of the numerical solution is
almost always very far away from the boundary conditions (22) and (24). Hence,
they have only a little effect on the accuracy in the area of our interest.

2.2. Equation Discretization. Let us now discretize the governing equation (14)
by the use of the so-called diamond-cell approximation, cf. [6, 4]. Although it has its
diffusion term already in divergent form, inspired by [10], it is convenient to rewrite
also the advection term into conservative and nonconservative part as follows:

~A · ∇u = ∇ · ( ~Au)− (∇ · ~A)u. (25)

Inserting this identity into (14), integrating it over a finite volume p and applying

Green’s theorem onto the terms ∇ · ( ~Au) and ∇ · (B∇u) we obtain the following
integral form:∫

p

∂u

∂τ
dx+

∑
q∈N(p)

∫
σpq

~Au · ~npq dγ −
∫
p

(∇ · ~A)udx =

∑
q∈N(p)

∫
σpq

B∇u · ~npq dγ −
∫
p

rudx.

(26)

Before we formulate the discretized version of (26), we shall have a look on the
approximation of the vector B∇u. To begin with, the diffusion tensor B, can be
expressed explicitly by

B =

(
b11 b12

b21 b22

)
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and then the diffusion tensor applied on the gradient of u is equal to

B∇u =

(
b11 ∂u

∂x + b12 ∂u
∂y

b21 ∂u
∂x + b22 ∂u

∂y

)
.

Let us denote by ūp a representative constant value of the solution in the cell p.
By ūpne, ūpnw, ūpsw, ūpse we denote representative values in the north-east, north-
west, south-west respectively south-east vertex of the finite volume p. Analogously,
ūpn, ūpw, ūps, ūpe represents constant values on the north, west, south respectively
east edge σpq of the finite volume p. We discretize the gradient

Figure 2. A detail of
the diamond-cell approxi-
mation of the gradient on
the edge σpe .

on each edge σpq by using the diamond-cell approx-
imation (see [6, p. 5]). The name of the approxi-
mation method comes from the diamond-like-shape of
the area where the gradient is assumed to be constant.
Following the terminology of Coudiere and Vila in [4]
let us call these diamond-shaped areas co-volumes χσ.
The co-volume χσ associated to σ is constructed by
joining the endpoints of this edge and the midpoints
xp and xq common to this edge (see Figure 2). Let
us further denote the endpoints of an edge σ̄ ⊂ ∂χσ
by N1(σ̄) and N2(σ̄). The unit normal vector to σ̄
outward to χσ will be denoted by ~nχσ,σ̄. Now we are
in shape to approximate the averaged gradient on χσ
by

1

m(χσ)

∫
χσ

∇udx ≈

1

m(χσ)

∑
σ̄⊂∂χσ

ūN1(σ̄) + ūN2(σ̄)

2
m(σ̄)~nχσ,σ̄

Since our mesh is rectangular, we can use the following

relations: m(χσ) = hxhy/2 and m(σ̄) =

√
h2
x+h2

y

2 . For

the sake of brief notation we will use the symbol ∇DCpq = (∇DCpq,x,∇DCpq,y) when using
the diamond-cell gradient operator on the edge σpq. If we calculate the gradient
approximation on the edge σpe we end up with

∇DCpe u =
1

m(χσpe)

∑
σ̄⊂∂χσpe

ūN1(σ̄) + ūN2(σ̄)

2
m(σ̄)~nχσpe ,σ̄ =

(
ūe−ūp
hx

ūpne−ūpse
hy

)
(27)

and for the remaining edges σpw, σpn and σps we can write

∇DCpw u=

(
ūp−ūw
hx

ūpnw−ūpsw
hy

)
, ∇DCpn u=

(
ūpne−ūpnw

hx
ūn−ūp
hy

)
, ∇DCps u=

(
ūpse−ūpsw

hx
ūp−ūs
hy

)
. (28)

Replacing the exact gradient with its diamond-cell approximation we can approxi-
mate the exact averaged diffusion flux on the edge σpq by

1

m(σpq)

∫
σpq

B∇u · ~npq dγ ≈ Bpq∇DCpq u · ~npq (29)

with Bpq defined as the averaged diffusion tensor along the edge σpq.
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Regarding both terms associated with the advection, assuming a constant solu-
tion in each finite volume we can use the following approximations∫

σpq

~Au · ~npq dγ ≈ ūpqvpqm(σpq),

∫
p

(∇ · ~A)udx ≈ ūpvpqm(σpq) (30)

where vpq denotes the exact averaged advection velocity on the face σpq in the
inward normal direction to the finite volume p, i.e.

vpq = − 1

m(σpq)

∫
σpq

~A · ~npq dγ. (31)

Denoting the averaged advection vector ~A along the edge σpq by ~Apq we can formu-

late vpq, by vpq = − ~Apq · ~npq. Particularly, for each edge σpq, the velocity vpq can
be written as

vpn = −a2
pn, vpw = a1

pw, vpe = −a1
pe, vps = a2

ps (32)

where a1
pq, a

2
pq are the mean values of the components of the advection velocity

vector ~A =
(
a1, a2

)T
evaluated along the edge σpq. Plugging approximations (30)

as well as the definitions of the numerical diffusion flux and advection velocity into
(26) and assuming constant solution in the source term we get∫

p

∂u

∂τ
dx+

∑
q∈N(p)

(− ~Apq · ~npq) (ūp − ūpq)m(σpq) =

∑
q∈N(p)

Bpq∇DCpq u · ~npqm(σpq)− rūpm(p).
(33)

After expanding the advection and diffusion terms in (33) we get∫
p

∂u

∂τ
dx+ r ūpm(p)

−m(σpe)a
1
pe(ūp − ūpe)−m(σpe)

[
b11
pe

ūe − ūp
hx

+ b12
pe

ūpne − ūpse
hy

]
−m(σpn)a2

pn(ūp − ūpn)−m(σpn)

[
b21
pn

ūpne − ūpnw
hx

+ b22
pn

ūn − ūp
hy

]
+m(σpw)a1

pw(ūp − ūpw) +m(σpw)

[
−b11

pw

ūw − ūp
hx

− b12
pw

ūpsw − ūpnw
hy

]
+m(σps)a

2
ps(ūp − ūps) +m(σps)

[
−b21

ps

ūpsw − ūpse
hx

− b22
ps

ūs − ūp
hy

]
= 0.

(34)

In order to formulate the following numerical scheme we need to replace the repre-
sentative values of the solution ūmp and ūmpq, m = n− 1, n by a combination of the
numerical solution in the grid points. The most natural choice for reconstructions
ūmp and ūmpq is given by

ūmp = ump , ūmpq =
ump + umq

2
, if q ∈ N(p), (35)

ūmpne =
ump +ume +umne+u

m
n

4 , ūmpnw =
ump + umn + umnw + umw

4
, (36)

ūmpsw =
ump +umw+umsw+ums

4 , ūmpse =
ump + ums + umse + ume

4
. (37)
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Inserting (35)-(37) into (34) with m = n and replacing the time derivative ∂u
∂τ by

the backward difference un−un−1

k we obtain the diamond-cell fully-implicit scheme

in the form

(1 + k r)unp +
k

m(p)

∑
q∈N ′(p)

cpq
(
unp − unq

)
= un−1

p (38)

where in order to simplify the notation of the scheme we have introduced new
coefficients

cpq = apq + bpq, q ∈ N(p),
cpq = bpq, q ∈ N ′(p)\N(p).

with apq, q ∈ N(p) and bpq, q ∈ N ′(p) which we define as follows

ape = −1

2
hya

1
pe, apw =

1

2
hya

1
pw, apn = −1

2
hxa

2
pn, aps =

1

2
hxa

2
ps, (39)

bpe =
hy
hx
b11
pe +

b21
pn

4
−
b21
ps

4
, bpw =

hy
hx
b11
pw −

b21
pn

4
+
b21
ps

4
, (40)

bpn =
hx
hy
b22
pn +

b12
pe

4
−
b12
pw

4
, bps =

hx
hy
b22
ps −

b12
pe

4
+
b12
pw

4
, (41)

bpne=
b12
pe

4
+
b21
pn

4
, bpsw=

b12
pw

4
+
b21
ps

4
, bpnw=−

b12
pw

4
−
b21
pn

4
, bpse=−

b12
pe

4
−
b21
ps

4
. (42)

2.3. Theoretical Properties. In this subsection our goal is to study the existence

Figure 3. A detail of the
diamond-cell approximation of
the gradient on the edge σ writ-
ten in the local basis: points
xN , xS denote the northern and
southern vertex of the edge σ and
xW , xE denote the western and
eastern cell centers associated to
the edge σ.

and uniqueness of the numerical solution gener-
ated by the diamond–cell scheme (38). In the
proof we mainly follow the ideas in the article
[4] by Coudiere and Vila and the article [6] by
Drbĺıková and Mikula. It is important to note
that when talking about the diffusion tensor B

or the advection vector ~A we have so far always
written them in the standard basis (ε1, ε2) (cf.
(27), (28) and (32)). In order to simplify fur-
ther analysis, although it may look artificial, we

will also consider both B and ~A in the local ba-
sis (~nW,σ,~tW,σ), cf. [4]. Note that in this case
we label ”north”, ”south”, ”west” and ”east”
by capital letters N,S,W and E to emphasize
that the points are treated in the local basis rel-
ative to the edge σ. The couple (~nW,σ,~tW,σ) de-
notes a unit normal vector relative to the edge
σ outward to W and a unit vector parallel to
σ, respectively, such that (xN − xS) · ~tW,σ > 0.
Moreover, σ = σWE always represents the edge
between cells W and E in the local basis. Sym-
bols xN and xS denote the northern and south-
ern vertex of the edge σ (cf. Figure 3 and 4).
Similarly, by xW and xE we label west and
east neighbouring cell centers. Symbols dEW
and dNS denote the distance |xE − xW | and
|xN − xS |, respectively. In our setting this is
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equal either to hx or hy depending on the posi-
tion of the edge σ. Values ūE , ūW , ūN and ūS can be reconstructed analogically
to (35)-(37). In the case of the scheme (38) we take all numerical values u from
the new time layer τn. Taking into account the notation of the north, west, east
and south edge by σpn, σpw, σpe and σps relative to the finite volume p (cf. Figure
1) the labeling of neighbours in the local basis for corresponding edges illustrated
in Figure 4 becomes clearer. Note that the cell W in local basis notation always
coincides with the cell p written in the standard basis.

Figure 4. The notation for corresponding edges σpn, σpw, σpe and σps.
The perpendicular vector is the unit outer normal vector ~nW,σ and the

parallel one is the unit tangent vector ~tW,σ.

Let us further denote by εp the set of edges such that ∂p =
⋃
σ∈εp σ. Let εint

denote the set of all interior edges. Moreover, we can also define εext as the set
of all boundary edges, i.e. εext = ε ∩ ∂Ω where ε is the set of all edges from the
admissible mesh Th, i.e. ε =

⋃
p∈Th εp. The set εext can be further decomposed into

two subsets εext = εDBC
ext ∪ εGCE

ext with εDBC
ext denoting all exterior boundary edges

where Dirichlet boundary conditions are prescribed and εGCE
ext denoting all boundary

edges where the ghost cell extrapolation applies. In our setting εDBC
ext corresponds

to the boundary condition (21) for x = Xl and (22) for x = Xr. Similarly, in the
implementation part of the European call option εGCE

ext is effectively the boundary
(23) for y = 0 and (24) for y = Y .

Having introduced such alternative notation we are in shape to rewrite the
diamond-cell approximation of the gradient (27) along any edge σ as follows:

∇DCσ u =
uE − uW
dEW

~nW,σ +
uN − uS
dNS

~tW,σ (43)

Let us further define the discrete numerical solution by

uh,k (x, τ) =

Nts∑
n=0

∑
p∈Th

unpχ{x∈p}χ{τn−1<τ≤τn} (44)

where the function χ{A} is defined as

χ{A} =
{ 1, if A is true,

0, elsewhere
(45)

and let unh,k (x, τ) =
∑
p∈Thu

n
pχ{x∈p} denote a finite volume approximation at the

nth time step. Then, in order to get the scheme written in terms of the local basis
let us denote by Φnσ the approximation of the exact averaged diffusion flux

Φnσ(unh,k ) ≈ 1

m(σ)

∫
σ

B∇un · ~nW,σdγ (46)
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for any σ ∈ ε. Replacing the exact gradient ∇u by its diamond-cell approximation
(43) we can write the numerical diffusion flux as

Φnσ(unh,k ) = (Bσ∇DCσ un) · ~nW,σ (47)

where

Bσ =

(
b̄11
σ b̄12

σ

b̄21
σ b̄22

σ

)
(48)

is the mean value of the tensor B along the edge σ. It is important to note that the
diffusion tensor (48) is also written in the basis (~nW,σ,~tW,σ) and the coefficients b̄ijσ
need to be determined accordingly. Since the formula (43) can be written as

∇DCσ un =

(
unE−u

n
W

dEW
unN−u

n
S

dNS

)
(49)

and ~nW,σ = (1, 0)
T

, both in the local basis notation, we can formulate (47) equiva-
lently as follows:

Φnσ(unh,k )=

[(
b̄11
σ b̄12

σ

b̄21
σ b̄22

σ

)( unE−u
n
W

dEW
unN−u

n
S

dNS

)]
·
(

1
0

)
= b̄11

σ

unE − unW
dEW

+b̄12
σ

unN − unS
dNS

. (50)

In order to obtain the values b̄11 and b̄12 let us write the numerical diffusion flux
for each edge in the standard basis and then compare with (50):

Φnσpn =

[(
b11
pn b12

pn

b21
pn b22

pn

)( unS−u
n
N

dNS
unE−u

n
W

dEW

)]
·
(

0
1

)
= b22

pn

unE − unW
dEW

− b21
pn

unN − unS
dNS

,

Φnσpw =

[(
b11
pw b12

pw

b21
pw b22

pw

)( unW−u
n
E

dEW
unS−u

n
N

dNS

)]
·
(
−1
0

)
= b11

pw

unE − unW
dEW

+ b12
pw

unN − unS
dNS

,

Φnσpe =

[(
b11
pe b12

pe

b21
pe b22

pe

)( unE−u
n
W

dEW
unN−u

n
S

dNS

)]
·
(

1
0

)
= b11

pe

unE − unW
dEW

+ b12
pe

unN − unS
dNS

,

Φnσps =

[(
b11
ps b12

ps

b21
ps b22

ps

)( unN−u
n
S

dNS
unW−u

n
E

dEW

)]
·
(

0
−1

)
= b22

ps

unE − unW
dEW

− b21
ps

unN − unS
dNS

.

Clearly, b̄11
σ = b11

σ , b̄12
σ = b12

σ for the two edges σ = σpw, σ = σpe and b̄11
σ = b22

σ ,
b̄12
σ = −b21

σ for the two edges σ = σpn, σ = σps.
In order to continue with the analysis it is convenient to transform the averaged

exact advection velocity approximation (31) into the local basis as well. Recall that
in our scheme we approximate terms associated with the advection in the standard
basis by ∫

σpq

~Au · ~npq dγ −
∫
p

(∇ · ~A)udx ≈
∫
σpq

~A · ~npqdγ(ūpq − ūp). (51)

Let us denote the approximation of the averaged advection-associated flux term
appearing on the right-hand side of (51) written in the local basis by Ψn

σ(unh,k ), i.e.

Ψn
σ(unh,k ) ≈ 1

m(σ)

∫
σ

~A · ~nW,σdγ(ūnEW − ūnW ) (52)

Denoting by ~Aσ the approximation of the mean value of the vector ~A along the
edge σ in the local basis and applying the reconstruction ūWE = (uW + uE)/2 we
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can define Ψn
σ(unh,k ) as follows

Ψn
σ(unh,k ) = ( ~Aσ · ~nW,σ)

unE − unW
2

. (53)

Furthermore, since ~Aσ ·~nW,σ = (ā1
σ, ā

2
σ)(1, 0)T = ā1

σ we can rewrite (53) more simply
as

Ψn
σ(unh,k ) = ā1

σ

unE − unW
2

. (54)

It remains to determine the form of the coefficients ā1
σ. To do so, let us write the

numerical advection flux on each edge in the standard basis:

Ψn
σpn =

(
a1
pn

a2
pn

)
·
(

0
1

)
unE − unW

2
= a2

pn

unE − unW
2

,

Ψn
σpw =

(
a1
pw

a2
pw

)
·
(
−1
0

)
unE − unW

2
= −a1

pw

unE − unW
2

,

Ψn
σpe =

(
a1
pe

a2
pe

)
·
(

1
0

)
unE − unW

2
= a1

pe

unE − unW
2

,

Ψn
σps =

(
a1
ps

a2
ps

)
·
(

0
−1

)
unE − unW

2
= −a2

ps

unE − unW
2

.

The comparison with (54) yields ā1
σ = a2

σ for the edge σ = σpn, ā1
σ = −a1

σ for the
edge σ = σpw, ā1

σ = a1
σ for the edge σ = σpe and ā1

σ = −a2
σ for the edge σ = σps.

Using definitions (50) and (53) we can summarize our fully-implicit scheme writ-
ten in terms of the local basis (~nW,σ,~tW,σ):

unW − u
n−1
W

k
m(W )−

∑
σ∈εW

Φnσ(unh,k )m(σ)+
∑
σ∈εW

Ψn
σ(unh,k )m(σ)+runWm(W ) = 0. (55)

Let us now introduce a space of piecewise constant functions associated to our
mesh and a discrete H1 seminorm for this space. This seminorm will be used to
obtain some estimates on numerical solution generated by the scheme (38).

Definition 2.1. Let Ω be an open bounded polygonal subset of R2. Let Th be an
admissible finite volume mesh in the sense of [7]. We define P0(Th) as the set of
functions from Ω to R which are constant over each finite volume p of the mesh Th.

Definition 2.2. Let Ω be an open bounded polygonal subset of R2. For unh,k ∈
P0(Th) we define

|unh,k |1,Th =

( ∑
σ∈εint

(unE − unW )2

dEW
m(σ)

) 1
2

. (56)

where dEW denotes the Euclidean distance between xE and xW and m(σ) = dNS .

Having our scheme written in the local basis notation (55), we can proceed with a
theorem stating that a unique solution to the corresponding system of linear equa-
tions does exist. In order to formulate proper existence and uniqueness conditions
let us first expand the diffusion and advection term appearing in (55) on the bound-
ary edges σ ∈ εext and separate all boundary terms. Noting that both Dirichlet
boundary conditions (21) and (22) are constant, the term unN −unS = 0, ∀σ ∈ εDBC

ext .
Furthermore, since we are using constant extrapolation of the solution to the ghost
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cells, unE−unW = 0, ∀σ ∈ εGCE
ext . Taking these identities into account we can expand

the expression Φnσ(unh,k ), ∀σ ∈ εext as follows:

Φnσ(unh,k ) = Φnσ(unh,k )χ{σ∈εDBC
ext } + Φnσ(unh,k )χ{σ∈εGCE

ext } =

b̄11
σ

unσ − unW
dWσ

χ{σ∈εDBC
ext } + b̄12

σ

unN − unS
dNS

χ{σ∈εGCE
ext }

(57)

where in the first term, evaluated on σ ∈ εDBC
ext , we have replaced unE by the pre-

scribed Dirichlet boundary condition, i.e. unE = unσ and dEW by the Euclidean dis-
tance between the point xW and the representative point xσEW , i.e. dEW = dWσ.
For the sake of simplicity, henceforth we will denote the edges where Dirichlet
boundary conditions apply by σ and those neighbouring with the ghost cells by
σGC. Note that the term unN − unS also contains Dirichlet boundary condition if it
is evaluated in the corner cells of the domain Ω. Let us denote these corner cells in
the following by ne = pNx,Ny , nw = p1,Ny , sw = p1,1 and se = pNx,1. Let us denote

by εGCE
cor the subset of εGCE

ext consisting only of the four ghost-cell-edges positioned
in the corner cells.

Similarly to the boundary diffusion fluxes let us now expand advection fluxes on
σ ∈ εext as well. Since unE − unW = 0, ∀σ ∈ εGCE

ext we can rewrite the expression
Ψn
σ(unh,k ), ∀σ ∈ εext as follows:

Ψn
σ(unh,k ) = ā1

σ

unσ − unW
2

χ{σ∈εDBC
ext } (58)

Let us now define a discrete operator Lh with respect to the form of (55), (57)
and (58) by

Lh(unh,k ) =unWm(W )− k
∑

σ∈εW∩εint

Φnσ(unh,k )m(σ)

+ k
b̄11
σ

dWσ
unWχ{σ∈εW∩εDBC

ext }m(σ)

+ k b̄12
σ (unN − unS)χ{σ∈εW∩(εGCE

ext \εGCE
cor )}

+ k
(
b̄12
σGCu

n
Nχ{W=ne} − b̄12

σGCu
n
Sχ{W=nw}

+ b̄12
σGCu

n
Nχ{W=sw} − b̄12

σGCu
n
Sχ{W=se}

)
+ k

∑
σ∈εW∩εint

Ψn
σ(unh,k )m(σ)− k

ā1
σ

2
unWχ{σ∈εW∩εDBC

ext }m(σ)

+ rk unWm(W ).

(59)

Hence the numerical solution unh,k ∈ P0(Th) of the scheme (55) is given by

Lh(unh,k ) = fh,k (un−1
h,k ) (60)

with the right-hand side function fh,k (un−1
h,k ) defined as

fh,k (un−1
h,k ) =un−1

W m(W ) + k
(
b̄11
σ

dWσ
− ā1

σ

2

)
unσχ{σ∈εW∩εDBC

ext }m(σ)

+ k
(
b̄12
σGCu

n
σχ{W=ne} − b̄12

σGCu
n
σχ{W=nw}

+ b̄12
σGCu

n
σχ{W=sw} − b̄12

σGCu
n
σχ{W=se}

) (61)

where W ∈ Th and un−1
W is the value of the piecewise constant function un−1

h,k
in W . The equality (60) represents a system of Nx × Ny linear equations where
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Nx×Ny = card(Th). If we multiply Lh(unh,k ) by unW , sum over all W ∈ Th and split
into three parts A, B and C we obtain∑

W∈Th

Lh(unh,k )unW = A+B + C (62)

where

A = (1 + rk )
∑
W∈Th

(
unW
)2
m(W ) = (1 + rk )||unh,k ||2L2(Ω) (63)

B = k
∑
W∈Th

unW
∑

σ∈εW∩εint

−Φnσ(unh,k )m(σ) + k
∑
W∈Th

unW
∑

σ∈εW∩εDBC
ext

b̄11
σ

dWσ
unWm(σ)

+
k
2

[
b̄12
σGC (unW )2

]ne
nw

+
k
2

[
b̄12
σGC (unW )2

]sw
se

(64)

C = k
∑
W∈Th

unW
∑

σ∈εW∩εint

Ψn
σ(unh,k )m(σ)− k

∑
W∈Th

unW
∑

σ∈εW∩εDBC
ext

ā1
σ

2
unWm(σ) (65)

Terms in the second row of (64) have been derived by replacing all uN , uS by their
reconstructions (36) and (37) and exploiting constant extrapolation property (24)
∀σ ∈ εGCE

ext (for more details see Remark 2). In this context the notation [unW ]xy
means [unW ]xy = unx − uny .

Our next goal is to find a positive lower bound for the terms A+B+C. In order
to rewrite the expression B let us recall a common finite volume technique trick for
anti-symmetric ΦnσEW (unh,k ) = −ΦnσWE

(unh,k ), namely:∑
W∈Th

unW
∑

σ∈εW∩εint

ΦnσWE
(unh,k ) =

∑
σ∈εint

ΦnσWE
(unh,k )unW (66)

∑
W∈Th

unW
∑

σ∈εW∩εint

ΦnσWE
(unh,k ) =

∑
σ∈εint

−ΦnσWE
(unh,k )unE . (67)

Summing (66) and (67) and dividing it by 2 gives us the following identity:∑
W∈Th

unW
∑

σ∈εW∩εint

ΦnσWE
(unh,k ) =

1

2

∑
σ∈εint

−ΦnσWE
(unh,k )(unE − unW ). (68)

Using this identity one can formulate the following equality:

k
∑
W∈Th

unW
∑

σ∈εW∩εint

−Φnσ(unh,k )m(σ) =
k
2

∑
σ∈εint

Φnσ(unh,k )
unE − unW
dEW

dEWm(σ) (69)

Let us now analyze the sum
∑
σ∈εint Φnσ(unh,k )

unE−u
n
W

dEW
appearing in (69). We can

bound it from bellow as follows:∑
σ∈εint

Φnσ(unh,k )
unE − unW
dEW

=
∑
σ∈εint

(
b̄11
σ

unE − unW
dEW

+ b̄12
σ

unN − unS
dNS

)
unE − unW
dEW

≥
∑
σ∈εint

b̄11
σ

(
unE − unW
dEW

)2

−
∣∣∣ ∑
σ∈εint

b̄12
σ

unN − unS
dNS

unE − unW
dEW

∣∣∣ (70)

Applying Young’s inequality in the second term of (70) leads to∣∣∣ ∑
σ∈εint

b̄12
σ

unN − unS
dNS

unE − unW
dEW

∣∣∣≤∑
σ∈εint

1

2

[(
unE − unW
dEW

)2

+

(
b̄12
σ

b̄11
σ

)2(
unN − unS
dNS

)2
]
b̄11
σ .
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Since our diffusion tensor B is smooth and positive definite we can use, for hx, hy
sufficiently small, the following estimate∑

σ∈εint

(
b̄12
σ

b̄11
σ

)2(
unN − unS
dNS

)2

b̄11
σ ≤ γ

∑
σ∈εint

(
unE − unW
dEW

)2

b̄11
σ (71)

where 0 ≤ γ < 1 (cf. [6]). Combining expressions (69)-(71) leads to

k
2

∑
σ∈εint

Φnσ(unh,k )
unE − unW
dEW

dEWm(σ) ≥ k
2

(
1− γ

2

) ∑
σ∈εint

b̄11
σ

(unE − unW )2

dEW
m(σ).

(72)
Concerning the second sum in (64) we can rewrite it as follows:

k
∑
W∈Th

unW
∑

σ∈εW∩εDBC
ext

b̄11
σ

dWσ
unWm(σ) = k

∑
σ∈εDBC

ext

b̄11
σ

(unW )2

dWσ
m(σ) (73)

Similarly to the previous analysis let us now expand the terms appearing in (65).
Since the advection-associated flux term Ψn

σ(unh,k ) is symmetric, i.e. Ψn
σWE

(unh,k ) =

Ψn
σEW (unh,k ) we can rewrite the first sum in (65) as follows:

k
∑
W∈Th

unW
∑

σ∈εW∩εint

Ψn
σ(unh,k )m(σ) =

k
2

∑
σ∈εint

Ψn
σ(unh,k )(unE + unW )m(σ)

=
k
2

∑
σ∈εint

ā1
σ

(unE)2 − (unW )2

2
m(σ)

(74)

The second sum in (65) can be treated analogically to (73):

− k
∑
W∈Th

unW
∑

σ∈εW∩εDBC
ext

ā1
σ

2
unWm(σ) = −k

∑
σ∈εDBC

ext

ā1
σ

(unW )2

2
m(σ) (75)

Switching temporarily from local basis to standard basis notation one can formulate
the following identity:

k
2

∑
σ∈εint

ā1
σ

(unE)2 − (unW )2

2
m(σ)− k

2

∑
σ∈εDBC

ext

ā1
σ

(unW )2

2
m(σ)

−k
2

∑
σ∈εGCE

ext

ā1
σ

(unW )2

2
m(σ) =

k
4

∑
p∈Th

[(
a1
pw − a1

pe

)
hy +

(
a2
ps − a2

pn

)
hx
]

(unp )2

=
k
4

∑
p∈Th

(unp )2
∑

q∈N(p)

− ~Apq · ~npqm(σpq) = −k
4

∑
p∈Th

(unp )2

∫
∂p

~A · ~np dγ

=− k
4

∑
p∈Th

(unp )2

∫
p

∇ · ~A dx = −k
4

∫
Ω

∇ · ~A(unh,k )2 dx = −k
4
κ||unh,k ||2L2(Ω)

(76)

where in the last equality we have expolited the form of the advection vector (16).
Inserting this result back into (65) gives us

C = −k
4
κ||unh,k ||2L2(Ω) −

k
2

∑
σ∈εDBC

ext

ā1
σ

2
(unW )2m(σ) +

k
2

∑
σ∈εGCE

ext

ā1
σ

2
(unW )2m(σ) (77)
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By introducing β̂ =
(
r − κ

4

)
and η̂ =

(
1−γ

4

)
and inserting (72), (73) and (77)

into (62) we obtain∑
W∈Th

Lh(unh,k )unW ≥ (1 + k β̂)||unh,k ||2L2(Ω) + k η̂
∑
σ∈εint

b̄11
σ

(unE − unW )2

dEW
m(σ)

+ k
∑

σ∈εDBC
ext

b̄11
σ

(unW )2

dWσ
m(σ) +

k
2

[
b̄12
σGC (unW )2

]nw
ne

+
k
2

[
b̄12
σGC (unW )2

]se
sw

− k
2

∑
σ∈εDBC

ext

ā1
σ

2
(unW )2m(σ) +

k
2

∑
σ∈εGCE

ext

ā1
σ

2
(unW )2m(σ).

(78)

For the sake of brief notation let us define following magnitudes:

b̄11
min = min

σ∈εint
b̄11
σ , b̄

11
max = max

σ∈ε
b̄11
σ , b̄

12
max = max

σ∈εGCE
ext

|b̄12
σ |, ā1

max = max
σ∈ε
|ā1
σ|,

hmin = min(hx, hy), hmax = max(hx, hy).

We also introduce the set Υ = {nw, ne, sw, se} which includes all four corner cells
of the domain Ω. Then, the inequality (78) can be further simplified as follows:∑
W∈Th

Lh(unh,k )unW ≥
(

1 + k r − k
κ

4

)
||unh,k ||2L2(Ω) + k η|unh,k |21,Th

+ k b̄11
min

∑
σ∈εDBC

ext

(unW )2

dWσ
m(σ)− k

∑
W∈Υ

∣∣b̄12
σGC

∣∣
2

(unW )2 − k
∑

σ∈εDBC
ext

∣∣ā1
σ

∣∣
4

(unW )2m(σ)

− k
∑

σ∈εGCE
ext

∣∣ā1
σ

∣∣
4

(unW )2m(σ) ≥ (1 + k β) ||unh,k ||2L2(Ω)

(79)

with η = η̂ b̄11
min and β = β̂ − b̄12max

2m(p) −
ā1max

2hmin
. In order guarantee positivity of (79) it

is sufficient to insist that

1 + k β > 0. (80)

In case β is positive, relation (80) always holds, however if β is negative, (80) is
equivalent to insisting that k < −1/β. Hence one can derive the following restriction
on the time-step-size k :

k <
4m(p)

(κ− 4r)m(p) + 2b̄12
max + 2ā1

maxhmax
(81)

Assuming β < 0 and (81) holds, we get from (79) for any unh,k ∈ P0(Th) that∑
p∈Th

Lh(unh,k )unp ≥ α||unh,k ||2L2(Ω) (82)

with α = 1 + k β > 0. Let us summarize the existence and uniqueness of the
numerical solution of the scheme (38) in the following theorem.

Theorem 2.3 (Existence and Uniqueness). Let Th be an admissible mesh on the
domain Ω and let hx > 0, hy > 0 be sufficiently small. Let the time step satisfy the
condition (81). Then the unique solution unh,k ∈ P0(Th) to the equation (38) exists.
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Proof. Assume that up, p ∈ Th, satisfy the linear system (60) with a zero right-hand

side, i.e. that fh,k (un−1
h,k ) = 0, ∀p ∈ Th. Then due to the relation (82)

α||unh,k ||2L2(Ω) ≤
∑
p∈Th

Lh(unh,k )unp =
∑
p∈Th

fh,k (un−1
h,k )unp = 0. (83)

Since both, the relation (83) and strict positivity of α, must hold, we deduce that
unp = 0, ∀p ∈ Th. It means that the kernel of the homogeneous linear system
Lh(unh,k ) = 0 contains only zero vector which implies that the matrix is regular.

Since regular system matrix implies that there exists a unique solution to (60) the
proof is complete.

Remark 2. Without loss of generality let us concentrate on the finite volumes
surrounding the ghost cell boundary located to the north of the domain Ω. If we
multiply the corresponding terms in the second and third row of (59) by unW , sum
over ∀W ∈ Th and note that the two rows of finite volumes around the northern
boundary consist of p1,Ny , p2,Ny , . . . , pNx,Ny and p1,Ny+1, p2,Ny+1, . . . , pNx,Ny+1 we
can write

− k b̄12
σGCu

n
nwu

n
S + k

∑
W∈Th

unW
∑

σ∈εW∩
(εGCE

ext \ε
GCE
cor )

b̄12
σ (unN − unS) + k b̄12

σGCu
n
neu

n
N =

− k b̄12
σGCu

n
p1,Ny

2unp1,Ny + 2unp2,Ny
4

+ k b̄12
σGCu

n
p2,Ny

(
2unp1,Ny + 2unp2,Ny

4

−
2unp2,Ny + 2unp3,Ny

4

)
+ k b̄12

σGCu
n
p3,Ny

(
2unp2,Ny + 2unp3,Ny

4

−
2unp3,Ny + 2unp4,Ny

4

)
+ · · ·+ k b̄12

σGCu
n
pNx,Ny

2unpNx−1,Ny
+ 2unpNx−1,Ny

4

=
k
2

(
−b̄12

σGC (unp1,Ny )2 + b̄12
σGC (unpNx,Ny )2

)

(84)

Note that in the course of reconstruction of the boundary terms unN , u
n
S by (36) we

have also exploited the constant extrapolation property (24).

3. Numerical Experiment. In this section we performed a numerical experiment
to check the accuracy and rate of convergence of our scheme (38). In order to
measure the accuracy and rate of convergence of our scheme we use as a benchmark
the quasi closed-form solution for a European call option derived by Heston in [12].
Other useful source is the book of Gatheral (cf. [11]) or Kútik’s disseration thesis
(cf. [14]).

We applied our scheme on the evolution of the initial profile described by (4)
with the coupling k = hxhy. We also computed the theoretical upper bound for the
time-step-size due to (81), cf. fifth column in Table 2. Note that even though the
condition is not met for the coarsest grid we did not encounter any problems when
generating the numerical solution. This may indicate that the condition (81) is too
restrictive. Furthermore as indiciated in the last two columns of the Table 2 using
a fine mesh the scheme exhibits an error of order 10−5 in the L2(I,Ω) norm and a
second order experimental rate of convergence. We should also note that the main
drawback of this scheme is that the solution slightly deceeds zero near the strike
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price region (S = E), although it should stay in the range from τ = 0. Table 1 lists
all parameters and variable ranges used in this section.

Table 1. Variable ranges and parameter values used for the computation
of the numerical solution for the Heston model (3)

Parameter Value Parameter Value

x [−7, 3] S [0.1, 2008]
y [0, 1] v [0, 1]
τ [0, 0.05] t [0, 0.05]
E 100 r 0.1
ρ −0.5 κ 5
θ 0.07 σ 0.5
λ 0 T 0.05

Table 2. Errors in L2(I,Ω) norm and EOCs of the scheme (38) for the
exact solution of the Heston model.

Nx Ny Nts k upper bound
(81)

||error||L2(I,Ω) EOC

20 10 1 0.05 0.0381 1.341 10−3 -
40 20 4 0.0125 0.0185 5.491 10−4 1.29
80 40 16 0.003125 8.573 10−3 1.952 10−4 1.49
160 80 64 7.812 10−4 3.674 10−3 6.118 10−5 1.67
320 160 256 1.953 10−4 1.422 10−3 1.729 10−5 1.82

4. Conclusions. In this article we proposed a numerical scheme based on the finite
volume technique for solving the linear partial differential equation arising in the
Heston model. We used logarithmic transformation to simplify the equation and
obtain a divergent form of two-dimensional diffusion tensor. We further expanded
the advection term into conservative and nonconservative part and applied Green’s
theorem onto the integrated governing equation. Next we dealt with the issue
of numerical implementation of the boundary conditions. For the zero variance
boundary the Fichera condition was taken into account and a solution extrapolation
to the ghost-cells was made. Special attention was devoted to the solvability of the
system of equations in each time step. We proved a theorem which states that under
certain conditions an unique numerical solution does exist. Finally we examined
the accuracy and experimental rate of convergence of the scheme on a numerical
experiment with an exact solution.
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[6] O. Drbĺıková and K. Mikula, Convergence analysis of finite volume scheme for nonlinear

tensor anisotropic diffusion in image processing, SIAM Journal on Numerical Analysis 46, 1
(2007), 37–60.
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[14] P. Kútik, Numerical solution of partial differential equations in financial mathematics, PhD.

Thesis, Slovak University of Technology, Bratislava, 2014.

[15] R. J. LeVeque, “Finite Volume Methods for Hyperbolic Problems,” Cambridge University
Press, Cambridge, 2002.

[16] R. Merton, Theory of rational option pricing, The Bell Journal of Economics and Manage-

ment Science, (1973), 141–183.
[17] R. Zvan, P. A. Forsyth and K. R. Vetzal, A finite volume approach for contingent claims

valuation, IMA J. Numer. Anal. 21, 3 (2001), 703—731.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: pavol.kutik@gmail.com

E-mail address: karol.mikula@gmail.com

mailto:pavol.kutik@gmail.com
mailto:karol.mikula@gmail.com

	1. Introduction
	2. Numerical Scheme
	2.1. Boundary Conditions
	2.2. Equation Discretization
	2.3. Theoretical Properties

	3. Numerical Experiment
	4. Conclusions
	Acknowledgments
	REFERENCES

