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We propose the coarsening strategy for the finite volume computational method
given by K. Mikula and N. Ramarosy (Numer. Math. 89, 2001, 561–590) for the
numerical solution of the (modified in the sense of F. Catté et al. (SIAM J. Numer.
Anal. 29, 1992, 182–193)) Perona–Malik nonlinear image selective smoothing equa-
tion (called anisotropic diffusion in image processing). The adaptive aproach is di-
rectly at hand because a solution tends to be flat in large subregions of the image, and
thus it is not necessary to consider the same fine resolution of computations in the
whole spatial domain. This access reduces computational effort, because the coars-
ening of the computational grid rapidly reduces the number of unknowns in the linear
systems to be solved at discrete scale steps of the method. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

An image can be modeled as a real function u0(x) representing values of gray-level inten-
sity, defined in some rectangular subdomain � ⊂ IRd (in practice d = 2 or 3). Basic tasks of
image processing and computer vision—such as selective image smoothing, enhancement,
restoration, segmentation, edge detection, shape analysis, optic flow computations—have
been recently modeled by the application of evolutionary PDE to u0(x). Such approach is
known as image multiscale analysis [1, 3, 14], since the initial image u0(x) = u(0, x) is
associated with a sequence of images u(t, x), depending on an abstract parameter t > 0
called scale. The well-known examples are nonlinear diffusion equations of Perona–Malik
type [24, and, e.g., 7, 10, 11, 27] and generalized mean curvature flow equations [2, 26, and,
e.g., 15, 9, 16, 19, 20]. In this paper we are dealing with the Perona–Malik-type problem
suggested by Catté et al. [7] in the form

∂t u − ∇ · (g(|∇Gσ ∗ u|)∇u) = f (u0 − u) in QT ≡ I × �, (1)
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∂νu = 0 on I × ∂�, (2)

u(0, ·) = u0 in �, (3)

where � ⊂ IRd is a rectangular domain, I = [0, T ] is a scaling interval, and g(s) is a
decreasing function,

g(0) = 1, 0 < g(s) → 0 for s → ∞, (4)

Gσ ∈ C∞(IRd ) is a smoothing kernel with
∫

IRd

Gσ (x) dx = 1 (5)

and Gσ (x) → δx for σ → 0, δx -Dirac function at point x,

f is a Lipschitz continuous, nondecreasing function, f (0) = 0, (6)

u0 ∈ L2(�). (7)

The diffusion process of (1) is governed by the shape of function g and by its dependence
on ∇u, which is in a sense an edge indicator. Using Eq. (1) with ∇u instead of ∇Gσ ∗ u was
suggested by Perona and Malik in [24]. Catté et al. in [7] slightly modified the equation (for
σ small the models are close), making it possible to prove existence and uniqueness of a
weak solution for the modified model, making the model less sensitive to noise, and keeping
the practical advantages of the original formulation. Other aproaches to Perona–Malik edge-
enhancing diffusion are given, e.g., in [13, 21].

For the numerical solution of (1)–(3), we adjust a technique suggested and analyzed
in [18]. It is based on semi-implicit discretization in scale and on the so-called finite volume
method in space. Recently, the finite volume method has been widely used in computational
sciences and engineering since it is based on physical principles as conservation laws, is
local, and is easy implemented. Despite other methods (finite elements, finite differences)
in the finite volume method, discrete approximations of a solution of partial differential
equation are considered to be piecewise constant in control volumes (cells), which in image
processing corresponds to the pixel structure of a discrete image. This makes analysis of
convergence of the finite volume method to a weak solution of the continuous problem more
difficult [18] but on the other hand, from a conceptional point of view such an approach
seems to be the most natural for image processing. Semi-implicitness of the method means
that nonlinearity of the equation is treated from the previous discrete scale step; i.e., the
scheme is linear and leads to a solution of sparse linear systems in each discrete scale step of
the algorithm. As the solution tends to be more flat with the increasing scale in large regions
of the image, we can improve considerably the efficiency of the method using adaptivity,
i.e., choosing nonuniform grids with much less finite volumes. Since the whole information
about the image is contained in the initial grid and there is no spatial movement of the edges,
no refinement is needed and we work just with grids, elements of which are obtained by
the merging of pixels. This process is called coarsening in numerical methods for solving
PDEs. In this paper, we present a coarsening strategy for rectangular grids and join such a
strategy with the finite volume method for solving (1)–(3).

The adaptivity for the finite element method [10] in image processing applications has
been suggested in [5] (and generalized to the 3D case in [6]). This adaptive finite element
method has been based on triangular grids generated by bisection [4] which are successively
coarsened during the diffusion process. The approach given in [5] has been modified for



24 KRIVÁ AND MIKULA

bilinear finite elements on rectangular grids in 2D and 3D by Preusser and Rumpf in [25].
They also improves storage requirements of the method by procedural handling of adaptive
grids and applied nonlinear anisotropic diffusion in 2D and 3D flow field visualization.

The rest of this paper is organized as follows. In Section 2 we present the idea of coars-
ening. Section 3 is devoted to the finite volume method on nonuniform grids based on
coarsening. Section 4 describes application of the adaptive finite volume method to real and
artificial images and gives some computational comparisons.

2. COARSENING STRATEGY BASED ON QUADTREES

In this section we describe how to generate adaptively coarsened grids used in discrete
scale steps of the computational method. The initial image is given as a set of discrete
gray values on pixels of the uniform grid. At the beginning and especially with increasing
scale, we can merge cells using some coarsening criterion, and instead on the regular
grid we can work on the irregular adaptive structure. For its construction we chose an
approach based on quadtrees, where the adaptive grid is represented by the leaves of quadtree
structure. However, instead of organizing the resulting structure into a tree (which is known
as being inconvenient when access to neighbors is needed) we use a procedural approach and
maintain the field of indicators (see also [25]), which enable us to find out easily whether a
given cell or its neighbor can be merged. Traversing this structure we stop on a higher level
of hierarchy (i.e., on a coarser grid) if the so-called coarsening criterion is fulfilled for the
cell. We consider the following coarsening criterion: The cells are merged if a difference in
intensities is below a prescribed tolerance ε.

After creating the structure by setting the indicator field we calculate diffusion coeffi-
cients by its recursive traversing. In such way we create a system of linear equations that
is then solved using the iterative method with low memory reguirements. In order to sim-
plify creating the matrix of the linear system we require that the ratio of the sides of two
neighboring squares be 1 : 1, 1 : 2, or 2 : 1. Later, such a structure is called balanced.

2.1. Creating the Adaptive Grid

Without lost of generality, let us have an image with 2n × 2n pixels. Then the indicator
field has dimensions (2n + 1) × (2n + 1) (see Fig. 1). Setting the values of the indicator

FIG. 1. Image field and indicator field together with image stencil and corresponding stencil in the indicator
field.
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FIG. 2. The role of the indicator field in balancing the structure. The grid on the right is not created in the
coarsening process.

field at the beginning we start on the lowest level of the structure (i.e., on the pixel structure
of the image). We try to merge the cells into 2 × 2 cells according to the coarsening crite-
rion. In order to perform merging we can use two stencils. One stencil (2 × 2, 4 × 4, . . .)
moves across the image and the other (3 × 3, 5 × 5, . . .) stencil moves across the indicator
field. Every 2 j × 2 j image stencil has the corresponding (2 j + 1) × (2 j + 1) stencil in the
indicator field. While neighboring image stencils are not overlapping, their corresponding
indicator stencils share the side. With the help of stencils the values in the indicator field
are set in such a way that:

1. they indicate whether the inspected cell on the higher level contains a quadruple
suitable for merging. If intensities in the quadruple are not within the range of ε, then the
position in the center of the indicator stencil is set to 1; otherwise it is left 0;

2. they help to maintain the structure as balanced. More precisely, after finding out that
the inspected quadruple cannot be merged, not only the central node of the indicator stencil
is set to 1, but this value is set also to the corners of the stencil.

Since two corners on the lower level become middle points on the side of the stencil, on
the higher level we can control the merging of the neighboring cells and thus keep the
structure balanced. For example, a structure as in the right half of Fig. 2 is not created in
the coarsening process.

If four cells are merged into a larger one, then a new value, given by the average of old
values, is stored in the left lower corner of the image stencil corresponding to the cell. This
becomes the value representing the intensity of the merged pixels. Moreover, we remember
maximal and minimal values for the merged quadruple in auxiliary fields (they can be free
after creating the structure). Testing just the intensity differences in the coarsening criterion
using the recursive process could cause a cumulation of errors, and in special cases the
resulting difference could be greater than ε. Such a situation is depicted in Fig. 3. All 2 × 2

FIG. 3. Possible cumulation of errors, which is supressed in the coarsening process.
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cells fulfill a coarsening criterion for ε = 2, and their new values are set to the average.
If we test just these new values for processing the higher level, the coarsening criterion is
fulfilled again. However, the intensity difference of the original pixels is 4, twice behind the
tolerance. Thus, working on higher levels we calculate the minimum of all minimal values
and the maximum of all maximal values for given cells and test their difference.

3. FINITE VOLUME SCHEME ON ADAPTIVE GRID

In this chapter we introduce the finite volume computational scheme for solving (1)–(3)
on an adaptive grid obtained by means of the coarsening algorithm described in the previous
section. The finite volume method given in [18] cannot be used straightforwardly in such
a case. We will explain our strategy on how to adjust the scheme for adaptive nonuniform
grids. First we recall the method from [18] and then present adjustments due to adaptivity.

Let τh be a uniform mesh of � with cells p of measure m(p) (we assume rectangular cells
here). For every cell p we consider a set of neighbors N (p) consisting of all cells q ∈ τh

for which the common interface of p and q, denoted by epq , is of nonzero measure m(epq ).
In the numerical scheme we will provide computations in the series of scale steps starting

with ū0
p, p ∈ τh , corresponding to the given intensities on the pixel structure of the initial

discrete image. We assume that

ū0
p = 1

m(p)

∫
p

u0 (x) dx, p ∈ τh ; (8)

i.e., the discrete image intensity represents the average cell value of the continuous intensity
function u0(x). In the finite volume method, in every subsequent discrete scale step we get
again piecewise constant approximations ūn

p, p ∈ τh, n = 1, 2, . . . of continuous solution
(with possibly the same interpretation as cell averages of continuous solution). Convergence
of such approximations to a weak solution of (1)–(3) provided the length of the scale step
and the size of the pixel tend to zero is given in [18]. In [18], it is assumed that for every p,
there exists a representative point x p ∈ p, such that for every pair p, q, q ∈ N (p), the vector
(xq − x p)/|xq − x p| is equal to the unit vector n pq , which is normal to epq and oriented
from p to q . (Let us note, that this assumption is not fulfilled for adaptive grids given by
the coarsening algorithm.) In the simple case of a uniform grid, we can take x p just as the
center of the pixel. Then let x pq be the point of epq intersecting the segment x pxq . Then we
define the coefficients

Tpq := m(epq )

|xq − x p| (9)

and

gσ,n
pq := g (|∇Gσ ∗ ũ(x pq )|), (10)

where ũ is a periodic extension of the discrete image computed in the nth scale step. The
finite volume scheme on the uniform grid is then written as follows:

Let 0 = t0 ≤ t1 ≤ · · · ≤ tNmax = T denote the scale discretization steps with tn = tn−1 +
k, where k is the discrete scale step. For n = 0, . . . , Nmax − 1 we look for ūn+1

p , p ∈ τh ,
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satisfying the system of linear equations

(
m(p)

k
+

∑
q∈N (p)

gσ,n
pq Tpq

)
ūn+1

p −
∑

q∈N (p)

gσ,n
pq Tpq ūn+1

q = m(p)

k
ūn

p + f
(
ū0

p − ūn
p

)
m(p). (11)

The scheme (11) is linear semi-implicit in scale, since the scale derivative is replaced by
the backward difference and the nonlinear terms of Eq. (1) are treated from the previous
scale step while the linear terms are discretized on the current scale level. After such scale
discretization, (11) is derived by integrating the corresponding elliptic equation over the cell,
applying the divergence theorem and approximating the normal derivative on the boundary
of the cell by (ūq − ū p)/|xq − x p|.

In the scheme (11) we must compute term (10), i.e., the vector

∇Gσ ∗ ũ(x pq ) =
(

∂(Gσ ∗ ũ)

∂x
(x pq ),

∂(Gσ ∗ ũ)

∂y
(x pq )

)
,

which is an input of the Perona–Malik function g. For that goal, we use the property of
convolution

∂(Gσ ∗ ũ)

∂x
(x pq ) =

(
∂Gσ

∂x
∗ ũ

)
(x pq ).

Then one gets

(
∂Gσ

∂x
∗ ũ

)
(x pq ) =

∫
IRd

∂Gσ

∂x
(x pq − s)ũ (s) ds =

∑
r

ūn
r

∫
r

∂Gσ

∂x
(x pq − s) ds (12)

and thus

∇Gσ ∗ ũ (x pq ) =
∑

r

ūn
r

∫
r
∇Gσ (x pq − s) ds, (13)

where the sum is restricted to control volumes r inside Bσ (x pq ), the ball centered at x pq

with radius σ . The ball Bσ is given either by a support of compactly supported smoothing
kernels or it can represent a “numerical support” of the Gauss function (a domain in which
values of the Gauss function are above some treshold given, e.g., by a computer precision).
In any case just a finite sum in (13) is evaluated and coefficients of this sum, namely∫

r ∇Gσ (x pq − s) ds, can be precomputed in advance using a computer algebra system,
e.g., Mathematica. It is worth noting that such an approach for evaluation of a diffusion
coefficient gσ,n

pq avoids explicit computation of gradients. We use this fact also in an adaptive
scheme where computation of gradients on a nonuniform grid with the so-called “hanging
nodes” could cause some difficulties.

As we have already noted, it is not possible to apply the previous scheme straightforwardly
to adaptive nonuniform grids obtained by the coarsening algorithm. However, it is possible
to modify it. For that goal, we will change a meaning of x pq in (10) and definition (9) of
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Tpq . Let in the sequel x pq be the middle point of the common boundary of two neighboring
cells (with possibly nonequal measures). The definition of gσ,n

pq will then remain the same.
The only practical difference will be that the sum in (13) can be evaluated over nonequal
control volumes. However, one can precompute all possible coefficients of the sum again
in advance for every candidate larger cell on higher levels of hierarchy.

In the definition of Tpq in (9), the value |x p − xq | represents the distance used for approx-
imation of the normal derivative (ūq − ū p)/|xq − x p|. Of course, in the case of a uniform
rectangular grid with a unified size of cells, Tpq is equal 1. In the case of nonuniform rectan-
gular grids, we can set this parameter using the average length of sides of two neighboring
cells. Since our grids are balanced we put

Tpq := 1 if two inspected adjacent cells p, q are of equal size,
(14)

Tpq := 2

3
otherwise.

Let us note that in this case we obtain a scheme equivalent to (11) for a uniform grid with
cells larger than the size on the finest level. The second possibility that we consider is given
by

Tpq = min{l p, lq}, (15)

where l p and lq are the lengths of the sides of two adjacent cells p, q (of possibly nonequal
measure). With this adjustment, for a uniform grid but with larger cells we do not get
a scheme equivalent to (11). It is likely we assume an exchange of intensity between
neighboring cells just in a strip of unit thickness along a boundary of a cell.

As our adaptive finite volume schemes we will consider system (11) where x pq represents
the middle point of the common boundary of two neighboring cells and Tpq is given by
either (14) or (15). In the next section we will use both schemes for computations and present
their results. They both represent reasonable modification of the basic scheme from [18].

In every discrete scale step, both schemes give a linear system that is symmetric and
strictly diagonally dominant (with positive diagonal and negative numbers out of diagonal),
which guarantees the existence of its unique solution, for which also L∞ stability can be
easily proved provided f ≡ 0.

FIG. 4. Initial image (uniform noise), result of smoothing and adaptive grid (Example 1).
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FIG. 5. Initial image (uniform noise), result of smoothing and adaptive grid (Example 2).

4. NUMERICAL EXPERIMENTS

In this section we present experiments with some real as well as artificial images perturbed
by various types of noise. In simulations, we use the function

g(s) = 1

1 + K s2
,

and the convolution is realized with the kernel

Gσ (x) = 1

Z
e

|x |2
|x |2−σ2 ,

where the constant Z is chosen so that Gσ has unit mass. In order to compute the diffusion
coefficient gσ,n

pq we use the concept given in (13). In numerical experiments we have chosen
σ = 1

2 , i.e., half size of the cell on the finest level, which is the fastest and simplest approach.
In all examples, we work with gray-level images with intensity between 0 and 255, and
before computations we transform intensity into the interval [0, 1]. In Examples 1–4, the
results of the adaptive scheme (15) are presented (the results of the scheme (14) are practi-
cally very similar); in all further examples the scheme (14) has been used for presentation.
In the figures we document the results of multiscale analysis (iterative filtering) as well
as adaptive computational grids. In the tables we present a comparison of CPU times for
adaptive/nonadaptive strategies and decreasing number of cells in the finite volume method.
In every discrete scale step we first adjust the grid using the corsening algorithm, and after

FIG. 6. Initial image (10% salt and pepper noise), result of smoothing and adaptive grid (Example 3).
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FIG. 7. Initial image (50% salt and pepper noise) and results of successive smoothing (Example 4).

that we solve the linear system with a corresponding number of unknowns given in the
tables. From experiments, one can see that the speed-up due to adaptivity is about three in
rather general situations. All experiments were done on Pentium II (400 MHz) with a Linux
operating system.

FIG. 8. Processing of medical image (Example 5); original (top left), nonlinear multiscale analysis after
25 scale steps (top right), final adaptive finite volume grid (down).
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FIG. 9. Scanned ex libris from Lycean library in Kezmarok (Example 6).

Examples 1 and 2. In these two numerical experiments we add to a double-valued
256 × 256 image û a kind of uniform noise by a transformation

u0(x) = MIN(255, MAX(0, û(x) − C + ψ)/255,

where ψ is a random function generating integer values in [0, 2C]. In Example 1 the intensity
difference in û was 150 and C = 40; in Example 2, the intensity difference was only 50 and
C = 100. Figures 4 and 5 and Tables 1–4 show results. We have computed 10, respectively
20, scale steps of the adaptive algorithm. In Example 2 the comparable smoothing results
were obtained after 25 steps of the nonadaptive algorithm with the same parameters. Scale
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FIG. 10. Result of image selective smoothing using the adaptive finite volume method (Example 6).

step k = 1 and the coarsening criterion in Example 1 was ε = 0.025, and in Example 2
ε = 0.012. K = 1 in both experiments.

Examples 3 and 4. In these two numerical experiments we work with 512 × 512 images
perturbed by salt and pepper noise. In Example 3 the intensity difference in û was 150, and
this was perturbed by 10% noise. For ε = 0.012 we need 10 unit scale steps of the adaptive
algorithm and 15 steps of the nonadaptive algorithm to get the results given in Fig. 6. Table 5
and Table 6 show the report on the role of coarsening (number of pixels for the initial image
was 262 × 144). In Example 4 the intensity difference in û was 50, and 50% salt and pepper
noise was used. For ε = 0.012 we need 19 unit scale steps of the adaptive algorithm and
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TABLE 1
Comparison of CPU Time for

Adaptive/Fixed Mesh Strategies
in Example 1

Pentium

Adaptive 3.04 s
Nonadaptive 9.81 s

TABLE 2
Decreasing Number of Unknowns in Example 1

Scale step 1 2 3 4 5 6 7 10

No. of unknowns 65437 61936 32542 9595 7051 4405 3832 3802

TABLE 3
Comparison of CPU Time for

Adaptive/Fixed Mesh Strategies
in Example 2

Pentium

Adaptive 7.03 s
Nonadaptive 18.15 s

TABLE 4
Decreasing Number of Unknowns in Example 2

Scale step 1 3 5 8 10 14 16 20

No. of unknowns 65533 65218 57061 37060 16378 8278 7039 6301

TABLE 5
Comparison of CPU Time for

Adaptive/Fixed Mesh Strategies
in Example 3

Pentium

Adaptive 11.41 s
Nonadaptive 50.13 s

TABLE 6
Decreasing Number of Unknowns in Example 3

Scale step 1 3 4 6 7 8 9 10

No. of unknowns 127618 104947 91678 56941 33928 15227 10774 9730

TABLE 7
Comparison of CPU Time for

Adaptive/Fixed Mesh Strategies
in Example 4

Pentium

Adaptive 26.98 s
Nonadaptive 86.51 s
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TABLE 8
Decreasing Number of Unknowns in Example 4

Scale step 1 4 6 8 9 10 13 16 19

No. of unknowns 233623 212041 133129 62701 49423 31375 14758 8812 7351

30 steps of the nonadaptive algorithm to get the results given in Fig. 7 (we plot the 10th
and 19th scale steps of the adaptive algorithm). The CPU times and decreasing number of
unknowns are reported in Tables 7 and 8. K = 1 in both experiments.

Example 5. An image of brain (512 × 512 pixels) is processed in this example. We run
a multiscale analysis process for 25 scale steps with length k = 0.02 and with ε = 0.025,
K = 12. The result and grid is documented in Fig. 8. The number of unknows decreased
from 262144 to 68062. Computational speed-up due to adaptivity was about 2.5.

Example 6. Figure 9 shows scanned ex libris from the Lycean library in Kežmarok
(690 × 1024 pixels). Since the picture contains small dark spots and thin lines that are
difficult to preserve during smoothing, we restrict Perona–Malik-type diffusion only to
values over a certain threshold (in our case for intensities greater than 80). Such models
were studied mathematically in [11, 12]. Here, we cut the dark pixels off and for an arising
“internal boundary” we ensure zero Neumann conditions. Practically it means that for pixels
below the threshold, the equation in the linear system is omitted. Figure 10 shows the result
of such a smoothing accompanied with coarsening strategy. Together with conservation of
dark spots we conserve also some discrepancies that can be found easily now and removed
by applying, e.g., the heat equation in specified subregions of the image (here we clean the
borders of the image in such a way).
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