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ADAPTIVE DIAMOND CELL FINITE VOLUME METHOD IN
IMAGE PROCESSING

ZUZANA KRIVÁ ∗ AND KAROL MIKULA†

Abstract. New adaptive finite volume scheme for image processing applications is presented. It
is based on a combination of primal, dual and diamond cell grids which leads to an efficient method
built for the quadtree structures obtained by a coarsening process. The method is applied to the
regularized Perona-Malik equation in image filtering.
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1. Introduction. The regularized Perona-Malik nonlinear anisotropic diffusion
is one of the best known models for removing the noise from the image data sets [13, 4,
1]. For this model, several adaptive techniques were suggested, e.g. in [2, 3, 10, 11, 14].
The adaptive approach is especially efficient if there are large areas of approximately
constant intensity in the image domain, because the underlying grid and thus the
number of unknowns in the resulting linear systems can be significantly decreased.
Here we present a new adaptive method based on the finite volume discretization
(FVM) of nonlinear diffusion equations [9, 12, 7] where the so called diamond cell
technique, see e.g. [5, 6, 8, 7], is used for evaluation of gradients in conformal as well
as nonconformal vertices of the adaptive quadtree grid.

2. Perona-Malik nonlinear anisotropic diffusion. Since the end of the 80s,
the nonlinear diffusion equations have been used for processing of 2D and 3D images.
The pioneering work of Perona and Malik [13] who modified the linear heat equation
to nonlinear diffusion preserving edge positions, was followed by the nonlinear PDE
suggested by Catté, P.L.Lions, Morel and Coll [4] which is called the regularized
Perona-Malik equation

ut −∇.(g(|∇Gσ ∗ u|)∇u) = 0.(1)

Here, u(t, x) is an unknown function representing smoothed (filtered) image inten-
sity defined in QT ≡ [0, T ] × Ω. The equations are accompanied by zero Neumann
boundary conditions and the initial condition

∂u

∂ν
= 0 on I × ∂Ω,(2)

u(0, x) = u0(x) in Ω,(3)

where ν is the unit normal vector to the boundary of Ω. We assume that g : IR+
0 →

IR+ is a nonincreasing function , g(0) = 1, and we admit g(s) → 0 for s → ∞,
Gσ ∈ C∞(IRd) is a smoothing kernel (e.g. the Gauss function), u0 ∈ L∞(Ω). The
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convolution is defined by ∇Gσ ∗ u =
∫

IRd

∇Gσ(x − ξ)ũ(ξ) dξ, where ũ is an extension

of u to IRd, e.g. a reflective periodic extension of the image [4].

3. Adaptive grid and finite volume discretization. Using FVM, we may
subdivide the continuous image domain into rectangular regions and look for a solu-
tion, which will be constant over each such region - finite volume. In this paper, these
regions will be given by an adaptive grid.

Adaptive grid. The initial image is given as a set of discrete grey (or RGB)
values on cells of an initial regular - nonadaptive grid, which corresponds to the pixel
structure of the image. In a nonadaptive method every element of such a grid will
correspond to one unknown in a resulting linear system. To decrease the number
of unknowns, we can decrease number of elements: at the beginning and especially
with progress of smoothing algorithms, we can merge cells using some ”coarsening”
criterion and instead on the regular mesh, we will work on the irregular adaptive one.
For its generation we chose an approach based on quadtrees in 2D (eventually octrees
in 3D), which are the most convenient way to produce graded grids. In our case it
means, that we have small elements, where the image information changes, i.e. in
2D near edges, and we have large ones, where it is of constant mean. Moreover, the
quadtree itself may be computed in integer arithmetic and we will be able to suppress
disadvantages of irregular grids: the storing of the grid can be performed in a very
economic way. The technique of building the quadtree (and octree) adaptive grids
is described in [10, 11] and we use the same coarsening criterion: the cells are
merged if a difference in their intensities is below a prescribed tolerance ε. Moreover,
the adaptive grids are balanced, it means that the ratio of the sides of adjacent cells
is 1:1, 1:2 or 2:1. During the computations, the access to the neighbours of a processed
finite volume is needed and balancing of a grid makes it easier. It also enables to form
the diamond cells for computing the gradients.

Fig. 1. An example of an adaptive grid (on the right) for the image plotted on the left for ε = 0.

Let Th be an adaptive grid with finite volumes p of measure m(p) and let N(p)
be the set of neigbors q ∈ Th for which common interface of p and q is a line segment
epq with nonzero measure m(epq). Having the grid, we can integrate the diffusion
equation over a finite volume p and we use the divergence theorem to obtain

∫

p

∂tudx −

∫

∂p

g(|∇Gσ ∗ u|)∇u.~np ds = 0,(4)
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where ~np = (nx, ny) is the outward unit normal vector to ∂p. The equation (4) is
called the integral form of the diffusion equation (1).

Replacing the time derivative by backward difference using the uniform time step
τ = tn − tn−1, where tn−1, tn are previous and current time steps, respectively, and
denoting by

Fpq =

∫

epq

g(|∇Gσ ∗ un−1|)∇un.~npq ds(5)

the semi-implicit flux through boundary epq between p and its neighbor q, the semi-
implicit scheme can be rewritten in the following general form

(un
p − un−1

p ) m(p) − τ
∑

q∈N(p)

Fpq = 0,(6)

where un
p is a representative value of solution in the finite volume p at time step tn.

The flux Fpq contains a gradient of the smoothed solution in tn−1 and a normal
derivative of solution at time step tn evaluated on the boundary epq and we have to
approximate them numerically. To that goal we will work with three types of grids.

• Primal grid. It is the adaptive grid with cells - finite volumes - obtained
by merging controlled by the coarsening criterion, see fig 1. The numerical
solution un

p will be computed for every finite volume of the primal grid and can
be understood as the mean value on the cell or value at the representation
point of the cell which is given by its center of the mass. The vertices of
the primal grid will be also used in our adaptive method, but they do not
represent degrees of freedom in our computations.

• Diamond cell grid. It is used for evaluation of gradients on the boundaries
of finite volumes, i.e. on the boundaries of cells of the primal grid. The
diamond cell is a quadrilateral with diagonals connecting the centers of finite
volumes and endpoints of the boundary edge. The example of such a grid is
in fig. 2 on the left.

• Dual grid for bilinear approximation. This grid is used for interpolation
of solution values in the vertices of the primal grid which will be used in the
gradient approximation by the diamond cell method on the diamond cell grid.
The example of the dual grid for vertices of the primal grid is plotted in fig. 2
on the right.

4. Diamond cell method for evaluation of gradients. In (5) we can see,
that we must evaluate the gradient on the boundaries of the finite volumes. To do so,
we use the diamond cell method (see e.g. [5, 6, 7]). For every edge, the diamond cell
is constructed in such way, that it connects representative points of the finite volumes
and endpoints of the boundary edges, on which we evaluate the gradient (see fig. 2).

To get the approximation of the averaged gradient ∇Du on the diamond cell D,
we use the divergence theorem to obtain

∇Du =
1

m(D)

∫

D

∇udx =
1

m(D)

∫

∂D

u~nDds,(7)

where ~nD is the outward normal unit vector to the boundary of D and m(D) is the
area of D.
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Fig. 2. The diamond cell grid (grey lines on the left) and the dual grid (grey lines on the right)
superimposed on the primal grid (bold black lines in both subfigures).

Let σ be the edge of ∂D, then (7) is approximated by ∇Du where

∇Du =
1

m(D)

∑

σ∈∂D

m(σ)
1

2

(

uN1(σ) + uN2(σ)

)

~nσ,(8)

where N1(σ) and N2(σ) are the endpoints of the edge σ with the length m(σ).

4.1. The formula for evaluating the gradient in the local basis. Let the
diamond cell D be constructed to an edge e which forms the boundary of two adjacent
control volumes p and q. The gradient and the flux on e can be expressed in the local
basis determined by the couple of vectors (~ne,~te), which are normal and tangential to
e, by a general formula, cf. [5, 6, 8].

Let the representative point of the processed finite volume p be denoted xW and
the representative point of its neighbour q be denoted by xE . The endpoints of the
edge e are denoted by xS and xN in such way that the notation corresponds to the
cardinal directionality, see fig.3, and let uW , uE , uS , uN denote the values of u in those
points. Let ~ne be the normal unit vector to e outward to p and ~te be a unit vector
parallel to e such that (xN − xS).~te > 0.

In the local basis, the general formula for evaluation of the gradient of u on e

corresponding to D by the the diamond cell approach (8) is given by

∇Du =

(

uE − uW

(xE − xW ).~ne

− αe

uN − uS

|xN − xS |

)

.~ne +

(

uN − uS

(xN − xS).~te

)

.~te, where

αe =
(xE − xW ).~te
(xE − xW ).~ne

.(9)

Example 1. Let us apply the formula (9) to the case of finite volumes of nonequal
size depicted in fig.3. The length of the common boundary is h. First let us take the
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Fig. 3. The notation for (9).

case of the diamond cell depicted on the left. We get

∇Du =

(

uE − uW

3
2h

−

(

−
1

3

uN − uS

h

))

.~ne +

(

uN − uS

h

)

.~te =

=

(

2

3

uE − uW

h
+

1

3

uN − uS

h

)

.~ne +

(

uN − uS

h

)

.~te .(10)

In the case of the diamond cell D on the right, we have

∇Du =

(

uE − uW

3
2h

−
1

3

uN − uS

h

)

.~ne +

(

uN − uS

h

)

.~te =

(

2

3

uE − uW

h
−

1

3

uN − uS

h

)

.~ne +

(

uN − uS

h

)

.~te .(11)

The previous Example leads to the following observations:
• (xE − xW ).~ne > 0 and equal to h (for the finite volumes of the same size) or

3
2h (for the finite volumes of the nonequal size). Thus the first part of the
normal derivative term is multiplied by 1 or 2

3 .

• αe includes projections of −−−−→xW xE onto ~ne and ~te. In the case of finite volumes
of the same size, −−−−→xW xE ⊥ ~te and αe = 0. Otherwise, αe is ±1

3 . The signum
of αe is given by the numerator, because the denominator containing (xE −
xW ).~ne is always positive. Thus it depends on the angle between −−−−→xW xE and
−−−→xSxN (resp. between −−−−→xW xE and ~te.)

4.2. Interpolation of u in the vertices of the primal grid. One diagonal
of the diamond cell always connects a couple of vertices xS , xN of the primal grid. In
these vertices the values of the function u will be approximated using the dual grid
and bilinear interpolation.

Every internal vertex of the primal grid is a corner of three (in case of a hanging
vertex) or four finite volumes (in conformal situation). If we connect the centers of
these finite volumes, we get a cell of dual grid. For any vertex, such cell is a triangle or
a quadrilateral, see fig.2 right. If we construct a bilinear (eventually linear) function
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using values of the solution in vertices of the quadrilateral (eventually triangle) given
by degrees of freedom of solution computed on the primal grid, we get the weights
necessary for interpolation in xS , xN , respectively, see fig.4 for all possible cases arising
in our method.

Fig. 4. The weights for bilinear interpolation.

4.3. Evaluation of the diffusion coefficient and the flux. In the equation
(1), the gradient is used in two cases: its norm is an input of the Perona-Malik function
g representing diffusion coefficient, and, we need the gradient on the boundary of finite
volume multiplied by the outward unit normal in the flux evaluation, see (5).

4.3.1. Evaluation of the diffusion coefficient g(|∇Gσ ∗u|). The convolution
Gσ ∗ u can be replaced by the solution of the linear heat equation (i.e. the equation
(1) with g ≡ 1), at time σ. The linear heat equation will be solved numerically by one
implicit time step on the same adaptive grid. To that goal we consider σ instead of τ

in (5) and the diffusion flux Fpq is replaced by the flux for the linear heat equation.
Using (9) the linear diffusion flux can be approximated by

F c
pq = ∇Du.~npq m(epq) =

(

uE − uW

(xE − xW ).~npq

− αepq

uN − uS

|xN − xS |

)

m(epq),(12)

where D is the diamond cell for the edge epq between p and q.
To get a more compact formula for the flux (12), we change notation as follows.

The value in p resp. q will be denoted by up resp. uq, and, if the finite volumes are of
different size, the endpoints of the common edge will be denoted by xH in case of a
hanging vertex (here, a vertex belonging to three finite volumes) and xR for a regular
(conformal) vertex (here, a vertex belonging to four finite volumes). Then ũR and ũH

will be the values in xR and xH obtained by the bilinear approximation. The first
part of the flux (12) will be written in the form T 1

pq(uq − up) and the second part in
the form T 2

pq(ũR − ũH). We will distinguish three cases:
• q is of the same size as p. Then F c

pq = uq − up , so T 1
pq = 1 and T 2

pq = 0.
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• q is of the half size of p. The situation is depicted in fig. 5. On the left α = 1
3 ,

on the right α = −1
3 , thus F c

pq = 2
3 (uq − up) −

1
3 (ũR − ũH), T 1

pq = 2
3 and

T 2
pq = − 1

3 .
• q is of the double size of p. The situation is depicted in fig.6. On the left

α = 1
3 , on the right α = − 1

3 , thus F c
pq = 2

3 (uq − up) + 1
3 (ũR − ũH), T 1

pq = 2
3

and T 2
pq = 1

3 .

Fig. 5. Evaluation of the flux in the case of a smaller neighbor. The signum of α depends on
the angle between the vector xpxq and ~te.

Fig. 6. Evaluation of the flux in the case of a bigger neighbor. The signum of α depends on
the angle between the vector xpxq and ~te.

The solution of the linear heat equation at time σ will be denoted by uc. Then
the diffusion coefficient g(|∇Gσ ∗ u|) on any edge e is replaced by g(|∇Duc|) where
g(s) = 1

1+K∗s2 ,K ≥ 0 and D is a diamond cell corresponding to e.

4.3.2. Evaluation of the flux for the Perona-Malik equation. Now, the
flux (5) can be approximated by

Fpq = g(|∇Duc|)T 1
pq(uq − up) + g(|∇Duc|)T 2

pq(ũR − ũH),(13)
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where
• for q of the same size as p, T 1

pq = 1 and T 2
pq = 0.

• for q is of the half size of p, T 1
pq = 2

3 and T 2
pq = −1

3 .

• for q of the double size of p, T 1
pq = 2

3 and T 2
pq = 1

3 .

5. The adaptive finite volume scheme for the regularized Perona-Malik
equation. In order to define the scheme the approximated value in a hanging vertex
of the edge epq will be denoted by ũH(epq) and in a regular one ũR(epq). Now, we can
write the fully discrete semi-implicit adaptive finite volume scheme for solving
regularized Perona-Malik problem:
Let 0 = t0 ≤ t1 ≤ ... ≤ tN = T denote the time stepping with tn = tn−1 + τ , where τ

is the time step. For n = 1, ..., N we look for un
p , p ∈ Th satisfying

un
p − un−1

p

τ
m (p) =(14)

∑

q∈N(p)

g(|∇Duc|)T 1
pq

(

un
q − un

p

)

+ g(|∇Duc|)T 2
pq

(

ũn
R(epq) − ũn

H(epq)

)

,

where uc replaces the convolution Gσ ∗ un−1 and is obtained by solving the system

uc
p − un−1

p

σ
m (p) =

∑

q∈N(p)

T 1
pq

(

uc
q − uc

p

)

+ T 2
pq

(

ũc
R(epq) − ũc

H(epq)

)

,(15)

for some σ (usually σ < τ) and T 1
pq and T 2

pq are given in Section (4.3.2).

The adaptive algorithm has six phases in every time step:
1. We build the primal - adaptive grid according to the coarsening criterion.
2. We interpolate the values in the vertices of this grid using bilinear interpola-

tion by recursive traversal of the quadtree. During this traversal, for every
vertex of processed volume, all volumes containing the vertex must be de-
tected and according to their size the corresponding set of weights must be
determined. The pointers to volumes and weights are stored in the database
(because our scheme is semi implicit and we use Gauss-Seidel method for
solving the linear system).

3. We compute the coefficients of the system (15) by recursive traversal of the
quadtree corresponding to the adaptive grid.

4. We solve the linear system (15).
5. We compute the coefficients of the system (14) by recursive traversal of the

quadtree corresponding to the adaptive grid.
6. We solve the linear system (14).

6. Numerical experiments.

6.1. Experimental order of convergence (EOC) for the linear heat equa-
tion. Let us have the linear diffusion equation

ut − ∆u = f,(16)

where u = u(x, y, t), f = f(x, y, t), (x, y) ∈ (0, 1) × (0, 1) = Ω and t ∈ [T1, T2]. For
the function f(x, y, t) = cos(2πx) cos(2πy)(1 + 8π2t), the exact solution is given by
u(x, y, t) = cos(2πx) cos(2πy)t. We add numerically evaluated right hand side f to
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the scheme (14) with g ≡ 1 and solve the problem in time interval [0.5, 0.6]. We
compute L2(I, L2(Ω))-norm of the error by the formula

√

√

√

√

N
∑

n=1

τ
∑

p

(u(xp, tn) − un
p )2m(p).(17)

The experimental order of convergence is then evaluated by

EOC = log2

(

Ei

Ei+1

)

,(18)

where Ei, Ei+1 are the errors on subsequently refined (nonuniform adaptive) grids
obtained by dividing every finite volume into four subvolumes. Let us note that the
grid is not changing in time in the Experiments 1a, 1b and 2, although we solve the
time dependent problem.

Experiment 1a. The uniform grid is of the size 16×16 (h = 1
16 ) and by a coarsening

we construct our initial nonuniform grid with 160 finite volumes depicted in fig. 7.
To study EOC, we refine this grid three times. The evaluation of the errors is shown
in Table 1. The finest nonuniform grid and the corresponding numerical solution at
time 0.6 are depicted in fig. 8.

Fig. 7. The initial coarse grid and u0 for Experiment 1a.

Experiment 1b. In the second experiment we used a different initial nonuniform
grid, which is more irregular. The initial state and the numerical results are depicted
in fig.9 and fig.10. The evaluation of the errors is shown in the Table 1. In both cases
we observed the second order accuracy of the scheme.

Experiment 2. In this case we created an adaptive grid from a uniform one with
128×128 finite volumes using various values of the coarsening threshold ε, see section
3. Coarsening was adapted to the solution u(x, y, t) = cos(2πx)20 cos(2πy)t at time
t = 0.5, since the function has several ”flat” regions suitable for using adaptivity. We

performed one time step with τ = ( 1
128 )

2
and evaluated the error for different values

of ε. The results are displayed in Table 2 and show that no significant error increase
can be observed using adaptivity, while the number of finite volumes is decreased
which results in higher computation efficiency of the adaptive method.
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Fig. 8. The finest grid and numerical solution at time 0.6 for Experiment 1a.

Fig. 9. The initial coarse grid and u0 for Experiment 1b.

6.2. Applying the Perona-Malik adaptive algorithm to image filtering.
Experiment 3. Figure 12 shows the original image perturbed by an additive noise,
the result of smoothing and the resulting mesh in the upper row and the details are
presented in the lower row. We used g(s) = 1

1+Ks2 ,K = 2, τ = 0.0004, σ = 0.0001,
h = 0.01 and we performed 25 time steps. The initial image was of the size 256× 256
pixels and thus contains 65536 finite volumes. After 5 time steps, the number of finite
volumes decreased to 38215, after 10 time steps to 5824 and at the end we had 4423
finite volumes.

Experiment 4. The adaptive approach is especially efficient if we have large areas
of approximately constant intensity. We present 2D experiment dealing with a slice of
3D volume acquired by a two-photon laser scanning microscopy. The data represent
the nuclei of the zebra fish embryo, and many of the slices contain only small regions
of image information. Figures 13 and 14 shows the original noisy data, the result of
smoothing and the resulting mesh. We used ε = 0.008, τ = 0.0003, σ = 0.0002, K = 2
and h = 0.01. We performed 20 time steps. The initial image is of the size 512 × 512
and contains 262144 pixels. We observed a very fast decrease of finite volumes, after
one time step, it was 145358, after the second time step 10702 and at the end we
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Fig. 10. The finest grid and numerical solution at time 0.6 for Experiment 1b.

Table 1

EOC calculations, from the left: h means the size of finite volumes in the initial grid if there
would be no coarsening, τ is the time step, N is the number of time steps performed over T =
[0.5, 0.6]. Then the errors E(h) and EOC for both Experiments 1a and Experiments 1b are given.

Exper.1a Exper.1a Exper.1b Exper.1b
h τ N E(h) EOC E(h) EOC

1

16
0.003906 25 0.00708300 0.011175

1

32
0.000977 102 0.00170000 2.06 0.002872 1.96

1

64
0.000244 409 0.00041700 2.03 0.000728 1.98

1

128
0.000061 1638 0.00010400 2.00 0.000182 2.00

had 8170 finite volumes. While at the beginning, the linear system solving took 0.5
seconds, the final one was solved only in 0.02s. The figure 14 shows the details of the
data.
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Fig. 12. The adaptive smoothing of the regularized Perona-Malik PDE.

Fig. 13. The adaptive smoothing of the regularized Perona-Malik PDE.

Fig. 14. The adaptive smoothing of the regularized Perona-Malik PDE.


