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NONLINEAR DIFFUSION FILTERING INFLUENCED BY MEAN
CURVATURE∗

MICHAL KOLLÁR, KAROL MIKULA, RÓBERT ČUNDERLÍK†

Abstract. The paper introduces a new nonlinear diffusion filtering method on closed surfaces
such as a sphere, ellipsoid or the Earth’s surface. Our new model extends the regularized surface
Perona-Malik model by including a local extrema detector based on a mean curvature of processed
data. The model is thus represented by a nonlinear diffusion equation which filters noise while
preserves main edges, local extrema and details important for a correct interpretation of data. We
define a surface finite-volume method to approximate numerically the nonlinear parabolic partial
differential equation on a closed surface. The closed surface is approximated by a polyhedral surface
created by planar triangles representing subdivision of an initial icosahedron grid and we use a
piece-wise linear approximation of a solution in space and the backward Euler time discretization.
Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements,
namely the GOCE satellite observations. They aim to point out a main advantage of the new
nonlinear model which, on the contrary of Perona-Malik model, preserves local extremal values of
filtered data.
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1. Introduction. An important part of processing various kinds of measure-
ments that contain noise and other inaccuracies is data filtering. There are many
efficient filters that can reduce noise from observed data. Usually, linear filtering
methods like the Gaussian, Wiener or Kalman filters are used to process data, how-
ever, these kinds of filters are based on a uniform smoothing effect. It means they
successfully remove noise but at the same time smooth main structures. This can
cause serious inaccuracies in filter results. Non-uniform smoothing of filtered data
can be reached by nonlinear diffusion filters that can be locally adapted to data fea-
tures, such as gradients or curvature of the noisy data. In this paper we focus on
filtering methods mostly used in image processing that are based on the partial dif-
ferential equations approach [1]. This approach is based on a simple observation that
the Gauss function is fundamental solution of a linear heat (diffusion) equation. This
provides a possibility to replace the uniform Gaussian filtering, which is based on a
convolution of data with the Gauss function, by solving the linear diffusion equation
with an initial condition given by the processed data. Nonlinear diffusion filters are
based on an extension of the linear diffusion equation. At present, there are basically
two kinds of nonlinear diffusion approaches. The first one is the regularized Perona-
Malik model [7], where the diffusion coefficient depends on an edge detector [2]. The
second approach known as a mean curvature flow model is based on a geometrical
diffusion of level-sets of data.

In this paper we present an extension of nonlinear regularized surface Perona-
Malik model considered on a closed surface and introduced in [3]. Our experiences
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have shown that the Perona-Malik model successfully reduces noise while preserves
edges but it smooths local extrema of filtered data. This drawback can be overcome
by our modification, in which a diffusivity coefficient depends on the edge detector
as well as on the mean curvature of filtered data. Such an approach prevents from
smoothing of local extrema of filtered data.

The first part of the paper describes a modification of the linear diffusion on
a closed surface to its nonlinear forms, namely the regularized surface Perona-Malik
model and its extension by the local extrema detector. Then we derive a semi-implicit
numerical scheme for the proposed nonlinear diffusion equation using the surface finite
volume method. Finally, numerical experiments demonstrate advantages of such an
approach comparing results with ones obtained by the linear diffusion and the Perona-
Malik model.

2. Diffusion filtering on a closed surface. The linear diffusion of a scalar
function u on a closed surface Ω can be expressed by a parabolic partial differential
equation in the form

∂tu = ∆su,(2.1)

where ∆s represents the generalized Laplace operator on a surface known as the
Laplace-Beltrami operator. Eq. (2.1) corresponds to the heat equation on a closed
surface. Its fundamental solution is given by the Gauss function. Consequently,
a solution of the linear diffusion applied on some scalar function will be uniformly
smoothed, similarly as the Gaussian filtering. On the contrary, nonlinear filtering
allows nonuniform smoothing. This can be performed by a modification of the linear
model by the nonlinear scalar diffusivity function g leading to the nonlinear diffusion
equation [7]

∂tu = ∇s · (g∇su).(2.2)

In case of the regularized surface Perona-Malik model [3] the function g as a diffusivity
coefficient depends on surface gradients

∂tu = ∇s · (g(|∇suσ|)∇su),(2.3)

where g represents an edge detector in the form

g(|∇suσ|) =
1

1 +K|∇suσ|2
, K ≥ 0,(2.4)

where ∇suσ is a surface gradient of u smothed by the linear surface diffusion in a
short time interval σ and constant K represents sensitivity parameter. This parameter
determines how sensitive will be edge detector to high values of a smoothed surface
gradient of the function u.

As mentioned in the introduction, this model preserves edges, however, it can
smooth local extrema of filtered data. It is due to the fact that the surface gradient
in an area of local extrema is not high enough.

In this paper, we present the nonlinear diffusion filtering method where the func-
tion g depends on the surface gradient of a solution of the linear diffusion equation
obtained for the short time step σ1 as well as on the mean curvature of a solution
of the linear diffusion equation obtained for the short time step σ2. Then the new
nonlinear diffusion model has the form

∂tu = ∇s · (g(|∇suσ
1

|, |∆su
σ2

|)∇su),(2.5)
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and the function g now depends on two parameters and can be written in the form

g(|∇suσ
1

|, |∆su
σ2

|) =
1

1 +K1|∇suσ1 |2 +K2|∆suσ
2 |2
, K1,K2 ≥ 0.(2.6)

This extension results in the diffusion process slowed down in areas where the
function u has generally high mean curvature. These areas particularly represent
local extrema of the function u. So the function in this form can be called edge
and local extrema detector. The parameter K1 has the same meaning as in the edge
detector in the Perona-Malik model and the parameter K2 affects sensitivity to high
values of the mean curvature of the function u. Since our computational domain Ω is
the closed surface we do not need any boundary conditions for Eq. (2.5).

3. The surface finite volume method for the new nonlinear diffusion
model. The differential equation (2.5) is numerically solved by a surface finite volume
method [3][6]. In this approach, the closed computational domain Ω is approximated
by an appropriate triangulation defined by N representative nodes, Xi, Xi ⊂ Ω, i =
1, . . . , N . These nodes represent vertices of the triangular grid defined by planar
triangles Tiq, q = 1, ..., Qi, i = 1, ..., N, where Qi is the number of triangles with

the vertex Xi. Other two vertices of the triangle Tiq will be denoted by Xq1
i and

Xq2
i . A value of the scalar function u in the node Xi is denoted by ui. On the

given triangulation we construct a finite volume grid. At each node Xi we create a
co-volume Vi bounded by straight lines that connect midpoints between Xi and its
neighbours Xq1

i ,Xq2
i with centers of mass of all triangles joined in the node Xi (see

Fig. 3.1).

Fig. 3.1: Finite volume Vi

The numerical scheme is derived in the sequel. By integrating (2.5) over the finite
volume Vi and by applying Green’s theorem we obtain∫

Vi

∂tu dx =

∫
∂Vi

g(|∇suσ
1

|, |∆su
σ2

|)∇su · ~ηids,(3.1)

where ∇su represents the surface gradient of the function u and ~ηi is a unit outward
normal to the boundary ∂Vi. The integral over the co-volume boundary ∂Vi can be,
taking into account geometry of this boundary, expressed in the form of a sum of
integrals over each part of the boundary∫

Vi

∂tu dx =

Qi∑
q=1

∫
∂Viq

g(|∇suσ
1

|, |∆su
σ2

|)∇su · ~ηiqds,(3.2)

where ∂Viq are parts of the co-volume boundary, subset of Tiq, with normal vectors
~ηiq (see Figure 3.2).
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Equation (2.5) is solved in a time interval [0, T ]. This interval is divided into
M time steps tj , j = 1, . . . , M and the time derivative ∂tu is approximated by the

backward Euler difference ∂tu = uj−uj−1

τ , where τ = tj − tj−1 denotes the time step
and the value of uj represents a solution in the jth time step. Hence, the left hand

side of the Eq. (3.2) can be approximated by m(Vi)
uj
i
−uj−1

i

τ , where m(Vi) represents
an area of the co-volume Vi. Then approximation of (2.5) can be rewritten in the
form

m(Vi)
uji − u

j−1
i

τ
=

Qi∑
q=1

∫
∂Viq

g(|∇suσ
1

|, |∆su
σ2

|)∇suj · ~ηiqds.(3.3)

If we consider a linear representation of uj on each triangle, the surface gradient
∇suj is a constant vector over each triangle Tiq and by using the mean value theorem
and Green’s theorem we get

∇suj ≈
1

m(Tiq)

∫
Tiq

∇sujds =
1

m(Tiq)

∫
∂Tiq

uj · ~niqds,(3.4)

where m(Tiq) is an area of the triangle Tiq and ~niq is the unit outward normal to the
boundary of the triangle Tiq. If we consider the linear approximation of the solution,
the integral over the triangle boundary can be expressed as a sum of average values
from each triangle side. If we denote the constant value of the surface gradient on the
triangle Tiq by P jTiq , we obtain

P jTiq =
1

m(Tiq)

(
uji + ujq1

2
diq1~niq1 +

uji + ujq2
2

diq2~niq2 +
ujq1 + ujq2

2
dq1q2~nq1q2

)
(3.5)

Nodal values of the solution, sizes of the triangular sides and their normal vectors are
denoted according to Figure 3.2.

Fig. 3.2: Plot of the sides of the triangle Tiq, diq1, diq2, dq1q2, and portions of the
co-volume boundary e1iq , e2iq inside triangle Tiq. Outward unit normal vectors to the

triangle Tiq, ~niq1, ~niq2, ~nq1q2, and to the co-volume boundary, η1iq, η
2
iq.

The second argument of the detector function in Eq. (2.6) represents the mean
curvature of u smoothed by the linear diffusion in short time interval σ2. In the case
g = 1 we get a linear diffusion process. Using Eq. (3.3) and Eq. (3.5) we can define
an approximation of the mean curvature on the co-volume in the form

∆su
j ≈ 1

m(Vi)

Qi∑
q=1

∫
∂Viq

P jTiq · ~ηiqds.(3.6)
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Since P jTiq is a constant vector and
∫
∂Viq

~ηiq = m(e1iq)~η
1
iq+m(e2iq)~η

2
iq, where m(e1iq)

and m(e2iq) are lengths of the parts of the co-volume boundaries in the triangle Tiq,

we can denote a value of the mean curvature on the co-volume by Cji and we obtain

Cji =
1

m(Vi)

Qi∑
q=1

[
m(e1iq)

~η1iq · P
j
Tiq

+m(e2iq)
~
η2,iq · P

j
Tiq

]
.(3.7)

An average value of mean curvature on the triangle Tiq can be denoted as

CjTiq =
1

3
(Cji + Cjq1 + Cjq2),(3.8)

where Cji , Cjq1 and Cjq2 represents nodal values of the mean curvature evaluated in all
three vertices of the triangle.

After some simple manipulations in Eq. (3.3), using similar approach as in the
previous equations, we obtain a semi-implicit numerical scheme for the new nonlinear
filtration method on the closed surface in the form

uji −
τ

m(Vi)

Qi∑
q=1

[
m(e1iq)

~η1iq · P
j
Tiq
g(|Pσ

1, j−1
Tiq

|, |Cσ
2, j−1

Tiq
|)(3.9)

m(e2iq)
~
η2,iq · P

j
Tiq
g(|Pσ

1, j−1
Tiq

|, |Cσ
2, j−1

Tiq
|)

]
= uj−1

i

where Pσ
1, j−1

Tiq
is an approximation of the smoothed gradient of the solution from

the previous time step j − 1, and analogously, Cσ
2, j−1

Tiq
is an approximation of the

smoothed average mean curvature of the solution on the triangle at the time step
j − 1.

Eq. (3.9) represents an approximation of the nonlinear diffusion equation (2.5) in
one finite volume Vi, so the approximation over all finite volumes Vi, i = 1, . . . , N is
defined by a linear system of equations Auj = uj−1. The matrix A is the system matrix
with coefficients dependent on the time step and triangulation. Matrix positions of
non-zero coefficients depend on the number of neighbours of the node Xi. The linear
system is then solved by the SOR algorithm. To obtain the matrix A diagonally
dominant, we choose the time step τ proportional to the average area of co-volumes

τ =
1

N

N∑
i=1

m (Vi) .(3.10)

4. Numerical experiments and results. We present two numerical experi-
ments. The first one represents a testing experiment. Its principal goal is to show
how a chosen artificial data u is changed while using different filtering methods. This
experiment highlights main and significant differences between behavior of the fil-
ters. The second experiment presents filtering of measurements of the GOCE satellite
mission, namely Tzz as the second derivative of disturbing potential in the radial di-
rection. In both numerical experiments, we approximate a spherical computational
domain with an appropriate well-oriented triangulation. It is represented by a sub-
division of an initial icosahedron grid known also as a geodetic grid. The process of
subdivision can be seen in Figure 4.1. The main advantage of this type of grid is its
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uniformity. Almost all co-volumes defined on this grid are hexagons only twelve of
co-volumes will be pentagons and area of each co-volume is almost the same.

Fig. 4.1: Icosahedron subdivision: original icosahedron grid, grid after 2 subdivision
and after 4 subdivision

4.1. Testing experiment. In the testing experiment we study a different be-
havior of three different filtering methods, namely the linear diffusion model, the
nonlinear Perona-Malik model and our new nonlinear model. We use the icosahedron
grid Ω formed by 163842 nodes and 327680 triangles which represents eight subdi-
vision of the original icosahedron grid. To create artificial data u we use a function
with compact support in the form

u(x) = v.e
−σ

(r2−|x−s|2)
+ σ
r2(4.1)

if |x− s| < r and u(x) = 0 if |x− s| ≥ r, where s(s1, s2, s3) ∈ Ω and x(x1, x2, x3) ∈ Ω.
We set v = 0.4; σ = 5r2; r = 0.2 and s(s1, s2, s3) = (0,−0.52573, 0.85065). Figure 4.2
depicts an intersection through chosen nodes from original data and results obtained
after 50 and 100 time steps of each kind of diffusion filter. In case of the nonlinear
Perona-Malik model we use the sensitivity coefficient K = 10 for the edge detector.
In our new nonlinear method, we use the sensitivity coefficients K1,K2 for edge and
local extrema detector as K1 = 10, K2 = 0.01. In the figures corresponding to the
Perona-Malik and new model, initial values of the edge and local extrema detector
before the first time step are visualized. The scale for detector values on the right
side of the figures is reversed.

The intersections in Figure 4.2a) through results of the linear diffusion filter con-
firms a uniform smoothing effect. A nonuniform smoothing effect we obtained by
using the nonlinear Perona-Malik model and our new nonlinear model. In Figure
4.2b) we can see that the Perona-Malik model preserves edges of artificial data. The
red line in Figures represents values of edge detector on corresponding nodes. On
edges, values of the detector are almost zero and for this reason the diffusion process
is remarkably slowed. Values of the edge detector enlarge toward a top of the data and
as we can see in results after 50 and 100 time step, local extrema of the data is pulled
down. Figure 4.2c) represents an intersection through results of the new nonlinear
model. Visualized values of the edge and local extrema detector are zero almost over
whole testing artificial data.The local extrema detector detects high values of mean
curvature along edges and in areas of data extrema. This will cause that the original
data will barely change over time steps.
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(a) Linear diffusion of u

(b) Nonlinear Perona-Malik diffusion of u

(c) New nonlinear diffusion of u

Fig. 4.2: Intersections through results of the testing experiment
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4.2. Filtering the GOCE measurements. In this experiment, we focus on
removal of noise from measurements of the GOCE satellite mission. An objective
of this mission was to monitor the static part of the Earth’s gravity field [5]. In
this paper we process data observed during June-July 2013. Due to variations of the
GOCE satellite orbits, observed data were reduced to the reference altitude 245km
[4]. In this experiment, we use a finer grid, which represents the ninth subdivision
of icosahedron. Grid contains 655 362 nodes and 1 310 720 triangles. These GOCE
measurements mapped to the grid are subsequently filtered by our new nonlinear
diffusing filtering method.

Fig. 4.3: Original GOCE measurement

At the beginning we need to set acceptable model parameters. For the edge and
local extrema detector we need to set small time steps for pre-smoothing by the linear
diffusion as well as sensitivity coefficients. The reason for appropriate selection of
linear diffusion time step is that we need to smooth most of noise before we quantify
surface gradients and mean curvatures. The differences between gradients and mean
curvature in the data from the first quarter of equatorial intersection before and
after linear diffusion are in Figure 4.4 and in Figure 4.5. We can see that before pre-
filtering by the linear diffusion, high values of gradients and mean curvature are almost
everywhere. After the linear diffusion the noise is removed and values of the gradient
and mean curvature reflect structures of the Earth’s gravity field. Experimentally
(considering different input parameter) we choose suitable time steps for the linear
diffusion as σ1 = σ2 = 1

4τ , time step for nonlinear diffusion as τ and the sensitivity
coefficients as K1 = 0.2, K2 = 0.2 .10−4. Figure 4.6 presents different segments of
equatorial intersections through results obtained after different time steps.
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Fig. 4.4: Gradients of the data before and after linear diffusion

Fig. 4.5: Mean curvature of the data before and after linear diffusion
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(a) Part of equatorial intersection from result after 5 time steps

(b) Part of equatorial intersection from result after 5 time steps

Fig. 4.6: Results of GOCE measurement filtering

To demonstrate advantages of our new nonlinear model, Figure 4.7 shows a detail
from original data and visualization of differences between solution obtained by the
Perona-Malik model with K = 0.2 and the new nonlinear diffusion model with K1 =
0.2,K2 = 0.2.10−4 from the same detail area after 5 time steps of filtering. From
Figure 4.7 is obvious that maximal differences between solutions are in areas of local
extrema of original data. Both models successfully remove noise, but the Perona-
Malik model also smooths local extrema representing important structures in the
filtered data. On the contrary, the new nonlinear diffusion model, whose edge detector
is extended by the local extrema detector, obviously preserves signal better in areas
of local extrema. It confirms that high values of the mean curvature in areas of
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local extrema yield small values of the diffusivity coefficient while avoiding undesired
smoothing.

Fig. 4.7: Detail from original data and visualization of differences between solution
obtained by Perona-Malik and new model.

5. Conclusion. The presented nonlinear filter is based on a numerical solu-
tion of the nonlinear diffusion equation, where the diffusivity coefficient represent
a combination of the edge detector and local extrema detector. The semi-implicit
numerical scheme, derived using the proposed surface finite volume method, is effi-
cient to numerically approximate surface gradients as well as the Laplace-Beltrami
operator. Numerical experiments show that both the Perona-Malik and extended
model have adaptive and the non-uniform smoothing effect. The obvious advantage
of the presented approach can be seen in its comparison with the Perona-Malik. The
Perona-Malik model smoothes local extrema of filtered data because the diffusivity
coefficient is purely based on the edge detector. Its extension by the local extrema
detector which captures high values of the mean curvature of filtered data allows to
slow down diffusion effect also on those areas. Thus the proposed extension is highly
efficient and can be used for filtering various kinds of data.
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