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Abstract In order to estimate a fair value of financial derivatives, various general-
izations of the classical linear Black-Scholes parabolic equation have been made by
adjusting the constant volatility to be a function of the option price itself. We present
a second order numerical scheme, based on the finite volume method discretization,
for solving the so-called Gamma equation of the Risk Adjusted Pricing Methodol-
ogy (RAPM) model. Our new approach is based on combination of the fully implicit
and explicit schemes where we solve the system of nonlinear equations by iterative
application of the semi-implicit approach. Presented numerical experiments show
its second order accuracy for the RAPM model as well as for the test with exact
Barenblatt solution of the porous-medium equation which has a similar character as
the Gamma equation.

1 Motivation from Financial Mathematics
Black-Scholes linear model. Modeling financial derivative prices by PDEs has
been introduced in 1973, when a simple linear model was derived by Black and Sc-
holes [4] and independently by Merton [10]. Its simplicity is obtained by imposing
a couple of limiting assumptions [8] which in reality do not always hold. Neverthe-
less, it is still considered as the cornerstone when deriving more general ones. To
obtain the governing PDE, Black and Scholes assumed that the underlying asset S
follows a geometric Brownian motion dS = (µ−q)Sdt + σ̂SdW , where µ > 0 is a
constant drift, σ̂ > 0 is a constant volatility parameter of the underlying asset, q is
a constant asset dividend yield rate and W is a standard Wiener process. Denoting
the price of an option as V (S, t) and applying Ito’s lemma to obtain the stochastic
differential dV , they derived a parabolic partial differential equation for valuation of
options [14]:

∂V
∂ t

+
σ̂2

2
S2 ∂ 2V

∂S2 +(r−q)S
∂V
∂S
− rV = 0, (1)

where r represents the riskless interest rate. To complete the formulation of the
option pricing model, we need to prescribe a terminal pay-off condition at expiration
time T . In the case of an European call option the terminal pay-off condition is
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V (S,T ) = max(S−E,0), (2)

where E denotes the strike price. For plain vanilla options, like the simple call or
simple put option, an exact solution to (1)-(2) is known [14].

Nonlinear extensions. Note that in equation (1) the volatility is constant. How-
ever, if we insert real data into the model and compute inversely the implied volatil-
ity, it is not constant [8]. More generally, the volatility parameter can be defined
by σ = σ(∂ 2

S V,S,T − t), where ∂ 2
S V is the so-called Γ of an option. In financial

theory and practice various nonlinear generalizations of Black-Scholes linear model
exist with such defined volatility function. For instance, Leland in [9] proposed a
model which takes transaction costs into account. In order to describe option pric-
ing in incomplete markets Avellaneda, Levy and Paras in [1] used a jumping volatil-
ity function. Barles and Soner in their model [3] adjusted the volatility depend-
ing on investor’s preferences. Illiquid market effects due to large traders choosing
given stock-trading strategies were studied by Frey in [5] and by Schönbucher and
Wilmott in [12]. A further interesting nonlinear model which we deal with in this
paper is the so-called Risk Adjusted Pricing Methodology (RAPM) model de-
rived by Kratka in [7] and further generalized by Jandačka and Ševčovič in [6].
Notice that the numerical scheme presented in the next section can be applied to all
the above mentioned models since they can be represented by a PDE in the general
form (6). Interestingly, the nonlinear porous-medium equation (14) which we deal
with in the last section is also a special case of the Gamma equation (6).

The RAPM model omits the limiting assumption of having no transaction costs.
Hence, it assumes that the portfolio is rehedged only at discrete times, since contin-
uous rehedging would lead to infinite transaction costs. The more often the portfolio
is being rehedged, the higher the risk associated with transaction costs become. On
the other hand, seldom rehedging implies higher risk arising from its weak protec-
tion against the movement of the underlying assets’s price. Hence, there exists an
optimal time step, representing the hedge interval, for which the sum of both risks
is minimal. Using such ideas, the governing PDE for the RAPM model in the fol-
lowing form is obtained [6]:

∂V
∂ t

+
1
2

σ̂
2S2

1+µ

(
S

∂ 2V
∂S2

) 1
3

 ∂ 2V
∂S2 +(r−q)S

∂V
∂S
− rV = 0, (3)

where µ = 3
(

C2R
2π

) 1
3
, C ≥ 0 represents the relative transaction costs for buying

or selling on stock and R ≥ 0 is the marginal value of investor’s exposure to risk.
Note that the diffusion coefficient in (3) is dependent on Γ , thus the equation is a
nonlinear PDE. Since 1+µ (SΓ )

1
3 ≥ 1, the option price computed by this equation

is slightly above that from the linear Black-Scholes model, i.e. we obtain a so-called
Ask price. If the diffusion coefficient is of the form 1− µ (SΓ )

1
3 ≤ 1, then we get

the lower Bid price of an option. Let us note that we can rewrite the equation (3) as
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∂V
∂ t

+Sβ (SΓ )+(r−q)S
∂V
∂S
− rV = 0, (4)

where β (H) = 1
2 σ̂2

(
1+µH

1
3

)
H. Since the equation (4) contains the term SΓ it is

convenient to introduce the following transformation:

H(x,τ) = SΓ = S∂
2
S V (S, t), (5)

where the new variables, x and τ , are obtained by transforming the original ones
using the standard substitution: x= ln

( S
E

)
, x∈R and τ = T−t, τ ∈ (0,T ). If we take

the second derivative of equation (4) with respect to x it turns out that the function
H(x,τ) is a solution to the following nonlinear parabolic differential equation, the
so-called Gamma equation [13]:

∂H(x,τ)
∂τ

=
∂ 2β (H)

∂x2 +
∂β (H)

∂x
+(r−q)

∂H(x,τ)
∂x

−qH(x,τ). (6)

Notice that unlike in equation (3), all terms containing spatial derivatives in the
Gamma equation (6) are in divergent form, thus it is suitable to use finite volume
method discretization which follows. Concerning the boundary conditions, since the
second derivative of V (S, t) with respect to S tends asymptotically to zero as S→ 0,
respectively S → ∞, from (5) it follows that the transformed Dirichlet boundary
conditions are H(−∞,τ) = H(∞,τ) = 0.

2 Finite Volume Approximation Schemes
The most general form of the Gamma equation is as follows:

∂H(x,τ)
∂τ

=
∂ 2β (H,x,τ)

∂x2 +
∂β (H,x,τ)

∂x
+ f (x)

∂H(x,τ)
∂x

+g(x)H(x,τ), (7)

Notice that

∂ 2β (H(x,τ),x,τ)
∂x2 =

∂

∂x

(
β
′
H(H,x,τ)

∂H(x,τ)
∂x

+β
′
x(H,x,τ)

)
, (8)

where β ′H(H,x,τ) and β ′x(H,x,τ) are partial derivatives of the function
β (H(x,τ),x,τ) by H and x, respectively. Moreover,

f (x)
∂H(x,τ)

∂x
=

∂

∂x
( f (x)H(x,τ))−H(x,τ) f ′x(x). (9)

Inserting (8) and (9) into (7) and integrating over the finite volume
(

xi− 1
2
,xi+ 1

2

)
,

with center point denoted by xi, we get
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2

x
i− 1

2

∂H
∂τ

dx =
∫ x

i+ 1
2

x
i− 1

2

∂

∂x

(
β
′
H

∂H
∂x

+β
′
x +β + f (x)H

)
dx

+
∫ x

i+ 1
2

x
i− 1

2

(
g(x)− f ′x(x)

)
H dx. (10)

Using central spatial differences, Newton-Leibniz formula, the mid-point rule and
notations
β ?

i+ 1
2
= β (H?

i+ 1
2
,xi+ 1

2
,τ?), β ′x

?
i+ 1

2
= β ′x(H

?
i+ 1

2
,xi+ 1

2
,τ?), β ′H

?
i+ 1

2
= β ′H(H

?
i+ 1

2
,xi+ 1

2
,τ?),

we obtain the following general numerical scheme for solving (7):

h H j+1
i −H j

i
k = β ′H

?
i+ 1

2

H?
i+1−H?

i
h −β ′H

?
i− 1

2

H?
i −H?

i−1
h +β ′x

?
i+ 1

2
−β ′x

?
i− 1

2
+β ?

i+ 1
2

−β ?
i− 1

2
+ f
(
xi+ 1

2

) H?
i+1+H?

i
2 − f

(
xi− 1

2

) H?
i +H?

i−1
2 +hH?

i

(
g(xi)− f ′x(xi)

)
, (11)

where H j
i represents the approximate value of the solution in point xi at time τ j and

? ∈ { j, j + 1} represents the chosen time layer. Depending on in which time we
evaluate the terms on the right-hand side in (11) we obtain three distinct first-order
schemes.

Explicit scheme is obtained by taking all terms from the old time layer, i.e. ?= j.

Semi-implicit scheme is obtained by taking all linear terms from the old time layer,
i.e. ? = j, and all nonlinear terms from the new time layer, i.e. ? = j + 1. The
solution is found by solving a tridiagonal system of linear equations by the Thomas
algorithm.

Fully-implicit scheme is obtained if all terms are taken from the new time layer,
i.e. ? = j + 1. We get a system of nonlinear equations. The algorithm for solving
such a system is based on iterative solution of the semi-implicit scheme. We start
the iterative process by assigning the old time step solution vector to the starting
iteration solution vector for the new time step. Then, in each iteration, we insert the
solution vector into the nonlinear terms, to get their actual iteration. If we collect all
unknowns from the solution vector, i.e. the linear terms from the new layer, on the
left-hand side and all remaining terms, i.e. the nonlinear terms and the linear term
from the old layer, on the right-hand side we obtain a linear tridiagonal system for
determining next iteration of the solution vector. The whole process is terminated
when the successive solution vectors are close enough [2].

New second order scheme is of the Crank-Nicolson type and is obtained by the
arithmetic average of the explicit and the fully-implicit scheme. The system of non-
linear equations has a similar structure to that from the fully-implicit scheme, thus
we solve it using the same principles.

As noticed above, the linear systems arising in our schemes are solved by the
Thomas algorithm. Its numerical stability is guaranteed by the strict diagonal dom-
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inance of the system matrix which can be always achieved by a suitable choice of
time step k in (11). Another important issue is the study of stability which is usu-
ally related to the approximation of diffusion and advection terms. Inspecting the
Gamma equation (6), one can see that the diffusion coefficient is given by β ′H while
the speed of the advection is proportional to β ′H +r−q and thus in the studied appli-
cation they are comparable (σ̂2 ≈ r−q). The fully explicit scheme gives oscillations
for the coupling k ≈ h due to violating the CFL condition in approximation of the
diffusion term. On the other hand, all other schemes are implicit and we did not ob-
serve any oscillations, mainly due to the fact that the advection does not dominate
the diffusion.

3 Numerical Experiments
Three different numerical experiments were made. The first two are concerned with
the approximate solution to the RAPM Gamma equation and the last one deals with
the numerical solution to a nonlinear porous-medium PDE.

RAPM Gamma equation experiments. As no comparative exact solution to such
an equation is known, a natural choice is to take the exact solution of the linear
Black-Scholes model. Clearly, to maintain the equality in the Gamma equation we
have to add a residual term Res(x,τ) into (6) which balances the difference between
the Black-Scholes solution and the higher Ask price of the RAPM model:

∂H
∂τ

=
∂ 2β

∂x
+

∂β

∂x
+(r−q)

∂H
∂x
−qH +Res, (12)

where β (H) = σ̂2

2 (1+µH
1
3 )H. The first two experiments differ from each other in

two main aspects: the coefficient µ and the initial condition. Following parameters
were set for both cases the same: σ̂ = 0.30, r = 0.03, q = 0.01, E = 25. In all
numerical experiments we impose boundary conditions H(xL,τ) = H(xR,τ) = 0,
where xL and xR are boundaries of the space interval.

The intention of the first experiment is to show how well the proposed numerical
schemes can handle the nonlinearity in the Gamma equation (12). We put the coeffi-
cient µ = 0.2, hence the function β (H) is nonlinear. As the initial condition H(x,τ0)
we consider Black-Scholes solution V (S,T −τ0) transformed by (5), in time τ0 = 1.
Measurements of the estimated error ||em

n ||L2 are done by comparison with the exact
solution H(x,τ) to (12) for τ > τ0. Since all first-order schemes exhibited very sim-
ilar features, we show here outputs just for the semi-implicit scheme. The reason for
exclusion of the explicit scheme was its instability using coupling k = h. Regarding
the fully-implicit scheme, experiments show that the accuracy of the semi-implicit
scheme is very close to the fully-implicit scheme, thus it is sufficient to use just the
former one which is less time consuming. The experiment was done on the time-
space domain (x,τ) = [−2,2]× [1,2]. Tables 1 and 2 indicate that for this type of
problem the semi-implicit scheme is first order accurate while the Crank-Nicolson
type scheme is second order accurate.
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Table 1 Outputs obtained by solving the RAPM Gamma equation (12) (τ0 = 1, k = h) using the
semi-implicit scheme: estimated error ||em

n ||L2 , CPU-time and EOC with respect to ||em
n ||L2 .

n h ||em
n ||L2 CPU EOCk∼h

20 0.1 0.00777657 2.231 -
40 0.05 0.00333385 9.126 1.22194
80 0.025 0.00153036 36.614 1.12332
160 0.0125 0.00073141 147.078 1.06512
320 0.00625 0.00035733 582.929 1.03343

Table 2 Outputs obtained by solving the RAPM Gamma equation (12) (τ0 = 1, k = h) using the
Crank-Nicolson type scheme: estimated error ||em

n ||L2 , CPU-time and EOC with respect to ||em
n ||L2 .

n h ||em
n ||L2 CPU EOCk∼h

20 0.1 0.00272286 4.383 -
40 0.05 0.000666762 17.785 2.02988
80 0.025 0.000165182 71.136 2.01311
160 0.0125 5 0.0000412598 294.062 2.00125
320 0.00625 0.0000108204 1206.53 1.93099

In the the second experiment we set µ = 0 and we show how the regularization
of the transformed initial condition and the backward transformation of the Gamma
equation solution affects the total accuracy of the method. In this case the solution
of the Gamma equation coincides with the transformed solution H(x,τ) of the linear
Black-Scholes equation (1) which implies that the residual term in (12) is zero. The
initial condition H(x,τ0) is considered for τ0 = 0. Hence the transformed payoff
function, see (2) and (5), is the Dirac delta function, H(x,0) = δ (x), x ∈ R. In order
to get a suitable initial condition for our computation, we consider its regularization
given by the function H(x,0) = N′(d)

σ̂
√

τ∗
, where τ∗ > 0 is sufficiently small, N(d) is the

cumulative distribution function of the normal distribution and d = x+(r−q−σ̂2/2)τ∗

σ̂
√

τ∗

[13]. The backward transformation of numerical solution is done by using formula

V (Sk,T − τ j) = h
n

∑
i=−n

max(Sk−Eexi ,0)H j
i = h

k

∑
i=−n

(Sk−Eexi)H j
i

= hSk

k

∑
i=−n

H j
i −hE

k

∑
i=−n

exi H j
i = hSk Fk−hE Gk, (13)

where Fk = Fk−1 +H j
k , Gk = Gk−1 +exk H j

k and Sk = Eexk . Formula (13) is obtained
by integration of (5). Measurements of the estimated error ||em

n ||L2 are done by com-
parison with the Black-Scholes solution V (S, t). However, in practice, doing com-
putations with such an initial condition is not as straightforward task as in the first
experiment. The problem is that we do not know a priori the optimal value of τ∗

for a given time-space mesh. We consider the optimal value of τ∗ as a value for
which the estimated error of the numerical solution is minimized. Numerical out-
puts for the discretized time-space domain (x,τ) = [−2,2]× [0,1] are summarized
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Fig. 1 A comparison of Bid and Ask option prices computed by means of the RAPM model for
a call option in time T − t = 1. Left (right) figure presents the results before (after) the backward
transformation. The blue dashed (fine-dashed) curve indicates the Ask (Bid) price of a call option.
Green curve represents the option prices computed by the linear Black-Scholes model and the red
line is the payoff function. Parameters: n = 80, h = 0.025, m = 160, k = 0.00625, τ∗ = 0.00391,
σ̂ = 0.30, µ =±0.2, r = 0.011, q = 0.0, X = 25.

in the table 3. Since the total error is influenced not only by the discretization error,
but also by the error related to the regularization and backward transformation, the
Crank-Nicolson method exhibits EOC slightly below the second order. Finally, in
figure 1 we present the numerical solution of the RAPM model for a call option us-
ing parameter τ∗ obtained by the above described strategy but considering nonzero
µ . Such an experiment is of particular interest also for practical applications.

Table 3 Outputs obtained by solving numerically Gamma equation (12) (τ0 = 0, k = h/4) using
the Crank-Nicolson type scheme and using formula (13) for backward transformation.

n h τ∗ ||em
n ||L2 EOCk∼h CPU

Gamma
CPU Trans-
form

CPU
Total

5 0.4 0.46765 4.0644 - 0.047 0.011 0.058
10 0.2 0.14602 1.4586 1.4784 0.141 0.016 0.157
20 0.1 0.04371 0.4617 1.6595 0.624 0.047 0.671
40 0.05 0.01269 0.1379 1.7432 2.372 0.187 2.559
80 0.025 0.00361 0.0399 1.787 9.173 0.843 10.016
160 0.0125 0.00101 0.0113 1.816 41.091 3.323 44.414
320 0.00625 0.00028 0.0031 1.8270 150.525 12.87 163.396

Experiment with an exact (Barenblatt) solution. The goal of the third experiment
was to investigate the accuracy of the proposed Crank-Nicolson type scheme using
exact solution of the following (porous-medium type) equation:

∂tv = ∂
2
x (v

ω), x ∈ R, t > 0, ω > 1 (14)

which is a special case of the Gamma equation (6). The exact solution has the form

v(x, t) = 1
ω(t) max

[
0,1−

(
x

ω(t)

)2
] 1

ω−1
, where λ (t) =

[
2ω(ω+1)

ω−1 (t +1)
] 1

ω+1
repre-

sents a sharp interface of the solution’s finite support. EOC of the Crank-Nicolson
type scheme in L1-norm, which is used due to the singularity in the exact solution,
is equal to 2, see table 4.
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Table 4 Numerical approximation of the Barenblatt exact solution using Crank-Nicolson type
scheme.

n h ||em
n ||L1 CPU EOCk∼h

25 0.1 0.000629 0.312 -
50 0.05 0.000173 1.139 1.8584
100 0.025 0.000048 4.258 1.8543
200 0.0125 0.000012 17.036 1.9161
400 0.00625 3.31 ·10−6 67.798 1.9399
800 0.003125 8.52 ·10−7 250.475 1.9597
1600 0.0015625 2.16 ·10−7 881.905 1.97824

4 Conclusions
In this paper we proposed a new nonlinear second order Crank-Nicolson type nu-
merical scheme based on the finite volume method. Our main goal was to provide
an efficient and precise numerical solution to nonlinear PDEs arising in financial
mathematics. Various experiments have shown such properties of the new scheme.
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