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Abstract Many problems described by nonlinear PDEs need good approximations
of gradients on finite volumes. Using finite volume methods, this can be difficult
task if discretization of a computational domain does not fulfill the classical or-
thogonality property. Such a situation can occur, e.g., during coarsening in image
processing using quadtree grids. We present a construction of an adjusted quadtree
grid for which the connection of representative points of two adjacent finite vol-
umes is perpendicular to their common boundary. On the other hand, for such an
adjusted grid, the intersection of representative points connection with a finite vol-
ume boundary is not a middle point of their common edge. In this paper we present
a new method of gradient evaluation for such a situation.

1 The computational grid

In this section we introduce our finite volume computational grid, its construction
and its properties. Our purpose is to build the grid using large elements for regions
with homogeneous values of a solution function - in our experiment representing
image intensities. To this purpose we first build a graded quadtree, i.e. the quadtree,
in which the difference in a level between adjacent cells is constrained, in our case to
one. Grids associated with such trees are often used in order to produce procedures
that are easier to implement. Moreover, in our case it is an inevitable requirement to
be able to adjust the quadtree to the consistent finite volume grid. The consistent grid
possesses the important property that the connection of two representative points of
two adjacent finite volumes is perpendicular to their common boundary, which is
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Engineering, Radlinského 11, 813 68 Bratislava, Slovak Republic, e-mail: kriva@math.sk, an-
gela.handlovicova@stuba.sk, mikula@math.sk

1

FVCA7, 100, v1 (major): ’Gradient Evalua...’ 1
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Fig. 1 An example of the original quadtree grid together with the representative points of its ele-
ments (on the left). This grid is transformed into the consistent one (on the right).

an important fact when we use the classical finite volume discretization [2]. An
example of a quadtree and a corresponding consistent grid is displayed in Fig.1.

Building the quadtree. Let us suppose that our data is given on a regular non-
adaptive square grid (which corresponds e.g. to the pixel structure of an image).
First we build the quadtree by merging the elements with similar values from the
smaller cells to the larger cells, i.e. from leaves to the root. The old values are either
unchanged, or replaced by averaging the values from the processed area. During
this process, the information about successful or unsuccessful merging is stored in a
binary field with the size corresponding to the image. Moreover, this information is
stored in such a way that it enables us to create a graded quadtree with a prescribed
ratio of elements. It can be also used as a stopping criterion during traversing the
quadtree and to test the configurations of elements - the leaves of the quadtree.

As we have already mentioned, in order to simplify creating the linear system
matrix, where access to neighbors is needed, and to enable creating the consistent
grid, we require that the ratio of sides of two adjacent squares is 1 : 1, 1 : 2 or 2 : 1.
The used technique of building the quadtree adaptive grids is described in [4]. It
uses the following coarsening criterion: the cells are merged if a difference in their
intensities is below a prescribed tolerance ε .

Adjustment to the quadtree based consistent grid. The quadtree grid (Fig. 1
left) is inconsistent in the sense, that we cannot find the unique representative points
of the adjacent grid elements - finite volumes - such that the connection of their
representative points is perpendicular to their common boundary. The adaptive grid
fulfilling this condition is called consistent and it is an admissible mesh in the sense
of [2]. However, the basic quadtree grid can be adjusted to a consistent one pro-
cedurally: we must adjust the shape, if two adjacent finite volumes p and q are of
different size. If we denote the length of a common edge in the original quadtree
by h and we shift the “hanging node“ by v = h

3 (e.g. in Fig. 2 we shift X to X ′),
then the connection of representative points is perpendicular to the shifted common
boundary. This fact (and also the fact that BX ′

PQ = 2
3 ) follows from the similarity of

triangles 4AQP and 4XX ′B with the ratio of their adjacent sides 1:3. The area of
p is also evaluated procedurally - it depends on a configuration of its neighbors.

Notations. Let every finite volume p of measure |p| have a representative point
Xp lying in its center or in the center of the original square for an adjusted element of
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Fig. 2 Adjustment to the consistent grid. |XX ′| = v = 1
3 h. XB= 2

3 PA, hence BX ′
PQ = 2

3 . Examples of
the shapes where the intersection of the connection of representative points and a common edge σ
is not the midpoint of σ .

the consistent grid. The common interface of p and q is a line segment - an edge σpq
with a nonzero measure in IR denoted by |σpq| and dpq = |Xq − Xp| is the distance
of representative points. Let us denote by Xσ auch a point of σpq, which represents
the intersection of the line segment XpXq and σpq. In our consistent grid, XpXq is
perpendicular to σ , but the intersection Xσ is not the midpoint of σ in the general
case. Let us denote by X∗

σ the midpoint of the edge σ . By Ep we denote the set of
all edges σ of p. When we speak about a unit outer normal vector to σ ∈ Ep, we
denote it by npσ .

2 Approximation of the gradient on the consistent grid

Our method for evaluation of gradients on finite volumes is based on [3]. Such a
method works locally in that sense that we consider also representative points on
finite volume edges, but not values at the corners. Then, with a help of these points
we only need access to neighbors sharing a common edge, which is important when
working on adaptive grids.

When solving PDEs where nonlinearities depend on the solution gradient, the
method from [3] works as follows:

1. for edges σ of a finite volume p we define representative points X∗
σ - their mid-

points, it must hold X∗
σ = Xσ ,

2. with a help of these points, we evaluate the norm of gradient on p locally using
the consequence of the Stokes formula, see (3)-(4),

3. discrete equation for the finite volume p is derived locally,
4. values of solution in X∗

σ are obtained by using conservation principle.
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In the consistent adaptive grid X∗
σ 6= Xσ in general. Such a situation occurs on edges

containing a hanging node in the original quadtree grid. The most critical shape in
this sense is the sharp element where Xσ is not the midpoint on any of the edges
(Fig.2 right).

Let us suppose the linear approximation of the solution over the finite volume p.
At X ∈ p any linear function can be written as

u(X) = u(Xp)+∇u · (X −Xp) = up +∇u · (X −Xp). (1)

If X = Xσ it holds
uσ −up = ∇u · (Xσ −Xp), (2)

where uσ , up represent values of the solution at points Xσ and Xp. The gradient of
the linear function is a constant vector in IR2, thus also over a control volume p. It
will be denoted by ∇u. Then it holds

∇u =
1
|p|
∫

p

∇udX =
1
|p|
∫

∂ p

unpdS =
1
|p| ∑

σ∈Ep

∫

σ

(up +∇u · (X −Xp))npσ dS

=
1
|p|up ∑

σ∈Ep

|σ |npσ +
1
|p| ∑

σ∈Ep

|σ |∇u · (X∗
σ −Xp)npσ . (3)

The term ∑
σ∈Ep

|σ |npσ = 0 and the expression |σ |∇u(X∗
σ − Xp)npσ represents the

precise integration of a linear function over the edge σ . Thus we have

∇u =
1
|p| ∑

σ∈Ep

|σ |∇u · (X∗
σ −Xp)npσ . (4)

On the edges, where Xσ 6= X∗
σ , we can express

X∗
σ −Xp = (Xσ −Xp)+(X∗

σ −Xσ ). (5)

Then ∇u can be split into two parts

∇u =
1
|p| ∑

σ∈Ep

|σ |∇u · (Xσ −Xp)npσ +
1
|p| ∑

σ∈Ep

|σ |∇u · (X∗
σ −Xσ )npσ . (6)

The part of ∇u given by the first term of (6) will be denoted as (∇u)A and due to (2)
it can be evaluated as

(∇u)A =
1
|p| ∑

σ∈Ep

|σ |(uσ −up)npσ . (7)

The second term of (6) is a correction of (∇u)A and it depends on the unknown
gradient.
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2.1 Evaluation of the gradients with corrections

In the following text we use subscripts in two ways: if they represent derivatives, we
use x or y and if they represent the vector components, we use 1 or 2. Let us denote
the correction vector (X∗

σ −Xσ ) by cσ = ((cσ )1,(cσ )2). We will work with (∇u)A =

((ux)
A,(uy)

A), npσ = ((npσ )1,(npσ )2) and the unknown vector ∇u = (ux,uy). Now
(6) can be rewritten into the form

(ux,uy) = ((ux)
A,(uy)

A)+
1
|p| ∑

σ∈Ep

|σ |((cσ )1ux +(cσ )2uy)((npσ )1,(npσ )2). (8)

We see that (8) represents the linear system of two equations with two unknowns ux
and uy which can be adjusted to the following form:

ux(1− 1
|p| ∑

σ∈Ep

|σ |(cσ )1(npσ )1) + uy(−
1
|p| ∑

σ∈Ep

|σ |(cσ )2(npσ )1) = (ux)
A,

ux(−
1
|p| ∑

σ∈Ep

|σ |(cσ )1(npσ )2) + uy(1− 1
|p| ∑

σ∈Ep

|σ |(cσ )2(npσ )2) = (uy)
A.

We rewrite the system into such a form that we can see that the coefficient matrix
denoted by B depends only on the shape of a grid element, but not on its size (level).
Let us denote: Npσ =

|σ |npσ
l and Cσ = cσ

l , where l is the edge length of the square
in the non adjusted quadtree. We have:

ux

(
1− l2

|p| ∑
σ∈Ep

(Cσ )1(Npσ )1

)
+ uy

(
− l2

|p| ∑
σ∈Ep

(Cσ )2(Npσ )1

)
= (ux)

A,

(9)

ux

(
− l2

|p| ∑
σ∈Ep

(Cσ )1(Npσ )2

)
+ uy

(
1− l2

|p| ∑
σ∈Ep

(Cσ )2(Npσ )2

)
= (uy)

A.

The elements of the coefficient matrix in (9) can be evaluated procedurally travers-
ing the quadtree, or we can construct B using its properties mentioned later. B can be
also precalculated in advance for every shape (there is only limited number of shapes
in the consistent quadtree grid) - we can store B−1 and evaluate ∇u = B−1(∇u)A.

Example 1. Let us take the consistent quadtree grid built over a uniform grid with
32×32 elements (Fig.3 left). We inspect specific functions defined on [−1.25,1.25]×
[−1.25,1.25]: we consider the norm of the gradient evaluated analytically, the
norm of (∇u)A and ∇u obtained by solving (9). First let us take the function
u1(X) = 1

2 (x2 + y2). We take the sharp marked element (Fig.3 left) with the rep-
resentative point (xp,yp) = (0.742,−0.89). First uσ is set to the exact value eval-
uated using u(X). The approximated gradient - the vector (∇u)A evaluated with-
out correction is equal to (−1,711,−1.801). After correction using (9) it is equal
to (0.860,−1.03), while the analytical gradient at this point has the value (xp,yp)
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6 Krivá Zuzana, Handlovičová Angela and Mikula Karol

Fig. 3 Example 1. Left: the consistent quadtree grid with the inspected element. For u2(X) =
1
3 (x3 + y3) we compare (∇u)p and (∇u)A

p with the values of the gradient evaluated analytically
in (xp,yp). The values are scaled with darker values representing larger differences. Middle:
||(∇u)A|− |∇uexact ||. Right: ||∇u|− |∇uexact ||.

given above. In practical tasks, uσ is obtained by an interpolation. Thus we consider
also that uσ is obtained by a linear interpolation between up and uq, its neighbor. It
is interesting that in such case the approximated gradient of the quadratic function
u1(X) obtained by (9) is equal to the analytical one. Secondly, let us take the func-
tion u2(X) = 1

3 (x3 +y3), the selected volume as in the previous case and uσ obtained
by a linear interpolation. The analytical value of the gradient is (0.551,0.807), using
(7) we get (∇u)A = (0.813,0.987) and using (9) ∇u = (0.5572,0.813). Fig.3 depicts
differences of norms of (∇u)A

p and analytical gradient evaluated in the representa-
tive points of grid elements (xp,yp) (middle) and the norms of (∇u)p obtained by (9)
and the analytical gradient (right) for the function u2(X) in (xp,yp). At the end we
explored L2 norms of errors |∇u| − |∇uexact | evaluated on four consistent adaptive
grids obtained by consequent refinement of the grid from Fig.3: every finite volume
of a corresponding quadtree grid was divided into four subvolumes and afterwards
the grid was adjusted to the consistent one. We have obtained following results:
0.0619, 0.0173, 0. 0051 and 0.00158.

Properties of the coefficient matrix B. The nonzero corrections occur only if one
of the edgepoints of σ is the shifted node. Let the edge vector σ be oriented from
the shifted node to the quadtree corner. It can be shown that:

1. on the aligned edge σ , the correction cσ can be expressed like cσ = σ
10 , on the

vertical or horizontal edge cσ = σ
4 ,

2. ∑
σ∈Ep

(Cσ )1(Npσ )1 = − ∑
σ∈Ep

(Cσ )2(Npσ )2,

3. ∑
σ∈Ep

(Cσ )1(Npσ )2 = ∑
σ∈Ep

(Cσ )2(Npσ )1,

4. It holds that the matrix B is regular (det(B) > 0) and the system (9) has always a
unique solution. It can be proved using properties 1, 2 and 3.
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3 Numerical solution of the regularized Perona-Malik equation
on the consistent adaptive grid

In this section we present one experiment - solution of the regularized Perona-Malik
equation [1] on a rectangular domain Ω ⊂ IR2 discretized with help of a consis-
tent adaptive grid. The scaling interval I = [0,T ] is discretized into scale steps with
tn = tn + τ , τ is the scale step size, on the boundaries we keep the zero Neumann
boundary conditions. So we solve the problem

∂tu−∇.(g(|∇Gs ∗u|)∇u) = 0, in QT ≡ I ×Ω , (10)

where g(s) = 1
1+Ks2 , K > 0 is the Perona-Malik function slowing down the diffusion

in the vicinity of edges and Gs(x) is the smoothing kernel. In our algorithm we
realize the convolution ∇(Gs ∗u) = Gs ∗∇u by solving the linear heat equation. We
apply one or several steps of the adaptive scheme for time Ts corresponding to s to
both x and y coordinates of the gradient, then we evaluate the norm of the gradients
and apply the Perona-Malik function g to get the diffusion coefficient denoted by
gs,n−1

p .
Let us denote by un

σ the value of the solution in Xσ at the time step tn. The deriva-

tive in the direction npσ is approximated by ∇un · npσ ≈ (un
σ −un

p)
dpσ

. The diffusion

coefficient gs,n−1
p is constant all over p, thus the flux over σ can be approximated by

Fn
pσ = gs,n−1

p
|σ |
dpσ

(
un

σ −un
p
)
. (11)

A good way to evaluate |σ |
dpσ

is to consider the neighbor q sharing σ with p. Then

we can express (11) with a help of the transmissivity coefficient Tpq = |σ |
dpq

and the
ratio of dpσ and dqσ , where dpσ and dqσ are distances of representative points from
Xσ . If σ⊥XpXq in the non adjusted grid, dpσ

dqσ
= 1, otherwise, dpσ

dqσ
= 4

1 or 1
4 . For Tpq

it holds that if one edgepoint of σ is a hanging node in the nonadjusted quadtree,
then Tpq = 2

3 , otherwise Tpq = 1. The approximated flux (11) can be expressed as

Fn
pσ = Tpq

(
1+

dqσ

dpσ

)
gs,n−1

p
(
un

σ −un
p
)
. (12)

Now we solve the linear system, where the set of equations for all finite volumes p

(un
p −un−1

p ) |p| = τ ∑
σ∈Ep

Fn
pσ (13)

is accompanied by a set of equations for every un
σ , σ ∈ Ep, obtained from the rela-

tionship Fn
pσ = −Fn

qσ resulting in
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Fig. 4 Numerical experiment. The artificial noisy image, the filtered image and the fixed adaptive
grid.

un
σ =

dqσ gs,n−1
p un

p +dpσ gs,n−1
q un

q

dqσ gs,n−1
p +dpσ gs,n−1

q
.

We present here a numerical experiment where we begin with a regular grid and
continue to use it until the decrease of elements is sufficient. Then we run the adap-
tive algorithm on the same adaptive grid. Advantage of this approach is that for the
fixed adaptive grid we can store all necessary information, e.g. configurations of
neighbors, matrix B, etc. We consider the image of the size 128×128 disturbed by
the additive noise. We performed 13 scale steps with τ = 1, with K = 1000 in the
Perona-Malik function g and the time of presmoothing Ts = 0.6. The number of grid
elements was reduced to 1

3 after 5 scale steps, and then we continued on the fixed
grid. The parameter ε used in the coarsening criterion is set to 0.01. Fig.4 shows the
data itself, the filtered data and the adaptive grid fixed after 5 scale steps.
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2. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis
7, 713–1018 (2000)
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