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Abstract Models applied in image processing are often described by nonlinear PDEs
in which a good approximation of gradient plays an important role especially in such
cases where irregular finite volume grids are used. In image processing, such a situa-
tion can occur during a coarsening based on quadtree grids. We present a construction
of a deformed quadtree grid in which the connection of representative points of two
adjacent finite volumes is perpendicular to their common boundary enabling us to
apply the classical finite volume methods. On the other hand, for such an adjusted
grid, the intersection of representative points connection with a finite volume bound-
ary is not a middle point of their common edge and standard methods cannot achieve
a good accuracy. In this paper we present a new cell-centered finite volume method to
evaluate solution gradients, which results into a solution of a simple linear algebraic
system and we prove its unique solvability. Finally we present numerical experiments
for the regularized Perona-Malik model in which we applied this new method.
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1 Introduction

In image processing many filtering algorithms are based on nonlinear diffusion PDEs
which modify the linear diffusion (heat) equation by slowing down the diffusion in
the vicinity of edges. The linear heat equation is not only the base of these reliable
and mathematically approved methods but it can be applied also when evaluating the
so called “Gaussian gradient”, used for regularization and edge detection not only in
the regularized Perona-Malik equation we solve, but also in some modifications of
level set type PDEs models [2, 7, 8, 15, 22, 27, 28].

For some of these models adaptive methods have been developed [3, 4, 10, 17–19,
23, 24] benefitting from the fact that with the progress of denoising larger elements
can be used in a computational grid. In this work we present a new finite volume
scheme working on a deformed graded quadtree grid generalizing the method for an
evaluation of gradients presented in [12].

This paper is organized as follows: first we deal with a numerical solution to the
linear heat equation on the so called consistent adaptive grid. It is obtained by mod-
ification of a graded quadtree, i.e. the quadtree in which the difference in a level
between adjacent cells is constrained, in our case to one. In a nonconforming situation
the basic quadtree grid does not satisfy the classical orthogonality property which is
mandatory in the standard finite volume method [11]. However, the graded quadtree
can be deformed into a consistent quadtree grid in such a way that in the resulting
polygonal grid the connection of two representative points of two adjacent finite vol-
umes is perpendicular to their common boundary. Examples of basic quadtree and
consistent grids are displayed in Fig. 1. The process of the deformation and geomet-
ric properties of resulting polygonal grid are presented in Section 2. The consistent
grid enables us to solve the linear heat equation in a standard way: the corresponding

Fig. 1 An example of the original quadtree grid together with the representative points of its elements (on
the left). This grid is transformed into the consistent one (on the right)
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implicit finite volume scheme and the experimental order of convergence (EOC) are
presented in Section 3.

The linear heat equation can be a stepping stone for nonlinear diffusion equations
requiring solution gradients and their norms. We have chosen to solve the regular-
ized Perona-Malik equation [8, 22] for which several adaptive methods have already
been elaborated [3, 4, 9, 17, 18], but working on triangular or rectangular grid ele-
ments. Our method to evaluate the gradients is based on [12] dealing with similar
nonlinearities in the level set curvature driven equations. We consider also repre-
sentative points on finite volume edges, which are updated using the conservation
principle. Comparing with the diamond cell adaptive method [18] the advantage is
that we work locally in the sense that we only need to access neighbors sharing a
common edge, not a vertex only, because if the neighborhood information of the
grid is not stored explicitly, finding the neighbors with a common vertex leads to too
many tests and can be time consuming. In the standard approach based on [12] the
represenative points are obtained as an intersection of a line segment connecting rep-
resentative points of two adjacent finite volumes and their common edge which must
be mutually orthogonal. Moreover this intersection must be a midpoint of the edge,
but such a requirement is not fulfilled in the consistent adaptive grid. In the present
work we generalize the gradient evaluation in such a way that this midpoint condition
can be relaxed. The method leading to a simple algebraic linear system is described
in Section 4, where also unique solvability of the linear system and properties of its
coefficient matrix have been shown.

In Sections 5 and 6 we derive the semi-implicit finite volume scheme for the
regularized Perona-Malik equation and present numerical experiments.

2 The adaptive grid

A region representation is an important issue in image processing and consequently a
number of representations are currently in use among which quadtree techniques [1,
21, 25, 26] are well suited for large set of applications. To mention some of them - the
finite difference schemes for the Poisson and heat equations on non-graded quadtrees
[13, 19] and the multigrid finite element schemes for PDEs in image processing [10,
23, 24]. For the finite volume method, a cell centered finite volume discretization
to Poisson equation using multigrid approach, has been used already in 1998 [14].
For the elliptic boundary value problems the higher order finite volume method have
been studied in [5, 6].

Recently adaptive finite volume schemes working on quadtrees has been proposed
in [17, 18]. However, our consistent grid is not Cartesian, but polygonal one,
possessing the properties enabling us to use the methods based on [12].

In image filtering, the idea to use more and more “coarse” elements with progress
of smoothing has been used for the first time in [3] for the regularized Perona-
Malik equation. It benefits from the fact that the whole information about the image
is contained in the initial grid and there is no spatial movement of the edges, no
refinement is needed and the algorithm works just with grids, elements of which are
obtained by merging of pixels. This process has been called a coarsening in image
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processing. We want to use these principles when working on the consistent finite
volume adaptive grid. First, let us describe building the quadtree.

2.1 Building the quadtree

The initial image is given as a set of discrete grey (or RGB) values on cells of an initial
regular - nonadaptive grid corresponding to the pixel structure of the image. We build
the quadtree by a merging of the elements with similar intensities from smaller cells
to larger cells, i.e. from leaves to the root. The old values are either unchanged, or
replaced by an averaging the old values from the processed area. During this process
the information about successful or unsuccessful merging is stored in a binary field
with the size corresponding to the image. Moreover this information is stored in such
a way that it enables us to create a graded quadtree with prescribed ratio of elements.
It can be easily used as a stopping criterion during traversing the quadtree and to test
the configurations of elements - the leaves of the quadtree.

As we have already mentioned, we build the graded quadtree, i.e. we require the
ratio of sides of two adjacent squares to be 1 : 1, 1 : 2 or 2 : 1. Grids associated with
such trees are often used in order to produce procedures that are easier to implement,
moreover, in our case it is an inevitable requirement to be able to build the consistent
finite volume grid. The used technique of building the quadtree (and octree) adaptive
grids is described in [16, 17] where the following coarsening criterion is used: the
cells are merged if a difference in their intensities is below a prescribed tolerance
ε.

2.2 Adjustment to the quadtree consistent grid

The quadtree grid (Fig. 1 left) is inconsistent in the sense, that we cannot find the
unique representative points of the adjacent grid elements - finite volumes - such
that the connection of their representative points is perpendicular to their common
boundary. The adaptive grid fulfilling this condition is called consistent and it is
an admissible mesh in the sense of [11]. However, the basic quadtree grid can be
adjusted to a consistent one procedurally: we must adjust the shape, if two adjacent
finite volumes p and q are of a different size. If we denote the length of a common
edge in the original quadtree by h and we shift the “hanging node“ by v = h

3 (e.g. in
Fig. 2 we shift X to X′), then the connection of representative points is perpendicular
to the shifted common boundary. This fact (and also the fact that BX′

PQ
= 2

3 ) follows
from the similarity of triangles �AQP and �XX′B with the ratio of their adjacent
sides 1:3. The area of p is also evaluated procedurally - it depends on a configuration
of its neighbors.

2.3 Notations

Let Th be a polygonal adaptive grid with finite volumes p of a measure |p|. Let
every finite volume p have a representative point Xp lying in its center or in the
center of the original square for an adjusted element of the consistent grid. Let Np

denote the set of neighbors q ∈ Th for which common interface of p and q is a line



Adaptive cell-centered finite volume method for diffusion equations

Fig. 2 Adjustment to the consistent grid. |XX′| = v = 1
3 h. XB= 2

3 PA, hence BX′
PQ

= 2
3

segment - an edge σpq with a nonzero measure in IR denoted by |σpq |. For q ∈ Np,
dpq = |Xq − Xp| and npq is a unit normal vector outward to p. By Ep we denote
a set of all edges σ of p. When we speak about a unit normal vector to σ ∈ Ep, we
denote it by npσ .

Let us denote by Xσ such a point of σpq which represents the intersection of the
line segment XpXq and σpq . In our consistent grid, XpXq is perpendicular to σpq ,
but the intersection Xσ is not the midpoint of σ in general case. Let us denote by X∗

σ

the midpoint of the edge σ .

3 Numerical scheme for the linear heat equation on a consistent
adaptive grid

We solve the following problem:

∂u(x, y, t)

∂t
− �u(x, y, t) = r(x, y, t), (x, y, t) ∈ QT ≡ � × I, (1)

∂u(x, y, t)

∂n
= 0, (x, y, t) ∈ ∂� × I, (2)

u(x, y, 0) = u0(x, y), (x, y) ∈ �, (3)

u0 ∈ L∞(�) , r(x, y, t) ∈ L∞(QT ). (4)

Here, u(x, t) is an unknown function defined in � ⊂ R2 and a time interval
I = [0, T ], n is a unit outer normal vector to ∂� and u0(x) is an initial condition.
Having the grid, we integrate the diffusion equation over a finite volume p and use
the divergence theorem to obtain∫

p

∂tu dX −
∫

∂p

∇u.np dS =
∫

p

r dX. (5)
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We replace the time derivative by a finite difference using the uniform time step
τ = tn − tn−1, where tn−1, tn are previous and current time steps. Let un be the
solution in the nth time step, un

p denotes the solution over the finite volume p in the

nth time step and rn
p = 1

τ |p|
nτ∫

(n−1)τ

∫
p

r(x, y, t)dXdt . Having the integral form (5) of

the problem (1), let us denote by

f n
pq =

∫

σpq

∇un.npq ds (6)

the flux through boundary σpq between p and its neighbor q at the time step tn. Then
the implicit scheme can be written in the following general form

(
un

p − un−1
p

)
|p| = τ

∑
q∈Np

f n
pq + τ |p|rn

p. (7)

The flux f n
pq contains a normal derivative of a solution at the time step tn evaluated

on the boundary σpq and we approximate it numerically by:

∇un · npq ≈
(
un

q − un
p

)

dpq

. (8)

Let us denote by Tpq the term |σpq |
dpq

and call it the transmissivity coefficient. Now the
flux can be approximated by

f n
pq ≈ Fpq = Tpq

(
un

q − un
p

)
, (9)

where for the consistent adaptive grid Tpq is defined as follows:

• for q of the different size as p (in the original quadtree grid), Tpq = 2
3 .

• for q of the same size as p (in the original quadtree grid): if p and q have the same
parent in the quadtree structure and a common larger neighbor, Tpq = 2

3 (the
length of such a common edge is reduced, see e.g. Fig. 1). Otherwise Tpq = 1.
In other words, if one edgepoint of the common edge is a hanging node in the
original quadtree then Tpq = 2

3 , otherwise Tpq = 1.

Now we are ready to write the implicit finite volume scheme for solving problem
(1)–(3):

Let 0 = t0 ≤ t1 ≤ ... ≤ tN = T denote the time discretization with tn = tn−1+τ ,
where τ is the time step. For n = 1, ..., N we look for un

p, p ∈ Th satisfying

(
un

p − un−1
p

)
|p| = τ

∑
q∈Np

Tpq

(
un

q − un
p

)
+ τ |p|rn

p (10)
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or rewritten⎛
⎝ |p|

τ
+

∑
q∈Np

Tpq

⎞
⎠ un

p −
∑
q∈Np

Tpqun
q = |p|

τ
un−1

p + |p|rn
p; (11)

with
u0

p = 1

|p|
∫

p

u0(x)dx; for all p ∈ Th. (12)

After standard application of Neumann boundary conditions, this scheme leads to a
linear system of equations at every time step, which can be efficiently solved e.g. by
the SOR method.

Remark 1 Note that our consistent grid fulfils all conditions for admissible mesh
defined in [11], Definition 10.1. Let us denote further

size(Th) = sup{diam(p), p ∈ Th}.

Theorem 1 Let un
h be on each finite volume p ∈ Th a piecewise constant numerical

solution given by numerical scheme (11)–(12). Then

1. There exists unique solution un
h of the scheme (11)–(12) for every n = 1, ..., N .

2. This solution is L∞ stable.
3. Let solution of (1) be a function u ∈ C2(�̄×R+), u0 ∈ C2(�̄), r ∈ C0(�̄×R+),

Th be an admissible mesh and τ ∈ (0, T ). Let en
p = u(xp, yp, tn)−un

p for p ∈ Th

and n = 1, 2, . . . N . Then there exists C only depending on u, T , � and r such
that ⎛

⎝∑
p∈T

(en
p)2|p|

⎞
⎠

1
2

≤ C (size(Th) + τ) ,

for all n = 1, 2, . . . N .

Proof 1. Note that resulting linear algebraic system of equations (11) has diago-
nally dominant M-matrix which implies existence of the unique solution for each
n = 1, ..., N .

2. L∞ stability can be proved in a similar way as in [11] Lemma 18.1.
3. The error estimates are proven in [11] Theorem 17.1 for the non-homogeneous

Dirichlet boundary condition. The result is valid for zero Neumann boundary
condition as well.

The overall adaptive algorithm to solve (1)–(3) has three phases in every time
step:

1. We build the graded quadtree adaptive grid and change it to a consistent one.
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2. We compute the coefficients of the linear system during recursive traversal of
the quadtree.

3. We solve the linear system (10).

3.1 EOC for the adaptive scheme on the consistent grid

For numerical tests, let us consider the linear diffusion equation with a right hand side

ut − �u = r, (13)

where u = u(x, y, t), r = r(x, y, t), (x, y) ∈ (0, 1) × (0, 1) = � and t ∈ [T1, T2].
For the function r(x, y, t) = cos(2πx) cos(2πy)(1 + 8π2t), the exact solution is
given by u(x, y, t) = cos(2πx) cos(2πy)t and we solve the problem in a time
interval I = [0.5, 0.6]. We compute L2(I, L2(�)) norm of the error by the formula

E(h) =
√√√√ N∑

n=1

τ
∑
p

(u(xp, yp, tn) − un
p)2|p|. (14)

The initial uniform grid is of the size 16 × 16
(
h = 1

16

)
. Over this grid we construct

two initial nonuniform quadtree grids depicted in Fig. 3 and perform the experiments.
We take the initial nonuniform adaptive grid and solve the linear heat equation on
this grid adjusted to the consistent one, for a given time interval I . Then we refine the
initial quadtree adaptive grid by dividing every finite volume into four subvolumes,
adjust it to the consistent one and solve the linear heat equation again (see Fig. 4).
The experimental order of convergence is then evaluated by EOC = log2

E(h)
E(h+1)

.

Let us note that the grid is not changing in time, though we solve the time dependent
problem. To study EOC, we refine each grid three times. We performed N time steps
(the third column of Table 1) for each grid and evaluated the error given by (14). The
errors and EOCs are shown in Table 1. As one can see, the method is the second order
accurate.

Fig. 3 The initial coarse quadtree grids for EOC computation, left: Grid a, right: Grid b
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Fig. 4 Left: the consistent grid with h = 1
32 obtained by refinement of the grid a and the corresponding

intensity function. Right: the consistent grid with h = 1
32 obtained by refinement of the grid b and the

corresponding intensity function. See also the second row of the Table 1

3.2 Computational complexity of the adaptive scheme

In this section we compare the complexity of the adaptive and nonadaptive algorithms
for the linear heat equation. While in the nonadaptine algorithm working on regular
square or rectangular grids there are two main phases; the evaluation of coefficients
of the linear system and solving the linear system, the adaptive algorithm has an
additional step - building the grid.

Let the quadtree be built over an image with M = 2N × 2N pixels and it has m

leaves corresponding to elements of the computational grid. Then we can say that the
computational grid is constructed in O(M) time, the coefficients of the linear system
are evaluated in O(m) time and the linear system is solved in O(m) time (in [16], the
computational complexity was discussed in more details).

We have performed an experiment exploring the time behaviour with increasing
M , i.e., the adaptive grid was subsequently formed over images with the size 2N ×2N ,
N = 8, . . . , 11. We have created a double-valued image of an object formed in such

Table 1 EOC calculations, from the left: h means the size of finite volumes in the initial grid if there
would be no coarsening, τ is the time step, N is the number of time steps performed over I = [0.5, 0.6]

Grid a) Grid a) Grid b Grid b)

h τ N E(h) EOC E(h) EOC

1
16 0.003906 25 0.0188 0.01302
1

32 0.000977 102 0.00465 2.015 0.003459 1.912
1

64 0.000244 409 0.001154 2.010 0.00089 1.958
1

128 0.000061 1638 0.000288 2.002 0.000109 1.996

Then the errors E(h) and EOC for both Grid a) and Grid b) are given
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Fig. 5 Examples of adaptive grids built on various refinement levels. The number of elements in the
adaptive grid is about five percent of the original uniform grid

a way that the number of elements in an adaptive grid is about 5 % of the original
regular grid (examples of such grids are in Fig. 5). In the experiment we explore
the running times of particular phases of both nonadaptive and adaptive algorithms
for increasing values of N . The results are displayed in Table 2 for regular grids
and Table 3 for corresponding adaptive grids. The tables show linear scaling of both
algorithms with respect to number of elements in the grid.

In the next experiment we take the grid on the level N = 11 with 223003 ele-
ments reduced from 4 194298 and we estimated the effectiveness of the algorithm by
measuring the times of particular operations.

By measurements we get that an average cost to get and to store the coefficients
of one equation of the linear system is 5.6 times higher in the adaptive grid than in
the regular grid and for decrease above 16 % the coefficients are more efficiently
evaluated on a regular grid (we must also realize that in a regular grid the elements
are processed in loops and in our implementation of an adaptive algorithm with help
of recursive procedures.) Usually we can save computational time in this phase only
in the last steps of a time evolution, but mostly the dominant time is the time to solve
the linear system.

The coefficients of a linear system are stored in a list and then the linear system is
solved in simple loops without a help of a recursion. The semi-implicit methods we

Table 2 Running times for particular phases of one time step of the nonadaptive algorithm for images
of the size 2N × 2N

Number of Time for Time for Time for

N elements LS coefficient linear system coeff+LS

8 65536 0.016 0.1872(16it) 0.2032

9 262144 0.03 0.531(13it) 0.561

10 1048576 0.125 2.14(14it) 2.265

11 4194298 0.517 8.56(14it) 9.077



Adaptive cell-centered finite volume method for diffusion equations

Table 3 Running times for particular phases of one time step of the adaptive algorithm for the initial
images of the size 2N × 2N

Number of % of orig. Time to Time for Time for Grid+

N elements elements build a grid LS coeff. lin. system coeff+LS

8 3277 5 % 0.015 – 0.015(16it) 0.03

9 13399 5.11 % 0.047 0.016 0.031 (11it) 0.094

10 53572 5.1 % 0.125 0.046 0.125 (10it) 0.296

11 223003 5.32 % 0.547 0.156 0.5 (10it) 1.203

use lead to linear systems with number of unknowns corresponding to the number of
grid elements. However the efficiency of the linear system solution does not depend
on the decrease of elements directly, because in one equation of the adaptive method
the number of elements depends on a number of neighbors of a processed (diagonal)
element and the total number of neighbors depends on a structure of a grid. Moreover,
the number of iterations of a linear system depends also on the solution itself, on the
stopping criterion (in all performed experiments it is the same), on the linear system
matrix depending e.g. on the scale step size, the size of element (the higher, the
better diagonal dominance is) and if we use SOR, the suitable choice of a relaxation
parameter.

As to the stopping criterion, the absolute error of a residual ||Ax − b|| < tol is
used with the same value of tol for all refined grids. It is known that when solving an
elliptic equation the number of iterations is increasing with the refinement level. On
the other hand, when solving the parabolic equations, as in our case, the number of
iterations does not increase when refining the grid. Let us note that we start the SOR
iterations at the current time step by using numerical solution from the previous time
level. Due to the standard parabolic space-time coupling (τ = h2), which means that
halving the space step we refine the time step four times, the initial iteration (solution
from the previous time step) at a fine grid is closer to the final solution of the linear
system than it is on the one level coarser grid. In our opinion this is the reason why
the number of SOR iterations remains stable when refining the grid.

Our experience is that with the grid with larger elements the number of iterations
is lower, so at the end we can say that the time is proportional to decrease of elements
and with a sufficient decrease of elements the adaptive algorithm is much faster in the
final scale steps. Using Table 3 we estimate an average cost incurred by processing
of one equation in the adaptive algorithm (on every level we divide the time (the
7th column) by a number of equations times a number of iterations (the 2nd and 6th
columns). If we perform the same evaluation of the cost for processing one equation
for the nonadaptive grid (Table 2) we can see that the cost in the adaptive grid is
1.12 times higher than in the nonadaptive one. For a number of iterations we use a
linear interpolation between 5 % of elements (10 iterations,the 6th column of Table 2)
and 100 % of elements (14 iterations, the 4th column of Table 3) we can estimate
CPU times of an adaptive method for various decrease level of elements expressed
as percentage of the original number of elements. These estimates are presented in
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Fig. 6. At the top there is a contribution of particular phases while at the bottom we
have a comparison of estimated overall CPU times.

4 Approximation of the gradient on the consistent grid

To solve more general diffusion equations we need to approximate the gradients over
the finite volumes and their boundaries. In the adaptive methods for the Perona-Malik

Fig. 6 Top: Estimate of run time for three phases of the adaptive algorithm). Bottom: The running time
estimates (axis y) for a decrease of elements (expressed in a percentage of the original image (axis x) for
nonadaptive and adaptive algorithms. The original number of elements is 4194298. The times are given in
seconds
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equations [17, 18], both working on quadtree grids, the (presmoothed) gradients are
evaluated on boundaries of the finite volumes, either convolving the solution with
the partial derivatives of the smoothing kernel [17] or using the diamond cell method
requiring solution approximations in the corners of the squares obtained by bilinear
approximation. With the shapes occurring in our consistent adaptive grid too many
possibilities would be tested and the algorithms hardly can be efficient. That is the
reason why we have chosen the method based on [12] where we consider also rep-
resentative points on finite volume edges, but not values at the corners. Then, with
a help of these points we work locally, we only need access to neighbors sharing a
common edge and update values in these points with a help of conservation principle.

The method from [12] works in this way:

1. for edges σ of finite volume p we define representative points X∗
σ - their

midpoints,
2. with help of these points, we evaluate the norm of gradient locally on p (using

the consequence of the Stokes formula, see (19)–(20)),
3. equation for the finite volume p is derived locally,
4. values of solution in X∗

σ are obtained by using the conservation principle.

In the consistent adaptive grid, if we set Xσ to be the intersection of the connection
of representative points Xp and Xq and the edge σpq , the line segments XpXσ and
XqXσ are perpendicular to σ , but Xσ is not the midpoint of σ on every grid element.
Such a situation occurs on edges containing a hanging node in the original quadtree
grid. The most critical shape in this sense is the sharp element, where Xσ is not the
midpoint on any of the edges (Fig. 7 right).

Let us suppose the linear approximation of the solution over the finite volume p.
Any linear function can be written as

u(X) = u(Xp) + ∇u · (X − Xp) = up + ∇u · (X − Xp). (15)

If X = Xσ , it holds

uσ − up = ∇u · (Xσ − Xp), (16)

Fig. 7 Examples of the shapes where the intersection of the connection of representative points and a
common edge σ is not the midpoint of σ
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where uσ is a value of the solution at a point Xσ . The gradient of the linear function
is a constant vector in IR2, thus also over a control volume p. Then it holds

∇u = 1

|p|
∫

p

∇udx = 1

|p|
∫

∂p

unpσ dS (17)

= 1

|p|
∑
σ∈Ep

∫

σ

(up + ∇u · (X − Xp))npσ dS (18)

= 1

|p|up

∑
σ∈Ep

|σ |npσ + 1

|p|
∑
σ∈Ep

|σ |∇u · (X∗
σ − Xp)npσ . (19)

The term
∑

σ∈Ep

|σ |npσ = 0 and the expression |σ |∇u(X∗
σ − Xp)npσ represents the

precise integration of a linear function over the edge σ . Thus we have

∇u = 1

|p|
∑
σ∈Ep

|σ |∇u · (X∗
σ − Xp)npσ . (20)

On the edges, where Xσ �= X∗
σ , we can express

X∗
σ − Xp = (Xσ − Xp) + (X∗

σ − Xσ ). (21)

The second part of the right hand side of (21) will be called correction. Then ∇u can
be split into two parts

∇u = 1

|p|
∑
σ∈Ep

|σ |∇u · (Xσ − Xp)npσ

︸ ︷︷ ︸
=A

+ 1

|p|
∑
σ∈Ep

|σ |∇u · (X∗
σ − Xσ )npσ

︸ ︷︷ ︸
=B

(22)

The part of ∇u given by A and denoted as (∇u)A represents the gradient without
correction and due to (16) it can be evaluated as

(∇u)A = 1

|p|
∑
σ∈Ep

|σ |(uσ − up)npσ . (23)

The second term B - the correction of (∇u)A, depends on the unknown gradient. The
practical evaluation will be explained later

In the following text we present three experiments performed on a specific con-
sistent grid (see Fig. 10, the grid is built over a uniform grid with 32 × 32 elements)
and the specific function u(x, y), defined on < −1.25, 1.25 > × < −1.25, 1.25 >,
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on which we evaluate the norm of the gradient on p:

u(x, y) = 1

2

(
x2 + y2

)
. (24)

Experiment 1 We evaluate the norm of the gradient on p in its representative point

analytically, i.e. ∇u(Xp) = (xp, yp), |∇u(Xp)| =
√

xp
2 + yp

2. The result is
graphed in Fig. 8 left.

Experiment 2 We evaluate the approximated gradient using only A and neglect-
ing B in (22). The values uσ were obtained by a linear interpolation. The result is
shown in Fig. 8 right. The errors, significant on sharp elements with latrge gradients,
indicates a necessity for including the part B into computations.

4.1 Evaluation of the gradients with corrections

Remark In the following text, we use subscripts in two ways: if they represent
derivatives, we use x resp. y and if they represent the vector components, we use 1
resp. 2.

Let us denote the correction vector (X∗
σ − Xσ ) by cσ = ((cσ )1, (cσ )2). We will

work with (∇u)A = ((ux)
A, (uy)

A), npσ = ((npσ )1, (npσ )2) and the unknown
vector ∇u = (ux, uy). Now we have

∇u = (∇u)A + 1

|p|
∑
σ∈Ep

|σ |(∇u · cσ )npσ , (25)

i.e.,

(ux, uy) =
(
(ux)A, (uy)A

)
+ 1

|p|
∑
σ∈Ep

|σ |((cσ )1ux + (cσ )2uy)((npσ )1, (npσ )2). (26)

Fig. 8 Left: Experiment 1. - the norm of gradient evaluated analytically. Right: Experiment 2. Omitting
part B in (22) leads to the discontinuities in the norms of gradients
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We see that (26) represents a linear system of 2 equations with 2 unknowns ux and
uy , which can be adjusted to the following form:

ux

⎛
⎝1 − 1

|p|
∑
σ∈Ep

|σ |(cσ )1(npσ )1

⎞
⎠ + uy

⎛
⎝− 1

|p|
∑
σ∈Ep

|σ |(cσ )2(npσ )1

⎞
⎠ = (ux)A,

(27)

ux

⎛
⎝− 1

|p|
∑
σ∈Ep

|σ |(cσ )1(npσ )2

⎞
⎠ + uy

⎛
⎝1 − 1

|p|
∑
σ∈Ep

|σ |(cσ )2(npσ )2

⎞
⎠ = (uy)A.

The elements of the coefficient matrix of (27) can be evaluated procedurally,
traversing the quadtree and the system can be solved e.g. by the Cramer rule.

4.2 Practical evaluation of gradients

For a particular element shape, the matrix B can be precalculated in advance. Let us
denote:

Npσ = |σ |npσ

l
and Cσ = cσ

l
,

where l is the length of the square edge in the original quadtree. To evaluate these
vectors we start with the edge vector 
σ (oriented from the shifted node to the quadtree
corner), Npσ is obtained by its rotation by 90 or −90 degrees (i.e. by switching its
coordinates and negating one of them) to create the outer normal and extracting l -
the length of the square in the original quadtree. Cσ is parallel to 
σ , but shortened
according to the geometrical situation and l is extracted. The nonzero corrections
occur only if one of the edgepoints of σ is the shifted node. It can be shown that on
the aligned edge σ , the correction cσ can be expressed as cσ = 
σ

10 , on the vertical

or horizontal edge cσ = 
σ
4 . For example, on a shape like in Fig. 9c), we have 
σ =(

1
3h, h

)
, Npσ =

(
1, − 1

3

)
, Cσ =

(
1
30 , 1

10

)
for an aligned edge and 
σ =

(
− 2

3h, 0
)

,

Npσ =
(

0, − 2
3

)
, Cσ =

(
− 1

6 , 0
)

for a horizontal edge. In all other configurations of

this shape we just switch or negate these coefficients.
The system can be written in the following form:

ux

b11︷ ︸︸ ︷⎛
⎝1 − l2

|p|
∑
σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠ + uy

b12︷ ︸︸ ︷⎛
⎝− l2

|p|
∑
σ∈Ep

(Cσ )2(Npσ )1

⎞
⎠ = (ux)

A,

(28)

ux

b21︷ ︸︸ ︷⎛
⎝− l2

|p|
∑
σ∈Ep

(Cσ )1(Npσ )2

⎞
⎠ + uy

b22︷ ︸︸ ︷⎛
⎝1 − l2

|p|
∑
σ∈Ep

(Cσ )2(Npσ )2

⎞
⎠ = (uy)

A.
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The coefficients of the linear system (28) depend on Npσ , Cσ and the ratio l2

|p| . All
of them are determined only by the shape of element p, not by its level (size), so
we can store the inverse of the coefficient matrix B for every shape and evaluate
∇u = B−1(∇u)A. This approach is suitable, if there is only limited number of shapes
in the polygonal grid like in our consistent adaptive grid and if we work on a fixed
grid like in Experiments 4 and 5.

Example 1 Let us show the coefficient matrix B of the linear system (28) for some
configurations of elements (cf. Fig. 9):

a) If an element p has a couple of hanging nodes on neighboring edges in the
original quadtree (i.e. on edges sharing a common vertex), or on all of them, the
effects of corrections cancel mutually and B is the unit matrix.

b) If the hanging node is on one or three edges of p, then

B =
(

0.985 0
0 1.015

)

c) If p has one larger neighbor on its edge, then B is the matrix

B =
(

0.96 −0.12
−0.12 1.04

)

d) In the case of the sharp element, the coefficient matrix is

B =
(

1 0.3
0.3 1

)
.

Fig. 9 Example 1. Shapes for particular cases of Example 1
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Experiment 3 We take the function u(x, y) = 1
2 (x2 + y2) and the grid from the

Experiment 1 (Fig. 10) and compare the gradients (∇u)A and ∇u for an element
far from the center. We take the sharp element highlighted in red with the represen-
tative point (xp, yp) = (0.742, −0.89). First uσ is set to the exact value evaluated
using u(x, y). The gradient vector (∇u)A evaluated without correction with a value
(−1.711, −1.801) was corrected using (28) to (0.860,−1.03).

In practical tasks uσ is obtained by interpolation, here the values of uσ (like in the
Experiment 2) are obtained by linear interpolation between up and uq of its neighbor.
It is interesting that in such a case the gradient of u(x, y) obtained by (28) is equal
to the analytical gradient. On a square element, this fact can be easily verified. For
an element with a nonzero correction, let us take, for example, the element with the
same shape like the selected element ( i.e. the element depicted in Fig. 9d) with its
matrix B shown in Example 1 d)). We get, using (23)

(
(ux)

A, (uy)
A
)

= (
xp + 0.3yp, yp + 0.3xp

)
.

After correcting this gradient by multiplying by B−1, we have:

1

1 − 0.32

(
1 −0.3
−0.3 1

) (
xp + 0.3yp, yp + 0.3xp

)T =

1

1 − 0.32

((
1 − 0.32

)
xp,

(
1 − 0.32

)
yp

)T = (
xp, yp

)T
.

Fig. 10 The grid used in Experiments 1-3. The selected shape for Experiment 3. The dimension of the
original nonadaptive was 32 × 32, h = 0.03125
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Finally, let us take the function u2(x, y) = 1
3

(
x3 + y3

)
and the selected shape

(uσ is obtained by linear interpolation). The analytical value of the gradient is
(0.551, 0.807), using (23) we get (∇u)A = (0.813, 0.987), after correction ∇u =
(0.5572, 0.813).

4.3 Properties of the coefficient matrix B

In the following we want to show symmetry and regularity properties of the matrix
B. In the proofs we show some rules which can be helpful during construction of B.

Lemma It holds:

a)
∑

σ∈Ep

(Cσ )1(Npσ )1 = − ∑
σ∈Ep

(Cσ )2(Npσ )2,

b)
∑

σ∈Ep

(Cσ )1(Npσ )2 = ∑
σ∈Ep

(Cσ )2(Npσ )1.

Proof We explore only edges with nonzero corrections. The first property follows
from the fact that Cσ ⊥ Npσ . To show the symmetry property in b), we use the
fact that for the parallel codirectional vectors u and v it holds u · v = |u||v| and
for the opposite directional vectors u and v, u · v = −|u||v|. Let Ep

∗ = {σ 1, σ 2}
denote two edges sharing a shifted node * with the corresponding vectors N1, C1 and
N2, C2 (for examples, see Fig. 11). Let us rotate N1 and N2 by 90◦, we get vectors(
N1

2 , −N1
1

)
and

(
N2

2 , −N2
1

)
. Without losing generality, one is codirectional and the

Fig. 11 Examples of the sets E∗
p . If E1∗

p and E2∗
p correspond to two adjacent edges in the original quadtree,

then
∑

σ∈E1∗
p ∪E2∗

p

(Cσ )1(Npσ )1 = 2C1N1 + 2C2N2 = 2C1 · N1 = 0, because C1⊥N1
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other is opposite directional to C1 and C2, respectively. Using the property of the
scalar product mentioned above, we have

C1
1N1

2 − C1
2N1

1 = |C1||N1|,
C2

1N2
2 − C2

2N2
1 = −|C2||N2|.

We sum these two equations and show that the right-hand side of the sum is equal to
zero. This implies that b) holds for one couple of edges with nonzero corrections Ep

∗,
thus also for all edges in Ep. To show that

(
C1

1N1
2 + C2

1N2
2

)− (
C1

2N1
1 + C2

2N2
1

) = 0,
we must show that |C1||N1| = |C2||N2|. For the elements like in Fig. 9a and b, it is
obvious, because the lengths of both edges are the same, so we only need to prove it
for shape in the case c) what implies the result for all possible shapes in the consistent
grid. Let N1, C1 are related to the horizontal edge and N2, C2 to the skew one. Since
|C1| = 1

4 |N1| and |C2| = 1
10 |N2| (see section Practical evaluation of gradients), we

get

|C1||N1| − |C2||N2| = 1

4
|N1|2 − 1

10
|N2|2 = 1

4

(
2

3

)2

− 1

10

(√
10

3

)2

= 0,

so the symmetry property is fulfilled for σ ∈ Ep
∗ and thus also for all σ ∈ Ep.

Theorem 3 The matrix B is regular and the system (28) always has a unique
solution.

Proof Using the properties of the Lemma, we can write

det (B) = 1 − l4

|p|2

⎛
⎝ ∑

σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠

2

− l4

|p|2

⎛
⎝ ∑

σ∈Ep

(Cσ )2(Npσ )1

⎞
⎠

2

=

1 − l4

|p|2

⎛
⎜⎝

⎛
⎝ ∑

σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠

2

+
⎛
⎝ ∑

σ∈Ep

(Cσ )2(Npσ )1

⎞
⎠

2
⎞
⎟⎠ .

We can show that det (B) > 0, i.e.:
⎛
⎝ ∑

σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠

2

+
⎛
⎝ ∑

σ∈Ep

(Cσ )2(Npσ )1

⎞
⎠

2

<
|p|2
l4

. (29)

For a square element, B is the identity matrix. Now let us take the element hav-
ing only smaller neighbors or neighbors of the same size like in Fig. 9a and b.
Like in the proof of the case b) of the previous lemma, let us evaluate the sums
in (29) for couples of edges E∗

p sharing a shifted node. Let us chose some edge
and denote Cσ1 = (C1, C2) and Nσ1 = (N1, N2). Using the geometrical prop-
erties of the element all other Ci and Nj corresponding to small neighbors can
be expressed using C1, C2, N1, N2, see Fig. 11 for points 1∗ and 2∗. It is easy to
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see that
∑

σ∈E∗
p

(Cσ )2(Npσ )1 = ∑
σ∈Ep∗

(Cσ )1(Npσ )2 = 0. If E1∗
p and E2∗

p correspond

to two shifted nodes ∗ on two adjacent edges in the nonadjusted quadtree (again
see 1∗ and 2∗ in Fig. 11), then due to orthogonality of Cσ 1 and Nσ 1, we have∑
σ∈E1∗

p ∪E2∗
p

(Cσ )1(Npσ )1 = 2C1N1 + 2C2N2 = 0 and

⎛
⎜⎝ ∑

σ∈E1∗
p ∪E2∗

p

(Cσ )1(Npσ )1

⎞
⎟⎠

2

= 0. (30)

As a consequence it holds that the sum
∑

(Cσ )1(Npσ )1 is nonzero only for one
couple of smaller neighbors or two couples on opposite sides. Without losing gen-
erality let us take the edge vector σ 1 = ( 1

3
l
2 , l

2 ) from Fig. 11, where l is the length

of edge in the corresponding square and C = σ 1

10l
=

(
1
60 , 1

20

)
and N =

(
− 1

2 , 1
6

)
are corresponding correction and outer normal. The sum

∑
(Cσ )1(Npσ )1 is equal to

±
(

1
120 + 1

120

)
= ± 1

60 for one couple (or three couples) of smaller neighbors and to

± 1
30 for two couples on opposite sides. So we have

⎛
⎝ ∑

σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠

2

+
⎛
⎝ ∑

σ∈Ep

(Cσ )2(Npσ )1

⎞
⎠

2

<

(
1

30

)2

< 1 <
|p|2
l4

. (31)

Now let us take the element with a single greater neighbor For an example let us
take the case corresponding to Fig. 9c with E∗

p corresponding to E3∗
p in Fig. 11. Gen-

erally,
∑

σ∈Ep

(Cσ )1(Npσ )1 is nonzero only on the skew edge. In our example, on this

edge σ 6 = l(σ1, σ2) = l( 1
3 , 1), C = 1

10 (σ1, σ2) = ( 1
30 , 1

10 ) and N = (−σ2, σ1) =
(−1, 1

3 ), thus C1N1 = − 1
30 and to ±

(
1
10σ1σ2

)
generally. To evaluate the mixed

term, because
∑

σ∈Ep
∗
(Cσ )2(Npσ )1 = ∑

σ∈Ep
∗
(Cσ )1(Npσ )2, we can select that case for

which CiNj is zero on the horizontal or vertical edge. In our case on the horizontal
edge C2N1 = 0 and we evaluate the expression C2N1 only on a skew one. We have
|C2N1| = 1

10 and finally

(
1

30

)2

+
(

1

10

)2

<

(
5

6

)2

, (32)

where 5
6 is the ratio of |p| and l2 for this shape.

If some element has one greater neighbor, then on vertical and horizontal edges
it can have one or two couples of smaller neighbors, but only one couple of smaller
neighbors contributes to the left hand side of (29) by the same argument as in (30),
again see Fig. 11. At the same time the right hand side is enlarged, so (29) holds.
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In the case that the element has a couple of greater neighbors (Fig. 9d), due to the
diagonal symmetry of the element

⎛
⎝ ∑

σ∈Ep

(Cσ )1(Npσ )1

⎞
⎠

2

= 0 and |
∑
σ∈Ep

(Cσ )2(Npσ )1| = 2

10
, (33)

thus (29) is satisfied also on this element.

5 Numerical solution of the regularized Perona-Malik equation
on the consistent adaptive grid

In this section, we deal with the initial - boundary value problem:

∂tu − ∇.(g(|∇Gs ∗ u|)∇u) = 0, in QT ≡ I × �, (34)
∂u(x, t)

∂n
= 0, in ∂� × I, (35)

u(x, 0) = u0(x), x ∈ �. (36)

where � ⊂ IR2 is a rectangular domain, I = [0, T ] is a scaling interval, and

g(v) is a decreasing smooth function,

g(0) = 1, 0 < g(v) → 0 for v → ∞, (37)

Gs ∈ C∞(IR2) is a smoothing kernel with
∫

IR2
Gs(x)dx = 1 (38)

and Gs(x) → δx for σ → 0, δx - Dirac function at point x,

u0 ∈ L2(�). (39)

Let us use our consistent adaptive grid T for the space discretization in the finite
volume method. Let us denote by un

σ the value of solution in Xσ at the time step
tn and by dpσ the distance of representative point Xp from Xσ . Because the line
segment XpXσ ⊥σ for all σ ∈ Ep for all p ∈ T the derivative in the direction npσ

can be approximated by

∇un · npσ ≈
(
un

σ − un
p

)

dpσ

. (40)

The diffusion coefficient denoted by g
s,n−1
p is constant all over p (it is explained in

more details later), thus the flux over σ ∈ Ep can be approximated by

f n
pσ ≈ Fn

pσ = gs,n−1
p

|σ |
dpσ

(
un

σ − un
p

)
. (41)
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The semi-implicit scheme using the local values can be written in the following
general form (

un
p − un−1

p

)
|p| = τ

∑
σ∈Ep

F n
pσ . (42)

To get the diffusion coefficient g
s,n−1
p , in the regularized Perona-Malik equation we

evaluate the gradient of the presmoothed solution un−1 from the previous time step.
With a help of the system (28) we evaluate the gradient using the values of uσ for
all σ of p. To perform presmoothing we can use the property of convolution with
respect to the derivative, i.e.

|∇Gs ∗ un−1| = |Gs ∗ ∇un−1|,
In our algorithm we realize the convolution by applying several steps of the adaptive
explicit scheme for time corresponding to s to both x and y coordinates of the gradi-
ents, then we evaluate the norm of the gradients and apply the Perona-Malik function
g.

5.1 Other geometrical properties of the consistent grid

Though the term |σ |
dpσ

can be evaluated locally, the better way to evaluate it is to con-
sider the neighbor q sharing σ with p. From now, the edge between p and its neighbor
q will be denoted by σpq . Then we can express (41) with a help of the transmitivity

coefficient Tpq = |σpq |
dpq

and the ratio of dpσ and dpq . If σpq is a horizontal or verti-
cal edge the ratio of dpσ and dpq is equal to 1:2, otherwise, the situation corresponds
to the configuration in Fig. 12: we see a triple of similar triangles, two grey ones
and their union PV Q, adjacent sides of PV Q being the half diagonals of quadtree

Fig. 12 Left: Geometrical properties of the consistent grid: the filled triangles and the triangle PVQ are
similar, ratio of their adjacent sides is 2:1, because adjacent sides of PVQ are half diagonals of squares

with the same ratio of side lengths. It follows that dpσ

dqσ
= 4

1
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squares with the ratio 2 : 1 (1 : 2). Thus we have dpσ

dqσ
= 4

1 and also dpσ = 4
5dpq and

dqσ = 1
5dpq .

Because 1
Tpq

= dpσ +dqσ

|σpq | and dpσ

|σpq | = dpσ

|σpq |
1

Tpq
, the approximation of the flux (41)

can be expressed in the form

Fn
pσ = gs,n−1

p Tpq

dpq

dpσ

(
un

σ − un
p

)
. (43)

Now we solve the linear system, where the set of equations for every finite volume p(
un

p − un−1
p

)
|p| = τ

∑
σ∈Ep

F n
pσ , (44)

is accompanied by a set of equations for every un
σ , σ ∈ Ep. The equation for un

σ is
obtained from the equations:

Fn
pσ = −Fn

qσ ,

gs,n−1
p Tpq

dpq

dpσ

(
un

σ − un
p

)
= −gs,n−1

q Tpq

dpq

dqσ

(
un

σ − un
q

)
,

un
σ = dqσ g

s,n−1
p un

p + dpσ g
s,n−1
q un

q

dqσ g
s,n−1
p + dpσ g

s,n−1
q

. (45)

5.2 Eliminating uσ from the linear system

Because the values uσ can be excluded from the expression un
σ −un

p of (43), we define
also Fn

pq , which is used later to express different form of the semi-implicit scheme,
leading to a linear system which does not contain values uσ and is formulated at the
end of this section. If we replace un

σ − un
p in (43) by

un
σ − un

p = dpσ g
s,n−1
q (un

q − un
p)

dqσ g
s,n−1
p + dpσ g

s,n−1
q

,

we have

Fn
pσ = Tpq

dpσ

g
s,n−1
p dpqg

s,n−1
q dpσ

dqσ g
s,n−1
p + dpσ g

s,n−1
q

(
un

q − un
p

)

= Tpqdpq

g
s,n−1
p g

s,n−1
q

dqσ g
s,n−1
p + dpσ g

s,n−1
q

(
un

q − un
p

)
,

= Tpq

1
dpσ

dpq

1
g

s,n−1
p

+ dqσ

dpq

1
g

s,n−1
q

(
un

q − un
p

)
.

This flux, from now denoted as Fn
pq can be expressed also in the form

Fn
pq = TpqGs,n−1

pq (un
q − un

p), (46)
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with the same values of Tpq as in the case of the linear heat equation (1) and with

G
s,n−1
pq defined by

Gs,n−1
pq = 1

W1
1

g
s,n−1
p

+ W2
1

g
s,n−1
q

, (47)

(48)

where W1 = dpσ

dpq
, W2 = dqσ

dpq
, W1 +W2 = 1 and their values are 1

2 , 1
5 or 4

5 , depending
on the configuration of elements.

If we take g(s2) = 1
1+Ks2 , then we can write

Gs,n−1
pq = 1

W1(1 + K|∇u
s,n−1
p |2) + W2(1 + K|∇u

s,n−1
q |2) = (49)

= 1

1 + K
(
W1|∇u

s,n−1
p |2 + W2|∇u

s,n−1
q |2

) = g
(
|∇us,n−1

pq |2
)

. (50)

Finally, one equation of the the linear system can be written as
(
un

p − un−1
p

)
m(p) = τ

∑
q∈Np

Fn
pq. (51)

Remark 2 Convergence of a finite volume scheme on a regular rectangular grid
to solution of the regularized Perona-Malik equation was proven in [20]. How-
ever, the numerical scheme proposed in this paper for adaptive consistent grids
uses different ideas proposed in [11] for solving curvature driven level set equation.
Proof of convergence of this new scheme to the solution of regularized Perona-
Malik problem is thus not straightforward and will be an objective of our future
research.

6 Numerical experiments

The adaptive algorithm can be used in several ways and here we present two adaptive
approaches:

• We start on a regular grid and continue to use it until the decrease of elements
is sufficient. The number of elements corresponding to the current data is found
out by building the adaptive grid by fast, linear in time algorithm: in the case of
reaching undesired number of them, we can stop building the adaptive grid and
continue on a regular one. As soon as the decrease of elements is sufficient we
let the adaptive algorithm work until the stopping time on the same adaptive grid
(Experiments 4 and 5). Advantage of this access is that for the fixed adaptive grid
we can store all necessary information, e.g. configurations of neighbors, type of
the matrix B to evaluate the gradients, etc.

• After the sufficient decrease of elements we build a new adaptive grid in every
subsequent times step (Experiment 6).
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Experiment 4 The data in this experiment represents artificial data of the size 128×
128 disturbed by the additive noise. We performed 13 scale steps with τ = 1, K =
1000 and the time of presmoothing τs = 0.6. The grid elements were reduced to 1

3
after 5 scale steps, and then we continued on the fixed grid. The parameter ε used
in the coarsening criterion is set to 0.01. Figure 13 shows the data itself, the filtered
data and the adaptive grid fixed after 5 scale steps.

Experiment 5 The data in this experiment is of the size 460 × 512 (cf. Fig. 14).
They were embedded into the size 512×512 using the constant (picture background)
color for the added elements. In the added part thus we have large grid elements and
the efficiency is not influenced significantly. We performed 15 scale steps. The fixed
grid is created after the 6th scale step, when number of elements decreased to one
third of 262144. We use ε = 0.03, τ = 1, τs = 0.6 and K = 1600.

Fig. 13 Experiment 4. Top: the artificial image with additive noise. Bottom: the filtered image (left) with
the adaptive grid fixed after 5 scale steps
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Fig. 14 Experiment 5. From the left: the initial image, the fixed adaptive grid and the result

In the last experiment we work with the data from the Experiment 5, but we build
the adaptive grid in every scale step. We use a simple coarsening criterion, during
merging we compare the squared magnitude of the gradient with a given threshold ε2.
To compare with the grids built in previous examples, the difference is that the grid
obtained in this way is dense around the edges, because the gradient depends on the
boundary values in xσ . The reason is that after building a new grid, we must evaluate
uσ with the formula (45) using the values g

s,n−1
p from the previous time step. This is

one possibility ensuring also small difference of values in merged regions. (Another
possibility is to demand, except of the small difference in solution values, also small
difference of g

s,n−1
p during merging regions.) The value of ε2 depends on K in the

Perona - Malik function g.

Experiment 6 The data in this experiment represents data of the size 460 × 512
from the Experiments 5. We performed 15 scale steps with τ = 1, with K = 1600
and the time of presmoothing τs = 0.6, ε2 = 0.001. Figure 15 shows the images and
corresponding grids after the 7th and 15th scale steps. The initial number of elements
was 262144, the final number of elements was 65674.
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Fig. 15 Experiment 6. The results with corresponding grids in 7th and 15th scale steps

Acknowledgments This work was supported by APVV-0184-10 and APVV-0161-12. We thank to
Robert Eymard who pointed to us at ALGORITMY 2002 the construction of the consistent grid from the
quadtree structure.

References

1. Aftosmis, M.J., Berger, M.J., Melton, J.R.: Adaptive Cartesian mesh generation. Chapter 22 in
Handbook of Grid Generation. CRC Press (1998)

2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image
processing. Archive Rat. Mech. Anal. 123, 200–257 (1993)
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