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Abstract. A mathematical model for a nonlinear image mul-
tiscale analysis is studied. Processing of an image is based
on a solution of the strongly nonlinear parabolic partial
differential equation, which can degenerate depending on
values of the greylevel intensity function. The governing
PDE is a generalization of the regularized (in the sense of
Catt́e, Lions, Morel and Coll) Perona-Malik anisotropic dif-
fusion equation. We present numerical techniques for solving
the suggested initial-boundary value problem and also ex-
istence and convergence results. Numerical experiments are
discussed.

1 Introduction

In the present paper we study the following nonlinear dif-
fusion problems. Letu(t, x) be a function (representing the
greylevel intensity function in image multiscale analysis – see
[2, 3, 21, 30]) which satisfies one of the PDEs:

∂tb(x, u)−∇(g(|∇Gσ ∗β(x, u)|)∇β(x, u)) = f(u0 −u)
(1.1a)

or
∂tb(x, u)−∇(g(|∇Gσ ∗b(x, u)|)∇β(x, u)) = f(u0 −u) ,

(1.1b)

for t ∈ I ≡ [0, T], x ∈ Ω ⊂ RN, whereΩ is a bounded do-
main with Lipschitz continuous boundary (N = 2 or 3 in prac-
tice of the image analysis). The equations are coupled with
boundary and initial conditions of the form

∂νβ(x, u) = 0 onI × ∂Ω , (1.2)

b(x, u(0, x)) = b(x, u0(x)) . (1.3)

For the data in (1.1)–(1.3) we assume that

(H1) g is a Lipschitz continuous function,g(0) = 1 and
0 < g(s) → 0 for s→ ∞,

(H2) Gσ ∈ C∞(RN) is a compactly supported smoothing
kernel (

∫
RN Gσ (x)dx = 1, Gσ (x) → δx – Dirac

measure at pointx, for σ → 0),

(H3) f is a Lipschitz continuous, nondecreasing function,
f(0) = 0,

(H4) u0 ∈ L2(Ω) (represents the processed image).

By the term∇Gσ ∗ v we mean
∫
RN ∇Gσ (x − ξ)ṽ(ξ)dξ,

whereṽ is an extension ofv, for which we assume

‖ṽ‖W1
2 (RN) ≤ C‖v‖W1

2 (Ω) . (1.4)

We consider following four cases for the shape of the
functionsb andβ which indicate the structure of the govern-
ing equations:
(I) b(x, s) is continuous, strictly increasing ins,

b(x, 0) = 0 andβ(x, s) ≡ s,
(II) b(x, s) is nondecreasing Lipschitz continuous ins,

b(x, 0) = 0 andβ(x, s) ≡ s,
(III) β(x, s) is continuous, strictly increasing ins,

β(x, 0) = 0, andb(x, s) ≡ s,
(IV) β(x, s) is nondecreasing Lipschitz continuous ins,

β(x, 0) = 0 andb(x, s) ≡ s.

The initial-boundary value problems (1.1)–(1.3) in form
a or b, in all casesI-IV are generalizations of the reg-
ularized (in the sense of Catté, Lions, Morel and Coll)
Perona-Malik nonlinear diffusion equation. The Perona-
Malik equation as well as its regularization are also called
anisotropic diffusionin the computer vision community and
they are widely used for image selective smoothing and
edge detection in the image processing applications. The
previous papers ([7, 16, 29]) have been dealing with the
case when bothβ(x, s) ≡ s, b(x, s) ≡ s. In such case, the
image analysis depends strongly on∇u ([29]) or ∇Gσ ∗
u ([7]) which are considered as edge indicators. Such spe-
cial PDEs selectively diffuse the image in the regions,
where the signal is of a constant mean in spite of those
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regions where the signal changes its tendency. This re-
quirement is treated by the properties of the functiong
(see (H1)) originally designed in [29]. Catté, Lions, Morel
and Coll introduced the regularizing convolution term (they
put ∇uσ , uσ ≡ Gσ ∗u instead of∇u inside the function
g) in order to preveal mathematical troubles of the ori-
ginal Perona-Malik formulation for the functionsg used in
practice (g(s) = 1/(1+s2), g(s) = e−s). It can be seen ([2])
that, if the productg(s)s is decreasing function for some
s then the Perona-Malik model can behave locally like the
backward heat equation, which is well-known as ill-posed
problem. The slight modification using the convolution al-
lowed to prove existence and uniqueness of the solution
for the regularized problem and, from practical point of
view, it keeps all advantages of the original Perona-Malik
equation (see [7]). Moreover, using the convolution Catté,
Lions, Morel and Coll has made explicit apresmoothingim-
plicitely included in discrete numerical schemes solving the
anisotropic diffusion equation in the original Perona-Malik
form.

In the present paper, we add new nonlinearities repre-
sented by the functionsb and β which make the image
multiscale analysis locally dependent on values of the in-
tensity function u and on the position in the imagex.
Such generalization is useful in any situation when prop-
erties of the image and/or requirements to the image pro-
cessing operation are known a-priori and can be expressed
in dependence onx and/or u. E.g., if a different speed
of diffusion process is desirable in different parts of the
image or for different ranges of the intensity function,
the new models can be clearly used. In the points, where
the derivativeβ′

s is small (b′
s is large) the diffusion pro-

cess is slowed down while whereβ′
s is large (b′

s is small)
the diffusion process is fasted up. We have included de-
generate cases from the point of view of the theory of
parabolic PDEs when eitherβ′

s or b′
s is equal 0 or∞.

In the caseI we admit degeneraciesb′
s = 0 and/or ∞

in some points of intensity range, in caseII the degen-
eracy b′

s = 0 is possible for interval ranges of intensity
function and the similar is assumed considering the func-
tion β(s) in the casesIII and IV. The degenerate cases
can be interpreted as total stopping of diffusion respec-
tively as diffusion with the infinite speed in some image
regions.

Applying the anisotropic diffusion (with a given smooth
function g) together with the explicit/implicit presmooth-
ing to any imageu0 improves some set of edges. On the
other hand, it destroys the details which are under the edge
threshold (given byg) or undistinguished from the noise
in some scale. If such details are contained in the cer-
tain ranges of greylevels, then they can be conserved by
the special choice of the functionβ or b. As a demon-
stration we present Fig. 3 from Sect. 4. In that image, the
colors of Flora’s face are demaged only. We present the
reconstruction of the original (left image) by anisotropic
diffusion (image in the middle) and by anisotropic dif-
fusion accompanied with theslow diffusion effect– the
model (1.1)–(1.3) in the caseIV (image in the right). Using
the proper choice ofβ, which is constant for the lower
(darker) greylevels and linear for the upper range ofu,
the face is selectively smoothed and details around are
conserved.

Due to the strong nonlinearity and possible degeneracy
in (1.1), the proof of existence of a solution and its numeri-
cal approximation needs nonstandard techniques, especially,
if we want to prove its convergence to the solution. We
use a special approximation (see numerical schemes 2.1,
2.2) which in a constructive way look for the solution
and can be implemented for the computational purposes.
It is based on the special time discretization developed
and applied in [6, 9–13, 15, 22–24] for solving the Stefan-
like problems, flow in porous media (including saturated-
unsaturated zones), mean curvature flow of convex curves
in a plane, affine invariant multiscale shape analysis and
further related free boundary problems. In the present pa-
per, we use those ideas together with the techniques de-
veloped in [7] and [16] to obtain existence of a weak solution
of (1.1)–(1.3) and to prove convergence of the suggested
approximations.

In Sect. 2, we present approximation schemes for solving
numerically the initial-boundary value problems (1.1)–(1.3).
Section 3 is devoted to analysis of the existence of a weak so-
lution and convergence of the approximations. In Sect. 4, we
discuss numerical experiments with real and artificial images
in order to show new features of the models.

2 Approximation schemes

In this Section we introduce the numerical technique for solv-
ing the problems (1.1)–(1.3) in all partial cases.

2.1 Approximation scheme (for the casesI andII):

Let n ∈ N andτ = T
n be the time-scale step. On each discrete

time-scale levelti = iτ, i = 0, . . . , n we look for the solution
θi (θi ≈ ui , ui ≈ u(ti , x)) of the regular elliptic problem

λi (θi −ui−1)− τ∇(g(|∇Gσ ∗ui−1|)∇θi )

= τ f(u0 −ui−1) in Ω ,

∂νθi = 0 onI × ∂Ω , (2.1.1a)

whereλi ∈ L∞(Ω) is therelaxation functionconnected with
theθi by theconvergence condition

1

2
τd ≤ λi

≤ min
{

bn(x, ui−1 +α(θi −ui−1))−bn(x, ui−1)

θi −ui−1
, K

}
,

(2.1.2)

whereα ∈ (0, 1) (α close to 1), 0< K (large),d ∈ (0, 1) are
parameters of the method and

bn(x, s) := b(x, s)+ τds. (2.1.3)

The functionui is obtained by thealgebraic correction

bn(x, ui ) := bn(x, ui−1)+λi (θi −ui−1) . (2.1.4)

In the case b we solve in every discrete time-scale step the
equation

λi (θi −ui−1)− τ∇(g(|∇Gσ ∗bn(x, ui−1)|)∇θi )

= τ f(u0 −ui−1) . (2.1.1b)
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2.2 Approximation scheme (for the casesIII andIV):

Let n ∈ N and τ = T
n be the time-scale step. On each dis-

crete time-scale levelti = iτ, i = 1, . . . , n we look for the
solutionθi (θi ≈ β(x, ui ), ui ≈ u(ti , x)) of the regular elliptic
problem

µi (θi −β(x, ui−1))− τ∇(g(|∇Gσ ∗ui−1|)∇θi )

= τ f(u0 −ui−1) in Ω

∂νθi = 0 onI × ∂Ω , (2.2.1b)

whereµi ∈ L∞(Ω) is the relaxation function, connected with
θi by the convergence condition

1

2
τd ≤ µi

≤min
{

β−1
n (x, βn(x, ui−1)+α(θi −β(x, ui−1)))−ui−1

θi −β(x, ui−1)
, K

}
,

(2.2.2)

whereα ∈ (0, 1) (α close to 1), 0< K (large),d ∈ (0, 1) are
parameters of the method and

βn(x, s) := β(x, s)+ τds. (2.2.3)

The functionui is obtained by the algebraic correction

ui := ui−1 +µi (θi −β(x, ui−1)) . (2.2.4)

In the case a we solve in every discrete time-scale step the
equation

µi (θi −β(x, ui−1))− τ∇(g(|∇Gσ ∗β(x, ui−1)|)∇θi )

= τ f(u0 −ui−1) . (2.2.1a)

Neither scheme 2.1, nor 2.2, is explicit with respect toλi , θi ,
µi , θi , respectively. However, they are powerfull theoretical
and practical techniques for solving the nonlinear degenerate
parabolic equations. Due to the properties ofλi , µi and from
the structure of the linear elliptic equations (2.1.1),(2.2.1),
the existence of the solutionθi is guarranteed by the theory
of monotone operator’s equations (see e.g. [8]). By means
of the relaxation functions we control the nonlinearities (de-
generacies) in the equations. They correspond tob′

s(x, ξ),
1/β′

s(x, ξ), respectively, in someξ ∈ (ui−1, ui ). The range,
given by the convergence conditions is rather large. The sim-
plest possibility is to choose e.g.λi = 1

2τd = µi , and the cou-
ples (2.1.1)–(2.1.2),(2.2.1)–(2.2.2), respectively, are fulfilled.
However, from the background of the method, a reasonable
approximation has to force the relaxation functions to be
close to the difference quotients in the right hand sides of
the convergence conditions. For this purpose, we use itera-
tions (described in Remarks 2.6, 2.7) similar to ones from
[10, 12, 13, 24]. We can expect that some other semiimplicit
([31]), implicit ([27]) or explicit (widely used in image an-
alysis) computational techniques can be successfull for some
special cases of (1.1)–(1.3). In the numerical implementation
we can put alsoα = 1 which simplifies the formulas. Then,
in the optimal case (of the choice ofλi , µi ) we actually have
to solve the corresponding nonlinear elliptic problem; e.g., in

the case (IV)b it is

β−1
n (x, θi )− τ∇(g(|∇Gσ ∗ui−1|)∇θi )

= ui−1 + τ f(u0 −ui−1) ,

which can be treated in an iterative way (see (2.7.1)–(2.7.4)).

Remark 2.3. In fact, both degeneracies (under the time
derivative and in the divergence term) can be included using
simultaneouslyb(x, s) andβ(x, s) provided they are strictly
increasing ins. However, we can invertb(x, s) or β(x, s) and
transform the problem into the formI or III. For complet-
ness we present also the scheme for the general situation. It
uses two relaxation functions balanced in the optimal way by
two conditions. Convergence can be obtained by the similar
arguments as in Sect. 3 (for technical details see also [13]).

On each discrete time-scale levelti = iτ, i = 0, . . . , n we
look for the solutionθi (θi ≈ β(x, ui ), ui ≈ u(ti , x)) of the
regular elliptic problem

λi (θi −β(x, ui−1))− τ∇(g(|∇Gσ ∗ui−1|)∇θi )

= τ f(u0 −ui−1)

∂νθi = 0 on I × ∂Ω ,

whereλi ∈ L∞(Ω) satisfies

1

2
τd ≤ λi

≤min
{

bn(x, ui−1 +µi (θi −β(x, ui−1)))−bn(x, ui−1)

θi −β(x, ui−1)
, K

}
,

with µi ∈ L∞(Ω)

0 ≤ µi

≤min
{

β−1
n (x, βn(x, ui−1)+α(θi −β(x, ui−1)))−ui−1

θi −β(x, ui−1)
, K

}
,

whereα ∈ (0, 1) (α close to 1), 0< K (large),d ∈ (0, 1) are
parameters of the method. The functionui is determined from

bn(x, ui ) := bn(x, ui−1)+λi (θi −β(x, ui−1)) .

If β(x, s) ≡ s, we can takeµi = α to obtain Approximation
scheme 2.1. Whenb(x, s) ≡ s we can takeλi = µi to obtain
Aproximation scheme 2.2.

In what follows, we understand the solutions of (2.1.1),
and (2.2.1), respectively, in variational sense. It means, that
we look forθi ∈ V, satisfying the following identities

(λi (θi −ui−1), v)+ τ(g(|∇Gσ ∗ui−1|)∇θi ,∇v)

= τ( f(u0 −ui−1), v) (2.4a)

(λi (θi −ui−1), v)+ τ(g(|∇Gσ ∗bn(x, ui−1)|)∇θi ,∇v)

= τ( f(u0 −ui−1), v) (2.4b)

(µi (θi −β(x, ui−1)), v)+ τ(g(|∇Gσ ∗β(x, ui−1)|)∇θi ,∇v)

= τ( f(u0 −ui−1), v) , (2.5a)

(µi (θi −β(x, ui−1)), v)+ τ(g(|∇Gσ ∗ui−1|)∇θi ,∇v)

= τ( f(u0 −ui−1), v) , (2.5b)

for everyv ∈ V,whereV ≡ W1
2(Ω) is Sobolev space.



188 J. Kǎcur, K. Mikula

Now we introduce iteration processes suitable for deter-
mination of relaxation functions, which are close to the dif-
ference quotients in the right hand sides of the convergence
conditions.

Remark 2.6. The coupleθi , λi simultaneously satisfy-
ing (2.1.1),(2.1.2) is determined iteratively by the following
scheme

(λi,k−1(θi,k −ui−1), v)+ τ(g(|∇Gσ ∗ui−1|)∇θi,k,∇v)

= τ( f(u0 −ui−1), v) (2.6.1a)

λi,k = min

{
bn(ui−1 +α(θi,k −ui−1))−bn(ui−1)

θi,k −ui−1
, K

}
,

(2.6.2)

λi,k := λi,k , for 1 ≤ k ≤ k0 ,

λi,k := min{λi,k, λi,k−1} , for k = k0 +1 . . . , (2.6.3)

starting this process with

λi,0 = min{α(bn)
′
s(x, ui−1), K} . (2.6.4)

If θi,k = ui−1 then we putλi,k = λi,0.

Remark 2.7. The coupleθi , µi simultaneously satisfy-
ing (2.2.1)–(2.2.2) is determined iteratively by the following
scheme

(µi,k−1(θi,k −β(x, ui−1)), v)+ τ(g(|∇Gσ ∗ui−1|)∇θi,k,∇v)

= ( f(u0 −ui−1), v) (2.7.1b)

µi,k

= min

{
β−1

n (x, βn(x, ui−1)+α(θi,k −β(x, ui−1)))−ui−1

θi,k −β(x, ui−1)
, K

}

(2.7.2)
µi,k := µi,k , for 1 ≤ k ≤ k0 ,

µi,k := min{µi,k, µi,k−1}, for k = k0 +1, . . . . (2.7.3)

The iterations are starting with

µi,0 = min{α/β′
s(x, ui−1), K} . (2.7.4)

Note that, ifθi,k = β(x, ui−1) then we putµi,k = µi,0.
By the previous constructions withk0 ≥ 1, the sequences

{µi,k}, {λi,k} are forced to be monotone and hence conver-
gent. The corresponding sequences of unknown functionsθi,k
in the elliptic equations converge in some functional spaces,
too. The limit functions fulfill (2.1.1)–(2.1.2), (2.2.1)–(2.2.2),
respectively. The proof of that facts can be obtained in the
similar lines as in [12–14,24]. In practical implementations
k0 can be choosen in accordance with the shape ofβ, andb
(e.g. sufficiently large, if the numerical convergence ofµi,k,
λi,k, respectively, is observed).

We denoteQT = I ×Ω, the scalar product inL2(Ω) by
(·, ·) and duality betweenV andV∗ by < ·, · >. We use sym-
bols | · |2, ‖ · ‖, ‖ · ‖∗, | · |∞, | · |p for norms in L2(Ω), V, V∗,
L∞(Ω) and Lp(Ω) (see e.g [20]). By→, ⇀ we mean the
strong and weak convergence. ByC, C1, ... we denote general
(large) constants.

By means of ui , θi , determined by Approximation
schemes 2.1, 2.2, in each discrete time-scale step, we con-
struct Rothe’s functions

u(n)(t) = ui−1 + t − ti−1

τ
(ui −ui−1) ,

for ti−1 ≤ t ≤ ti , i = 1, . . . , n

u(n)(t) = ui , for ti−1 < t ≤ ti , i = 1, . . . , n , u(n)(0) = u0 .

θ(n)(t) = θi−1 + t − ti−1

τ
(θi − θi−1) ,

for ti−1 ≤ t ≤ ti , i = 1, . . . , n

θ
(n)

(t) = θi , for ti−1 < t ≤ ti , i = 1, . . . , n , θ
(n)

(0) = θ0 .
(2.8)

They are considered as the approximations of a weak solution
of (1.1)–(1.3) defined by

Definition 1. A measurable function u: QT → R is a weak
solution of (1.1a)–(1.3) iff

(i) ∂tb(x, u) ∈ L2(I, V∗), β(x, u) ∈ L2(I, V)
(ii)

∫
I < ∂tb(x, u), v >= − ∫

QT
(b(x, u) − b(x, u0))∂tv,

∀v ∈ V ∩ L∞(QT) with ∂tv ∈ L∞(QT), v(T, x) = 0,
(iii) a

∫
I < ∂tb(x, u), v > + ∫

I (g(|∇Gσ ∗β(x, u)|)∇β(x, u),

∇v) = ∫
I ( f(u0 −u), v)∀v ∈ L2(I, V).

In the similar way we define a weak solution of(1.1b)–(1.3).
It is clear how to understand this Definition in the partial
casesI-IV.

The next Section concerns the convergence of Rothe’s func-
tions (2.8) to corresponding weak solutions.

3 Convergence results

Case I.
In this Section, we assume some further technical assump-
tions:

(H5) | f(s)| ≤ C(1+|s|),
(H6) C1s2 −C2 ≤ b(x, s)s≤ C3 +C4s2,

(H7) |b′
s(x+ y, s)−b′

s(x, s)| ≤ ω(|y|)(1+b′
s(x, s)),

whereω : R+ → R+ is continuous,ω(0) = 0.

Let us denote

Φn(x, s) :=
s∫

0

bn(x, z)dz

and

Bn(x, s) := bn(x, s)s−
s∫

0

bn(x, z)dz= bn(x, s)s−Φn(x, s) .

Similarly we defineΦ(x, s), B(x, s) replacing bn(x, s) by
b(x, s).

The Lax-Milgram theorem guarrantees the existence of
a solutionθi ∈ V in (2.4a), (2.4b), respectively, for every
i = 1, . . . , n.
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Lemma 1. The a priori estimates

max
1≤i≤n

∫
Ω

Bn(x, ui ) ≤ C,

n∑
i=1

‖θi‖2τ ≤ C,

n∑
i=1

∫
Ω

1

λi
(bn(x, ui )−bn(x, ui−1))

2 ≤ C

hold uniformly with respect to n.

Proof. Let us test (2.4a), (2.4b), respectively byθi and
sum it up fori = 1, . . . , j . Applying (2.1.4), Young’s inequal-
ity and the assumption (H5) we obtain

j∑
i=1

(bn(x, ui )−bn(x, ui−1),
1

λi
(bn(x, ui )−bn(x, ui−1)))

+
j∑

i=1

(bn(x, ui )−bn(x, ui−1), ui )

−
j∑

i=1

(bn(x, ui )−bn(x, ui−1), ui −ui−1)

+
j∑

i=1

γi (ui−1)|∇θi |22τ ≤ C1

j∑
i=1

(|ui−1|22 +|θi |22)τ +C2 ,

(3.1)

whereγi (ui−1) = g(|∇Gσ ∗ui−1|) ≥ 0 (γi (ui−1) = g(|∇Gσ ∗
bn(x, ui−1)|) ≥ 0 in case b). From (2.1.2) and (2.1.4) we have

|bn(x, ui )−bn(x, ui−1)| = |λi (θi −ui−1)|
≤ |bn(x, ui−1 +α(θi −ui−1))−bn(x, ui−1)|

and thus from the strict monotonicity ofbn(x, s) in s we
obtain

|ui −ui−1| ≤ α|θi −ui−1|
= α

∣∣∣∣ 1

λi
(bn(x, ui )−bn(x, ui−1))

∣∣∣∣ ,

which implies the relation between the first and third term in
(3.1)

∣∣∣∣∣
j∑

i=1

(bn(x, ui )−bn(x, ui−1), ui −ui−1)

∣∣∣∣∣
≤ α

j∑
i=1

∫
Ω

1

λi
(bn(x, ui )−bn(x, ui−1))

2 . (3.2)

From the inequality

(ui −ui−1)bn(x, ui−1) ≤ Φn(x, ui )−Φn(x, ui−1) ,

we have

j∑
i=1

(bn(x, ui )−bn(x, ui−1), ui ) ≥ (bn(x, uj ), uj )

− (bn(x, u0), u0)−
j∑

i=1

(ui −ui−1, bn(x, ui−1))

≥ (bn(x, uj ), uj )− (bn(x, u0), u0)

−
j∑

i=1

∫
Ω

(Φn(x, uj )−Φn(x, ui−1))

=
∫
Ω

Bn(x, uj )−
∫
Ω

Bn(x, u0) . (3.3)

Due to (2.1.4) we obtain

|θi |22 ≤ 2
∫
Ω

1

λ2
i

(bn(x, ui )−bn(x, ui−1))
2 +2|ui−1|22 (3.4)

and by the asymptotical properties ofb(x, s) (see (H6)) we
have the relationBn(x, s) ≥ C1s2 −C2 which implies

|ui |22 ≤ C1

∫
Ω

Bn(x, ui )+C2 . (3.5)

Applying (3.2)–(3.5) in (3.1) we obtain

∫
Ω

Bn(x, uj )+ (1−α)

j∑
i=1

∫
Ω

1

λi
(bn(x, ui )−bn(x, ui−1))

2

+
j∑

i=1

γi (ui−1)|∇θi |22τ

≤ C1 +C2τ

j∑
i=1

∫
Ω

Bn(x, ui )

+C3τ

j∑
i=1

∫
Ω

1

λ2
i

(bn(x, ui )−bn(x, ui−1))
2 . (3.6)

Then forτ ≤ τ0 due to the properties ofλi and by Gronwall’s
argument we obtain

max
1≤i≤n

∫
Ω

Bn(x, ui ) ≤ C ,

n∑
i=1

∫
Ω

1

λi
(bn(x, ui )−bn(x, ui−1))

2 ≤ C . (3.7)

Using (H2), (3.7), Young’s inequality and asymptotical prop-
erties ofb we estimate∣∣∣∣ ∂

∂xi
Gσ ∗ui−1

∣∣∣∣ ≤
∫

RN

B∗
n

(
x,

∂

∂xi
Gσ

)
+

∫
RN

Bn(x, ui−1)

≤ C1 +C2

∫
Ω

Bn(x, ui−1) ≤ C , (3.8)
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where B∗
n(x, s) is a conjugate to the convex function

Bn(x, s) ≥ 0 (see [1, 19]). Thus

|∇Gσ ∗ui−1| ≤ C < ∞
and so
g(|∇Gσ ∗ui−1|) ≥ ν > 0 , i = 1, . . . , n , (3.9)

which implies the second estimate stated in the lemma for the
case a. In the case b, we use∣∣∣∣ ∂

∂xi
Gσ ∗bn(x, ui−1)

∣∣∣∣
≤

∫
RN

Φn

(
x,

∂

∂xi
Gσ

)
+

∫
RN

Ψn(bn(x, ui−1))

≤ C3 +C4

∫
Ω

Bn(x, ui−1) ≤ C ,

whereΨn is the conjugate function to the potentialΦn and we
have used the equalityΨn(bn(x, ui−1)) = Bn(x, ui−1) which
can be verified (see also [1]). So the proof is complete.2

Consequence 1.
n∑

i=1

|θi −ui−1|22 ≤ Cτ−d,

n∑
i=1

|ui −ui−1|22 ≤ Cτ−d .

Now, let us define the functions

b̂n(x, u(n)(t)) := bn(x, ui−1)

+ t − ti−1

τ
(bn(x, ui )−bn(x, ui−1)) ,

for ti−1 ≤ t ≤ ti , i = 1, . . . , n ,

u(n)
τ (t) := u(n)(t − τ) .

Lemma 2. There exists u∈ L2(I, V), with ∂tb(x, u) ∈
L2(I, V∗) such that (in the sense of subsequences)

u(n) → u a.e. in QT ,

u(n) → u in Ls(QT),∀s< 2 ,

θ
(n) → u in Ls(QT),∀s< 2 ,

θ
(n)

⇀ u in L2(I, V) ,

∂t b̂n(x, u(n)) ⇀ ∂tb(x, u) in L2(I, V∗) .

Proof. We use (2.1.4) in (2.4a) (in (2.4b), respectively)
and sum it for i = j + 1, . . . , j + k. Let us considerv =
(θj+k − θj )τ as a test function and sum it again forj =
0, . . . , n− k. Using the a priori estimates of Lemma 1 and
Consequence 1 we successively obtain the estimate

n−k∑
j=0

(bn(x, uj+k)−bn(x, uj ), θj+k − θj )τ ≤ Ckτ , (3.10)

which can be rewritten into the form
T−z∫
0

(bn(x, u(n)(t + z))−bn(x, u(n)(t)), θ
(n)

(t + z)− θ
(n)

(t))

≤ C(z+ τ) , (3.11)

wherekτ ≤ z ≤ (k+1)τ. Using (2.1.4), (H6), (3.5) and the
estimates of Lemma 1 and Consequence 1 we obtain

T−z∫
0

(bn(x, u(n)(t + z)−bn(x, u(n)(t)), u(n)(t + z)−u(n)(t))

≤ C1(z+ τ(1−d)/2) . (3.12)

Let us define

ρ(x, s) := min{b′
s(x, s), 1}

and

W(x, s) :=
s∫

0

ρ(x, z)dz.

The functionW(x, s) is strictly monotone ins, and (3.12)
implies

T−z∫
0

∫
Ω

(W(x, u(n)(t + z))− W(x, u(n)(t)))2 ≤ C2(z+ τ(1−d)/2) ,

(3.13)

for all n ≥ n0, 0 < z ≤ z0. The second estimate of Lemma 1
gives us∫
QT

(θ
(n)

(t, x+ y)− θ
(n)

(t, x))2 ≤ ω(|y|) , (3.14)

where |y| < y0 (see e.g. [26]). Then (2.1.4) and Conse-
quence 1 imply∫
QT

(u(n)(t, x+ y)−u(n)(t, x))2 ≤ C3(ω(|y|)+ τ(1−d)/2) .

(3.15)

Then from the construction ofW(x, s) and from (H6), (H7)
we obtain∫
QT

(W(x+ y, u(n)(t, x+ y))− W(x, u(n)(t, x)))2

≤ C4(ω(|y|)+ τ(1−d)/2) . (3.16)

The compactness of{W(x, u(n)(t, x))}∞n=1 in L2(QT) follows
from (3.13) and (3.16).

Since W(x, s) is strictly increasing ins we have (in
the sense of subsequences) thatu(n) → u a.e. in QT and
moreoveru(n) → u in Ls(QT), ∀s< 2. Because of Conse-
quence 1 we have alsoθ

(n) → u in Ls(QT),∀s< 2. From
that and from the second estimate of Lemma 1 we obtain
θ

(n)
⇀ u in L2(I, V).
By duality argument in (2.4a) (respectively (2.4b)), using

(2.1.4) and a priori estimates of Lemma 1 and Consequence 1,
we obtain

‖∂t b̂n(x, u(n))‖2
L2(I,V∗) ≤ C

∫
I

(1+‖θ(n)‖2 +|u(n)
τ |22) ≤ C
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and hence∂t b̂n(x, u(n)) ⇀ χ in L2(I, V∗) (in the sense of sub-
sequences). Lemma 1 then implies

∫
QT

(b̂n(x, u(n))−bn(x, u(n)))2 ≤ Cτ1−d → 0 , for n → ∞ .

Since bn(x, s) → b(x, s) locally uniformly in s,
u(n) → u a.e. in QT and

∫
Ω

b2
n(x, u(n)) ≤ C we have

bn(x, u(n)) → b(x, u) in Ls(QT), ∀s < 2. Thus
∂t b̂n(x, u(n)) ⇀ ∂tb(x, u). 2

Let us integrate (2.4a) respectively (2.4b) on(0, t), t ∈ I .
We obtain

t∫
0

(∂t b̂n(x, u(n)), v)+
t∫

0

(g(|∇Gσ ∗u(n)
τ |)∇θ

(n)
,∇v)

=
t∫

0

( f(u0 −u(n)
τ ), v),∀v ∈ V . (3.17)

t∫
0

(∂t b̂n(x, u(n)), v)+
t∫

0

(g(|∇Gσ ∗bn(x, u(n)
τ )|)∇θ

(n)
,∇v)

=
t∫

0

( f(u0 −u(n)
τ ), v),∀v ∈ V . (3.18)

We can take the limit forn → ∞ in previous identities and
using the convergence results of Lemma 2 and the facts that
g(|∇Gσ ∗ u(n)

τ |) → g(|∇Gσ ∗ u|), g(|∇Gσ ∗ bn(x, u(n)
τ )|) →

g(|∇Gσ ∗b(x, u)|) a.e in QT (which follow from Conse-
quence 1 and Lemma 2) we have the following

Theorem 1. There exists variational solution u of the prob-
lems (1.1)–(1.3) in case I. Moreover u(n) → u, θ

(n) →
u in Ls(QT), ∀s< 2, whereu(n), θ

(n)
are the sequences ob-

tained by Approximation scheme 2.1.

Using the results of [1] and [12], in both cases a and b, the
stronger convergence result can be proved.

Theorem 2. Let u(n), θ
(n)

be the sequences obtained by Ap-
proximation scheme 2.1. Then

u(n) → u in L2(QT) , θ
(n) → u in L2(I, V) ,

where u is a variational solution of the problems(1.1)–(1.3)
in caseI.

Proof. Let us test (3.17) (respectively (3.18)) byv =
θ

(n) −u, whereu is a variational solution. We have (due to the
per partes formula – see [12], Lemma 3.25 or [1], Lemma 1.5)

t∫
0

(∂t b̂n(x, u(n)), u) →
t∫

0

< ∂tb(x, u), u >

=
∫
Ω

B(x, u(t))−
∫
Ω

B(x, u(0)) . (3.19)

SinceBn(x, s) → B(x, s) locally uniformly for boundeds, by
Fatou’s argument and using Lemma 2 and (3.3) we obtain

lim

t∫
0

(∂t b̂n(x, u(n)), θ
(n)

) ≥
∫
Ω

Bn(x, u(n)(t))−
∫
Ω

Bn(x, u(0))

≥
∫
Ω

B(x, u(t))−
∫
Ω

B(x, u(0)) .

Thus
t∫

0

(∂t b̂n(x, u(n)), θ
(n) −u) ≥ o(1) , (3.20)

where the Landau symbolo(1) denotes a termcn → 0 for
n → ∞. From the growth properties off and from the fact
thatθ

(n) → u in Ls(QT) we have

t∫
0

(g(|∇Gσ ∗u(n)
τ |)∇θ

(n)
,∇(θ

(n) −u)) ≤ o(1) . (3.21)

Since 0< ν ≤ g(|∇Gσ ∗u(n)
τ |) → g(|∇Gσ ∗u|) a.e. in QT

and fromθ
(n)

⇀ u ∈ L2(I, V) we have

t∫
0

(g(|∇Gσ ∗u(n)
τ |)∇u,∇(θ

(n) −u)) = o(1) . (3.22)

From (3.20)–(3.22) we deduce

t∫
0

|∇(θ
(n) −u)|22 → 0 for n → ∞ ,

so∇θ
(n) → ∇u in L2(QT). The same result holds also for the

case b. To proveθ
(n) → u in L2(QT) we use the following

argument. Let us take

cn = 1

|QT |
∫

QT

θ
(n)

and construct

v(n) := θ
(n) −cn .

Since∇v(n) → ∇u in L2(QT) and
∫

QT
v(n) = 0 we have that

v(n) converges inL2(QT). Sincecn is bounded (
∫

I |θ(n)|2 ≤
C) we can assumecn → c (up to a subsequence) and hence
θ

(n) = v(n) − cn converges inL2(QT). Thus θ
(n) → u in

L2(QT) sinceθ
(n)

⇀ u in L2(QT). Then alsou(n) → u in
L2(QT) and the proof is complete. 2

In the analysis of the next three cases we will be more
brief, because the ideas are similar to the ones used in the
previous part of this Section. We will concentrate only to the
main differences.

Case II. In this case we consider the right hand side of the
equations in the formf ≡ f(b(x, u0)− b(x, u)) and corre-
spondingly in Approximation scheme 2.1. Instead of (H7) we
assume
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(H8) |b(x+ y, s)−b(x, s)| ≤ ω(|y|)(1+b(x, s)), whereω :
R+ → R+ is continuous,ω(0) = 0.

Then, in both cases a and b, we obtain the samea priori
estimatesas in Lemma 1 and Consequence 1. Similarly as in
the proof of Lemma 2 we obtain the inequality (3.10), from
which and Lipschitz continuity ofb we have

T−z∫
0

∫
Ω

(bn(x, u(n)(t + z)−bn(x, u(n)(t)))2 ≤ C1(z+ τ(1−d)/2) .

(3.23)

Using (H8) we also obtain∫
QT

(bn(x+ y, u(n)(t, x+ y)−bn(x, u(n)(t)(t, x))2

≤ C2(ω(|y|)+ τ(1−d)/2) , (3.24)

from which and (3.23) follow the compactness of{bn(x, u(n)}
in L2(QT). The asymptotical properties ofb imply that∫

QT
|u(n)|2 ≤ C and henceu(n) ⇀ u in L2(QT). From the

compactness result we havebn(x, u(n)) → ξ in L2(QT). Then

0 ≤
∫

QT

(bn(x, u(n))−bn(x, v), u(n) −v)

→
∫

QT

(ξ −b(x, v), u−v) ≥ 0

for every v ∈ L2(QT) because of the monotonicity ofbn.
Hence for v = u± εw and ε → 0 we obtainξ = b(x, u).
In the similar way as in the proof of Lemma 2 we obtain
∂t b̂n(x, u(n)) ⇀ ∂tb(x, u) in L2(I, V∗). Due to a priori es-
timate

∫
I ‖θ(n)‖2 ≤ C we obtainθ

(n)
⇀ u in L2(I, V) since∫

I |θ(n) −u(n)
τ |2 → 0. The previous considerations allow us to

take limit n → ∞ in (3.17), (3.18), respectively, and we con-
clude thatu is a weak solution of (1.1)–(1.3). Then we can
proceed in the similar lines as in the proof of Theorem 2 to
obtain
Theorem 3. There exists variational solution u of the prob-
lems (1.1)–(1.3) in caseII. Let u(n), θ

(n)
be the sequences

obtained by Approximation scheme 2.1. Then

u(n) → u in L2(QT) , θ
(n) → u in L2(I, V) .

Cases III and IV.
We follow the ideas from [10, 13, 15] and we only sketch

the results. Instead of (H6)–(H7) we assume

(H9) C1s2 −C2 ≤ β(x, s)s≤ C3 +C4s2,

(H10) |β′
s(x+ y, s)−β′

s(x, s)| ≤ ω(|y|)(1+β′
s(x, s)), where

ω : R+ → R+ is continuous,ω(0) = 0.

In caseIV, we consider the right hand side of the equa-
tions in the form f ≡ f(β(x, u0)−β(x, u)) and correspond-
ingly in Approximation scheme 2.2.

We denote

Φβ :=
s∫

0

β(x, z)dz.

Using the similar access as in [10] and [15] and the conjugate
function to potentialΦβ similarly as in the proof of Lemma 1
(to estimate thegaussian gradientterm) we obtain
Lemma 3. The a priori estimates

max
1≤i≤n

∫
Ω

Φβ(x, ui ) ≤ C ,

n∑
i=1

‖θi‖2τ ≤ C ,

n∑
i=1

|ui −ui−1|2 ≤ C

hold uniformly with respect to n.

Then we have also

Consequence 2.

n∑
i=1

|θi −β(x, ui−1)|2 ≤ Cτ−d .

By the similar ideas as in the proof of Lemma 2, [10, 15]
and [13] we obtain the compactness of{θ(n)} in L2(QT) and
then
Lemma 4. There exists u∈ L2(QT) with β(x, u) ∈ L2(I, V)

such thatu(n) ⇀ u in L2(QT), θ
(n)

⇀ β(x, u) in L2(I, V),
∂tu(n) ⇀ ∂tu in L2(I, V∗).

Now we can use (see [1, 15]) the relations

lim

t∫
0

< ∂tu
(n), θ

(n)
) >≥

∫
Ω

Φβ(x, u(t))−
∫
Ω

Φβ(x, u0) ,

t∫
0

< ∂tu, β(x, u) >=
∫
Ω

Φβ(x, u(t))−
∫
Ω

Φβ(x, u0)

to prove
Theorem 4. There exist weak solution of the problems
(1.1)–(1.3) in casesIII, IV. Let u(n), θ

(n)
be the sequences

obtained by Approximation scheme 2.2. Then

u(n) ⇀ u in L2(QT) , θ
(n) → β(x, u) in L2(I, V) .

Remark 3.11.The same convergence results can be ob-
tained when we use the full discretization scheme (also
in space) using projection of elliptic problems (2.4)–(2.5)
to finite dimensional finite elements spacesVλ ⊂ V with
Vλ → V(λ → 0) in canonical sense.

4 Discussion on numerical experiments

In this section we present numerical experiments demonstrat-
ing features of the models (1.1)–(1.3). We compare the results
with the multiscale analysis based on the classical anisotropic
diffusion equations ([7, 29]).

For computations, we use Approximation schemes 2.1,
2.2 together with the several iterations from Remarks 2.6,
2.7. For the full (scale and space) discretization of the equa-
tions one can use either the finite element method ([4, 5])
or the finite volume technique ([25, 28]). The numerical
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experiments described in this section have been computed
using the finite volume spatial discretization of the linear
elliptic equations (2.6.1),(2.7.1). The spatial grid is given
naturally by the pixel structure of the image. The spatial
discretization step for the finite volume method is given
as 1/r1 with r1 number of pixels in vertical direction. The
Gaussian kernel has been used in the convolution term. Be-
cause the discrete image is given by constant values on small

Fig. 1. Restoration of the noisy image (left) by the anistropic diffusion (middle) and by the anisotropic diffusion coupled with the slow diffusion effect (right)

Fig. 2. Restoration of the noisy image (left) by the anistropic diffusion (middle) and by the anisotropic diffusion coupled with the slow diffusion effect (right)

Fig. 3. Difference in reconstruction of the detail of Boticelli’s painting ‘Primavera’. The restoration of the greylevel scan (left) by the anistropic diffusion
(middle) in comparison with the anisotropic diffusion coupled with the slow diffusion (right)

squares (pixels), the convolution is reduced to a weighted
mean value with weights given by the Gauss function.
Since for σ small the weights for pixels with bigger dis-
tance are machine zeroes, the averaging is realized only
in some bounded neghbourhood. In all presented experi-
ments we useσ such that 7×7 pixels influence the value
in the central pixel. As the Perona-Malik function we use
g(s) = 1/(1+s2).
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The first, second and fourth processed images consist
of 200×200 pixels, the third and fifth ones have the size
570×350 pixels. In Figs. 1–4 we plot the noisy originals
(on the left), the results of Catté, Lions, Morel and Coll
anisotropic diffusion (in the middle) and the result of applica-
tion of the slow and fast diffusion effects given by the models
(1.1)–(1.3) (on the right). In the last Fig. 5 we present the
result of processing of the color image by the anisotropic dif-
fusion coupled with the slow diffusion effect.

Modelling the slow diffusion effect we consider the
caseIV. In addition to CLMC-parameters the functionβ
which is constant for some range of greylevels and linear
in complement is used. In presented experiments we con-
sider functionβ(x, s) = 0 for s <= a, β(x, s) = s− a for

Fig. 4. Processing of the image (left) by the anistropic diffusion (middle) and by the anisotropic diffusion coupled with the fast diffusion effect (right)

Fig. 5. Reconstruction of the color detail of Boticelli’s painting ‘Primavera’ (left) by the anisotropic diffusion coupled with slow diffusion effect (right)

s> a with some constanta between 0 and 1 (before com-
putations, the image intensity is transformed from integers
between 0 and 255 into the real interval[0, 1]). In Fig. 1
we present the difference in processing of the initial noisy
image (left) by the anisotropic diffusion (middle) and by
the anisotropic diffusion coupled with the slow diffusion ef-
fect (right) after ten discrete scale steps with stepτ = 0.001
in both cases. In case of the slow diffusion, the additional
parameters of the method area = 0.5 (in the definition of
β function), K = 106, d = 0.9, α = 0.99. The choice ofβ
stops the diffusion where we want to keep some fine details
in the image (otherwise destroyed by the usual anisotropic
diffusion). The same computational parameters have been
used in the experiment documented in Fig. 2, we just start
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from different initial condition. In Fig. 3 we present recon-
struction of the greylevel scan of the detail of Botticelli’s
painting Primavera (left image) by the anisotropic diffusion
(middle image) and by the anisotropic diffusion accompa-
nied with the slow diffusion (image on the right). In both
cases we plot the results after ten discrete scale steps with step
τ = 0.001. In the case of slow diffusion effect we use parame-
tersa = 0.39,K = 106, d = 0.9,α = 0.99. Using such choice
of β, the face is selectively smoothed and the details around
are conserved.

In spite of this, if the smoothing of the large structural
noise is desirable, the fast diffusion effect can be used. In
the experiment presented in Fig. 4, the functionb(x, s) = 0
for s<= 0.5, b(x, s) = s−0.5 for s> 0.5, i.e. we consider
the caseII. The scaling versions of the initial image (left)
given by the anisotropic diffusion (middle) and coupled with
fast diffusion smoothing (right) are plotted at scale 10τ, τ =
0.001. Further parameters wereK = 106, d = 0.5, α = 0.99.

In Fig. 5 we present application of the anisotropic diffu-
sion coupled with the slow diffusion effect to processing of
the RGB color image. We again consider Flora’s face detail as
the initial condition (left part of Fig. 5). Before processing we
divide the color image into red, green and blue chanels. The
model (1.1)–(1.3) in the caseIV is applied to each chanel in-
dependently using different choices of the parameters. Then
the results of chanel processing are put together in order to
get multiscale version of the color original. The result pre-
sented in the right part of Fig. 5 has been computed using
K = 106, d = 0.9, α = 0.99, τ = 0.001 and with differentβ
functions and number of scale steps in the chanels. In the red
chanel we usea = 0.5 and 5 scale steps, in the green chanel
a = 0.3 and 7 scale steps and in the blue chanela = 0.15 and
10 scale steps. Let us note that one can consider also a kind
of synchronization of chanels processing which will lead to
a generalization of (1.1)–(1.3) to degenerate parabolic sys-
tems which can be interesting subject for further study.
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