NHL

A
Y

)

m
5

& (2cs)  APPLIED
ﬁ <2’ NUMERICAL
MATHEMATICS

ELSEVIER Applied Numerical Mathematics 17 (1995) 47-59

Solution of nonlinear diffusion appearing in image smoothing
and edge detection

Jozef Kaéur ¢, Karol Mikula &~

# Comenius University, Faculty of Mathematics and Physics, Department of Numerical Analysis and Optimization,
Mlynska Dolina, 842 15 Bratislava, Slovak Republic
® Slovak Technical University, Department of Mathematics, Radlinského 11, 813 68 Bratislava, Slovak Republic

Abstract

A numerical approximation of the nonlinear diffusion problem appearing in image processing is discussed. The
mathematical model is proposed by Catté, Lions, Morel and Coll and represents an improvement of the original
model of Perona and Malik. The scheme is linear, based on Rothe’s approximation in time and on the finite element
approach in space. The approximating solutions converge strongly in C(I, L,)N Ly(I, V') space to the variational
solution.
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1. Introduction

In the present paper we are dealing with the numerical approximation of the following
nonlinear diffusion problem:

qu—V(g(IVG, *ul)Vu)=f(u —u,) in Q,=IX412, (1.1)
au=0 on Ixd0, (12)
u(0, x) =uy(x), (1.3)

where 2 CR? is a bounded domain with Lipschitz continuous boundary 8£2; I=(0,T) is a
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time interval; g € C*(R), g(0) =1 and g(s) — 0 for s > «; f is a monotone function; G (x) €
C*(R?) is a smoothing kernel ( [:G,(x) dx =1 and G,(x) — §,, the Dirac measure at point x,
for o = 0); and u, =G, *u =[2G, (x — Eul¢) dé.

The problem (1.1)-(1.3) arises in the theory of signal filtration, edge detection and image
restoration. In this form, it has been proposed and studied in [2,3]. It represents the improve-
ment of the original Perona—Malik model, in which Vu is used instead of Vu . The improve-
ment has been given in two main directions: model (1.1)-(1.3) is stable in the presence of noise
and is correct from a mathematical point of view (existence and uniqueness of the solution).
When u € W () (Sobolev space) is extended to & on R? such that

Il | wiR?) < Cllull Wiy

then VG, *u — Vu in L,(2) for o — 0. Thus, model (1.1)—(1.3) is in a sense close to that of
Perona and Malik and keeps all its advantages.
In [3] the Gaussian function

1 2
G,(x)=——¢ |[xI"/%
4o
has been used as a smoothing kernel.

The initial two-dimensional signal (picture) represented by u,(x) has to be filtered from a
small noise with two opposite requirements—look for the regions of an image where the signal
is of constant mean in spite of those regions where the signal changes its tendency. The edges
of the signal are indicated by large values of |Vu_ | (o is sufficiently small) and the nonlinear
diffusion (1.1)-(1.3) keeps them (due to the shape of the function g the diffusion coefficient is
very small on the edges), while for small values of |Vu_| the diffusion coefficient is large; u
tends to const with time evolution, provided f= 0. By means of nondecreasing f (f(0) = 0) the
term f(u —u,) in (1.1) forces u to be “close” to u, and weakens the influence of the stopping
time. In [7] it has been proposed to take f(s)=s.

The existence and uniqueness of the variational solution of (1.1)—(1.3) has been proved in [3]
in the case of f=0. Moreover, the convergence has been proved in C(I, L,(£2)) of the
approximate solutions u”, where u” "' is the solution of the linearized parabolic problem

t

au"“—V(g(IVGU*u”I)Vu"“)=0 in I X0,

du"t'=0 on IXa, (1.4)

w10, x) =uy(x).

Our contribution is to prove the convergence in C(I, L,(2)) N L,(I, W,(2)) of the Rothe-
type approximation of (1.1)-(1.3) which consists in the following: Let # € N. We approximate
d,u by du;:==(u; —u,_,)/7 on the time level ¢,=ir, 7=T/n, and for every i=1,...,n let u,;
be the solution of linear elliptic equation

du; = V(&(IVG, *u; 1 )Vu,) = f(u; - — uy), (1.5)

with u, = u(0, x) from (1.3).
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The convergence results concern the Rothe function
un(t)y=u, +(t—t,_)ou;, fort,_,<t<t, i=1,...,n, (1.6)

which we consider as the approximating solution of the problem (1.1)—(1.3).

The approximation scheme (1.5)—(1.6) is in a sense diagonal according to the iterations (1.4).
In practical realizations, the scheme (1.5)-(1.6) has also been used in [3].

Moreover we prove the C(I, L,(02)) N L,(I, W;}(£2)) convergence also for the full discretiza-
tion scheme, in which (1.5) is projected to finite-dimensional space.

2. Convergence of the approximation scheme (1.5)-(1.6)

Let G, be as in Section 1; we shall assume that
supp G,(x)cB,(0) (2.1)
(B_(0) is the ball centered at 0 with radius o). We can use, e.g.,

2

K | x|
G,(x) p3 exp(m), for | x| <o,
G,(x)=0, for | x| >o.
g is Lipschitz continuous, g(0) =1 and 0 <g(s) — 0 for s - =, (2.2)
f is Lipschitz continuous, nondecreasing and f(0) =0, (2.3)
uy, € L,(02). (2.4)

Remark. We use the standard functional spaces L, = L,(2), V=W, (2), L{Q),C(, L,), V"~
(dual to V) and L,(I, V' *)—see, e.g., [5]. We denote the scalar product in L,(£2) by (-, -) and
duality between Vand V' * by (-, - ). We denote by |- [, |- I, I - Il 4, |- | | - [ L czv) the norms
in L,(2),V,V*, L{Q) and L,(I, V), respectively. By — and — , we mean strong and weak
convergence. C denotes the generic positive constant.

The solution of (1.1)-(1.3) we understand in the variational sense, i.e., we look for
uelL,(I,V)with du s L,(I, V"), u(0) =u, (in L,(£2)) such that the identity

u,v) +(g(IVG, xul)Vu, Vv) = (f(u—u,), v) (2.5)
holds for all v € V' and for a.e. t € 1.
Similarly, u, €V, for i =1,...,n, is understood as the variational solution of (1.5), i.e., it
satisfies the identity
(8u;, v)+(g(IVG, xu;, | )Vu,;, Voy=(f(u,-, —uy), v) YveV. (2.6)
The existence of u; €V, i=1,...,n, from (2.6) is guaranteed by the Lax—Milgram argument.

To take the limit for n — « in (2.6) we shall use a priori estimates derived in the following
lemmas.
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Lemma 2.1. The estimates
n n
2 2
max |u,| <C, YV, |*r<C, Yolu,—u, ,1°<C

I<i<n i=1 i=1

hold uniformly for n.

Proof. First let us test (2.6) by v = u,7 and sum it over i =1,..., j. We obtain
j i j
w12+ Xorfa (V) + Xl —u, (P<C+C Y luyl s, (2.7)
i=1 "1 i=1 i=1

where C, = C(uy, f) and a,_, =g(|VG, *u,_,|). Applying Gronwall’s argument in (2.7) we
obtain

|ui|<C, Vn, i=l,...,n.

Then the estimate

IVGU*ui~1|°°<CU|ui71|<C(r (2'8)
implies
g(IVG, *u,_1)>v,>0 Vn, i=1,...,n. (2.9)
Then from (2.7) we obtain the assertion of Lemma 2.1. O
Together with u(z) (see (1.6)) we consider the step function
u™m(t) =u,, fort,_,<t<t, i=1,...,n,
u™(0) = u,.
Consequence 2.2. The estimates
Jlaumz<c, Jlami*<c,
1 !
o2 C
flu(”)—u(”)I <—, max |u"(t)| <C (2.10)
1 n re]

hold uniformly for n.

The estimate (2.10), is the consequence of Lemma 2.1 and the duality argument applied in
(2.6) since

1ou;ll .= sup  [(8u, v)| <C +C,llul.

vel,lvll<1

The estimate (2.10), follows from the definition of 4™ and # and from the third estimate in
Lemma 2.1.
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Now, we shall prove the compactness of #” in L(Q;), which is a consequence of the
following assertion.

Lemma 2.3. The estimate
T—z
[ (e z) w0 1P < C(z +7)
0
holds uniformly for 0 <z <z, and n.

Proof. We sum up (2.6) for i =j +1,...,j + k considering v = (u;,, —u,;)7. Then we sum it up
for j=1,...,n —k and obtain the estimate

n—k

2
>l —u;l "1 < Ckr,
j=0

where Lemma 2.1 has been used. Hence for k7 <z <(k + 1)7 we deduce the desired estimate.
O

Lemma 2.4. There exists u € L (I, V) with d,u € L,(I, V' *) such that
u® - u, 7" —>u in L,(Qr),
U™ —u in L,(I1,V),
8u™ —du in Ly(I, V")

(in the sense of subsequences).

Proof. The estimate (2.10), implies

f (@™ (t, x +y) —u"(t, X))2 dx<Clyl, YIyl<y,,
Or

see, €.g., [6]. Hence and from Lemma 2.3, {u“} is compact in L,(Q;) because of Koimogorov’s
compactness argument (see [6]). So we can conclude u™ — u and u"™ — u in L,(Q,) and also
pointwise in Q. Hence and from the Consequence 2.2 we obtain the rest. O

Theorem 2.5. There exists a unique variational solution u of (1.1)-(1.3) and u™ —u in
C(I, L) N L,(I, V), where u'™ is the Rothe function defined in (1.5)-(1.6).

Proof. We rewrite (2.6) into the form
t t _ _ 14 _
fo(azu("’, v) +f0(g(|VG,,*u‘,”)|)Vu("’, Vo) = [(F(E" ), v), (2.11)

0
YvelV, VYiel,
where u(¢t) :=u'"(t — 7). To take the limit for n — « in (2.11) we apply Lemma 2.4 and the
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fact that u” —»u in L,(Q;) and hence g(|VG_ *ul”|) »>g(|VG, xul) a.e. in Q. Then we
have

f(au U)-f—f (IVG, *ul)Vu, Vo) = ft(f(u—uo),v)

Yvel, Viel,

where u is the same as in Lemma 2.4. So u is the variational solution of (1.1)-(1.3). Its
uniqueness can be obtained by the same arguments as used in [3]. As a consequence we have
that the original sequences {u™} and {#"""} converge to u.

Now we shall prove the C(1, L,) N L,(I, V') convergence of u'” to u. For this purpose we
verify that

[ (B, @ = u) > o(1) (2.12)
0

(the Landau symbol O(1) represents a term c¢, satisfying ¢, =0 for n — ), which is the
consequence of the following facts:

j J
2 2
Z u;_ 1,u)—2|u|2 l”o' +%Z|”i_“i»1 ’
- i=1
du™ —=du in Ly(I,V"),
the integration by parts formula

i
J8u, wy =3} 1? = Hug? (2.13)
0

and u™ —u in LQ,).
So, let us test (2.6) by v =u" —u and integrate it over (0, ¢). Then using (2.12) and

[ (817G, * 7 1)Pu, V(@ - u)) = o(1)
0
(since g(|VG, *u'™|) Vu - g(|VG, *u|)Wu in L,(Q;)) we conclude
f | V(" — um)|? <[ (IVG, @ V(@™ —w), V(@™ —u)) < o(1),

which implies & — u in L,(1, V).
To prove u'™ — u in LI, V) we use the auxiliary function

(t——tiﬁl) —

U, (t)=t, +———(U,~u; ), fort, \<t<t, i=1,...,n

where
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From the Lebesgue theorem (continuity in mean), it follows that %, — u in L,(/, V). Then we

estimate
_ 2 ¥ — 2

[lu® g, I <C T [* llu,~]
I L

[ e, = ()l >+ 115, — u(s) 11?)

fi_

\

N M: EM:

— — 2
< C( N —u || Lyt I Uy — U I LZ(I,V)) -0,

from which the required assertion follows.
Now we integrate (2.5) over (0, #) and subtract it from (2.11) where v = u“” — w. Then using
the integration by parts formula (2.13) we obtain

lu(t) —u™(t)|* <f (IVG, *7™ | )V(u —a™), V(u — u™))

+j;(|g(|VG,,*ﬁ(,")|)—g(IGo*uI)IwIV(u—ﬁ(”))IIV(u—u("))l -0

since #™ — u in L,(I, V). Thus the proof is complete. O

3. Full discretization scheme

The convergence results obtained in the previous section can be extended to the full
discretization scheme, in which (2.6) is projected on a finite-dimensional subspace V, C V. We
assume V, — V for A - 0 in a canonical sense, i.e.

Vv eV 3v, €V, such that v, »v forA - 0in V. (3.1)
Instead of u, €V we look for u} €V,, i =1,...,n, such that
(8ul, v) + (g(1VG, *u} (1)Vu}, Vo) = (f(u}, —up), v) YveV,

32
u} =0 on . (3-2)

By the same arguments as in Section 2 we obtain the existence of u} €V}, for i =1,...,n, and
a priori estimates (see Lemma 2.1)

n n
max |ul| < Y ivurPr<cC, Y olud—ul17<C, (3.3)
1<i<n i= i=1
which hold uniformly for n and A.
Let u) €V, be such that uj > u, in L) for A » 0. By means of u}, i=0,...,n, we
define the functions u®X(¢) and #®(t), @ = (7, A), in the same way as the functions u'™ and
u™ have been constructed by means of u; (see (1.6)). Then (3.3) can be rewritten in the form

[l <c,  [lawl*<c,  [lu®-a@)*<Cr, (3.4)
I I

I
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which holds uniformly for a. The estimate (3.4), has been obtained by the duality argument in
(3.2) taking into account v € V.
Along the same lines as in Lemma 2.3 we obtain that the estimate

[ IO 4 2) @) 12 < C(z +7) (3.5)
0

holds uniformly for 0 <z <z, and «a.
Now we can formulate

Theorem 3.1. Let u) €V, be such that ul, = u, in L(Q) for A = 0. If (2.2)-(2.4) and (3.1) are
satisfied, then u' - u in C(1, L) NL,(I, V) for a — 0, where u is the variational solution of
(1.1)—(1.3) and u'® is obtained from (3.2).

Proof. The a priori estimates (3.3)-(3.5) imply for @ — 0 that u'® > w, @ > w and u'® - w
in L,(Q;) and & —w in L,(I, V). We shall prove that w =u is the variational solution of
(1.1)=(1.3). For this purpose we extend the functional 8,u'® e L,(I, V,*) to F\® e L,(I,V *) by
the prescription

JCF,0) = [@ue, Pe) = [ [ 3u P,

where P,:V —V, is the orthogonal projector. Thus ||F |, ;p-<C and F® —~Fe
L,(1,V ™). Since u'” - w in L,(Q,) we obtain F =3w (see, e.g., [4]). Now for fixed v € V we
choose v, € V, with v, = v in V for A - 0. We test (3.2) with v = v,, integrate it over (0, ¢) and
take the limit for &« — 0. Then the first term gives

f()tfna,u(“)vA = fot<8,u(“), v = ](:(F(“), Puv)— fot<F, v) = fot<atW, v).

By the same arguments as in Section 2 we obtain that w is a variational solution of (1.1)-(1.3).
The uniqueness argument guarantees that « =w and the original sequences u‘® and u'® are
convergent. To prove u'® - u in C(I, L,) and a'® > u in L,(1, V) we proceed in the same
way as in the proof of Theorem 2.5 using the test function v = &'® — w®, where w'® € L,(I, V)
with w® > in L,(I, V). Then using the inequality

t
f (u, 7 —w®) > o(1)
0

we obtain the rest of our assertion along the same lines as in the proof of Theorem 2.5. O

4. Numerical experiments

We shall describe several numerical experiments computed by the approximation scheme
(1.5)—(1.6) in order to process the initial picture by nonlinear diffusion (1.1)-(1.3). In our
practical implementation the picture consists of small square pixels on which u;_, is constant.
Then the convolution G, * u;_, is reduced to a weighted mean value on neighbour pixels. We
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have used o so small that this weighted mean value is realized only on some neighbour squares
(0, 1,... .4, etc) since the weights generated by the Gauss function are machine zeroes on pixels
with bigger distance. In the presented experiments, we use for image representation 70 X 70
points, and the function g(s)=1/(1 +s?).

Fig. 1.
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In Fig. 1 a randomly destroyed initial shape is restored by selective diffusion (1.1)—(1.3) (here
and in next two experiments o = 1078). There are plotted time steps ¢ = 0., 0.01, 0.02, 0.03, 0.04
of the evolution, computed with numerical time step 7 = 0.005 (which is also the same as in the
next two experiments).
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¥

Fig. 3.
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A similar experiment is presented in Fig. 2. Here we plot the time moments ¢ =
0., 0.01, 0.02, 0.03, 0.04, 0.10.

In Fig. 3 a it is tried to restore strongly destroyed image. We plot the solution in time
moments ¢ = 0., 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08.

Fig. 4.
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In Fig. 4 the spreading of the structural noise by selective diffusion with o=3-10"3,
g(s) =1/(1 +s?), can be recognized. The plotted states are in ¢ = 0., 0.04, 0.06, 0.08, 0.10, 0.12
(r=0.01).
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