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Summary. We introduce linear semi-implicit complementary volume nu-
merical scheme for solving level set like nonlinear degenerate diffusion
equations arising in image processing and curve evolution problems. We
study discretization of image selective smoothing equation of mean cur-
vature flow type given by Alvarez, Lions and Morel ([3]). Solution of the
level set equation of Osher and Sethian ([26], [30]) is also included in the
study. We prove L∞ and W 1,1 estimates for the proposed scheme and give
existence of its (generalized) solution in every discrete time-scale step. Ef-
ficiency of the scheme is given by its linearity and stability. Preconditioned
iterative solvers are used for computing arising linear systems. We present
computational results related to image processing and plane curve evolution.

Mathematics Subject Classification (1991): 65U10

1 Introduction

The aim of this paper is to present and study numerical scheme for solving
nonlinear diffusion equations arising in a wide range of applications as
image processing and computer vision, phase transition, crystal growth,
flame propagation, superconductivity, etc. and which are related to the curve
and surface evolution problems. The scheme is based on linear semi-implicit
approximation in time-scale and on the so called complementary volume
method in space. We study discretization of nonlinear degenerate diffusion
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equation of mean curvature flow type suggested by Alvarez, Lions and Morel
in [3] for image selective smoothing

ut − g(|∇Gσ ∗ u|)|∇u|∇.(
∇u

|∇u|) = 0,(1)

where u(t, x) is unknown function defined in QT ≡ I ×Ω. The equation is
accompanied with zero Neumann boundary conditions and initial condition

∂u

∂ν
= 0 on I × ∂Ω,(2)

u(0, x) = u0(x) in Ω(3)

where ν is unit normal to the boundary of Ω. We assume that Ω ⊂ IRd is
a bounded rectangular domain (such situation is the most typical in image
processing), I = [0, T ] is a so called scale (time) interval, and

g : IR+
0 → IR+ is a nonincreasing function, g(

√
s) is smooth,(4)

g(0) = 1, and we admit g(s) → 0 for s → ∞,

Gσ ∈ C∞(IRd) is a smoothing kernel (e.g. Gauss function),(5)

with
∫

IRd
Gσ(x)dx = 1,

∫
IRd

|∇Gσ|dx ≤ Cσ,

Gσ(x) → δx for σ → 0, δx is the Dirac measure at point x,

u0 ∈ L∞(Ω),(6)

and

∇Gσ ∗ u =
∫

IRd

∇Gσ(x − ξ)ũ(ξ)dξ,(7)

where ũ is an extension of u to IRd given by periodic reflection through the
boundary of Ω and for which ‖ũ‖L2(IRd) ≤ C‖u‖L2(Ω). In particular case
g ≡ 1 we are dealing with numerical approximation of the Osher-Sethian
level set equation ([26], [30], [31])

ut − |∇u|∇.(
∇u

|∇u|) = 0(8)

moving all level sets of u by normal mean curvature field.
In image processing, equations like (1) arise in nonlinear filtration, edge

detection, image enhancement etc., when we are dealing with geometrical
features of the image like silhouette of object corresponding to level line
of image intensity function. The initial condition u0(x) represents greylevel
intensity of the processed image and the solution u(t, x) of (1) gives a family
of scaled (filtered, smoothed) versions of u0(x). In image processing, the
parameter t is understood as scale, in other application t represents time as
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it is usual in evolutionary problems. The special case of (1), equation (8) has
attracted a lot of attention in past years due to its applicability to geomet-
rical problems, namely to the motion of hypersurfaces by mean curvature.
Concerning image processing, equation (8) fulfills the so-called morpholog-
ical principle which means invariance of image analysis to contrast changes
which plays an important role in axiomatization of computer vision theories
([1], [2], [18]). Applying the level set equation to image yields the intrinsic
Gaussian smoothing of its level lines in 2D or level surfaces in 3D ([8], [9],
[23], [13], [24], [25]) which is equivalent to the motion of hypersurfaces by
normal mean curvature field. Moreover, the level sets move independently
on each other. One can interpret this fact as diffusion of the image in the
direction tangential to level lines with no diffusion across them. Such idea
has been used in [3], where model (1) has been suggested for computational
image and shape analysis. The “stopping term” g(|∇Gσ∗u|) in (1) is used to
strongly slow down the motion of the silhouettes which are at the same time
un-spurious edges. The regions between them are smoothed by the mean
curvature flow. Thus the equation (1) can be used successively for image
selective smoothing with preserving edge positions in a similar way like
well-known Perona-Malik equation ([27], [5]). The Perona-Malik equation
has not such straightforward geometrical interpretation and its solvability is
rather difficult problem ([16]). The existence of unique viscosity solution of
(1) or (8) is given in [3], [11], [6].

The rest of this paper is organized as follows. In Sect. 2 we present linear
semi-implicit complementary volume discretization of (1). It leads to solv-
ing of linear algebraic systems and, at the same time, gives good stability
properties of numerical approximation of this strongly nonlinear problem.
In Sect. 3 we derive L∞ as well as W 1,1 stability estimates and discuss exis-
tence of a (generalized) solution of the scheme. In discussion on numerical
results, in Sect. 4, we present computations in image processing and plane
curve evolution driven by curvature. We also present some computational
time statistics related to usage of preconditioned iterative solvers in every
discrete time-scale step of the method.

2 Semi-implicit complementary volume scheme

In this section we first introduce semi-implicit discretization of equation (1)
in time-scale and then give fully discrete scheme based on complementary
volume method. Choosing N ∈ IN we get a uniform discrete time-scale
increment τ = T

N . We replace the time-scale derivative in (1) by backward
difference and the nonlinear terms of equations are treated from the previous
scale step while the linear ones are considered on the current scale level.
This will lead to linear problems at each discrete scale level; for other semi-
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implicit approaches in image processing we refer to [5], [3], [14], [4], [33],
[29], [15], [22]. Let us denote

gn−1 := g(|∇Gσ ∗ un−1|)(9)

for which
gn−1 ≥ νσ > 0

due to smoothing properties of convolution ([5], [3], [14]). Then our semi-
discrete in time-scale scheme for solving equation (1) is given as follows:
Let N ∈ IN, τ = T

N and σ > 0 be fixed numbers and u0 be given by (3).
Then, for every n = 1, . . . N , we look for a function un, solution of the
equation

1
gn−1|∇un−1|

un − un−1

τ
− ∇.

(
∇un

|∇un−1|

)
= 0.(10)

Since in general situation there can be zero in denominator of (10), we will
regularize this equation in a sense of Evans and Spruck ([11]). The precise
formulation of two our regularizations as well as a behaviour of solutions
for regularization parameters tending to zero will be given below. Now we
are going to full discretization of (10) by means of complementary volume
method.

In image processing, a discrete image is given on a structure of pix-
els/voxels with rectangular shape, in general. In the complementary volume
method, approximation of solution is assumed to be a piecewise linear func-
tion. The values of discrete image intensity are considered as approximations
of continuous image intensity function in centers of pixels. These centers
of pixels will correspond to the nodes of a triangulation. We can get such
triangulation simply by connecting the centers of pixels by new rectangular
mesh and then dividing every rectangle into two triangles (or six tetrahedras
in 3D case). In other applications, e.g. in phase transition, the triangulation
of computational domain can be more complicated. We just assume that it
has no interior angle larger than π/2. Now, we will define some quantities,
which will be used in description of the fully discrete scheme (see also [32]).
In complementary volume method, together with the triangulation also the
so-called dual mesh is used. The dual mesh consists of cells Vi (called also
complementary volumes, control volumes or co-volumes) associated with
the ith node, i = 1, . . . , M , of the given triangulation Th. The co-volume
Vi is bounded by the lines (planes in 3D case) that bisect and are perpen-
dicular to the edges emanating from the node. Let us note, that in image
processing the dual mesh again corresponds to pixel structure. The compu-
tational domain Ω then corresponds to image domain minus outer half of
every boundary pixel - see Fig. 1.
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Fig. 1. The image pixels (solid lines) corresponding to the dual mesh for complementary
volume method. Triangulation (dashed lines) for the complementary volume method with
nodes (round points) corresponding to centers of pixels

We will denote the edge of Th connecting the ith node to the jth by σij

and its length by hij . We denote by Eij the set of simplices having σij as an
edge, i.e., Eij = {T ∈ Th|σij ⊂ T}. Let eij denote the co-edge (co-plane)
that is perpendicular bisector of σij . For each T ∈ Eij let cT

ij be the length
(area) of the portion of eij that is in T , i.e., cT

ij = |eij ∩ T |. For each node
of Th let Ci denote the set of nodes connected to the ith node by an edge.

Given a triangulation Th, we define the set Vh ⊂ V of continuous
piecewise linear functions, i.e., Vh = Vh(Th) := {v ∈ C0(Ω̄)|v|T ∈
P1 for all T ∈ Th}. Then |∇uh|, uh ∈ Vh has a constant value on ev-
ery simplex T ⊂ Th. We will denote that value by |∇uT |. For any uh ∈ Vh

we will use notation ui := uh(xi) where xi is ith node of triangulation. Let
u0

h = Ih(u0) ∈ Vh(Th) be the nodal interpolant of u0, the initial function
for the computational method.

Let Ni be the set of simplices that have the ith node as a vertex. Let δ > 0,
ε > 0. Due to regularization we will use sets Ni,0 = {T ∈ Ni, |∇uT | =
0}, Ni,1 = {T ∈ Ni, |∇uT | > 0} and N δ

i,0 = {T ∈ Ni, |∇uT | ≤
δ}, N δ

i,1 = {T ∈ Ni, |∇uT | > δ}. For any uh ∈ Vh and each T ∈ Th we
define

|∇uT |δ =
{

|∇uT | if T ∈ N δ
i,1

δ if T ∈ N δ
i,0,

(11)

and for any function uh ∈ Vh we denote

|∇uh|ε =
√

ε2 + |∇uh|2.(12)

The difference between regularizations (11) and (12), respectively, is that in
the first case we replace by δ only vanishing or small gradients, while in the
second case we add small regularization parameter to gradient everywhere.
Concerning theoretical analysis of fully discrete scheme we get estimates
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independent of the regularization parameter ε, δ, respectively, and thus hold-
ing also in the limit case when ε, δ tends to 0 (see Sect. 3). Such limits will be
called generalized solutions of the scheme. Concerning computational point
of view, we have found preconditioned iterative linear solvers, efficiency of
which is not affected even when ε or δ are very small (see Sect. 4).

In order to derive complementary volume spatial discretization we inte-
grate (10) over a co-volume Vi

∫
Vi

un − un−1

gn−1|∇un−1|τ dx =
∫

Vi

∇.

(
∇un

|∇un−1|

)
dx.(13)

For the right hand side using divergence theorem we get

∫
Vi

∇.

(
∇un

|∇un−1|

)
dx =

∫
∂Vi

1
|∇un−1|

∂un

∂ν
ds

=
∑
j∈Ci

∫
eij

1
|∇un−1|

∂un

∂ν
ds.(14)

If un
h ∈ Vh is continuous piecewise linear function on triangulation Th then

∑
j∈Ci

∫
eij

1
|∇un−1

h |
∂un

h

∂ν
ds =

∑
j∈Ci


 ∑

T∈Eij

cT
ij

|∇un−1
T |


 un

j − un
i

hij
.(15)

The complementary volume method approximates the left hand side of (13)
by

|Vi|(un
i − un−1

i )
τg(|∇uc

i |)|∇un−1
i |

(16)

where |∇un−1
i |, |∇uc

i | denote an approximation of the gradient of un−1 and
the gradient of the result of convolution uc ≡ Gσ ∗ un−1, respectively, in
the co-volume Vi. For that we have chosen the average value of gradients in
the co-volume, i.e. for any uh ∈ Vh we define

|∇ui| =
∑

T∈Ni

|T ∩ Vi|
|Vi|

|∇uT |(17)

Then if we denote by

|∇ui|δ =
∑

T∈Ni

|T ∩ Vi|
|Vi|

|∇uT |δ, |∇ui|ε =
∑

T∈Ni

|T ∩ Vi|
|Vi|

|∇uT |ε,(18)
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and

bn−1
i =

|Vi|
g(|∇uc

i |)|∇un−1
i |δ

,(19)

an−1
ij =

1
hij

∑
T∈Eij

cT
ij

|∇un−1
T |δ

,(20)

or

bn−1
i =

|Vi|
g(|∇uc

i |)|∇un−1
i |ε

,(21)

an−1
ij =

1
hij

∑
T∈Eij

cT
ij

|∇un−1
T |ε

,(22)

we can write
Linear semi-implicit fully discrete complementary volume scheme for
solving equation (1): For n = 1, . . . , N we look for un

i , i = 1, . . . , M ,
satisfying

bn−1
i (un

i − un−1
i ) + τ

∑
j∈Ci

an−1
ij (un

i − un
j ) = 0.(23)

If coefficients of (23) are regularized by (11), i.e. we use (19)-(20), the
solution (un

1 , . . . , un
M ) of this linear system will be denoted by uδ,n

h . If co-
efficients of (23) are regularized by (12), i.e. we use (21)-(22), the solution
will be denoted by uε,n

h . In the next section we will prove some properties
of the solution of (23) which exist due to following assertions.

Proposition 1. Let coefficients of the scheme (23) be given by (19)-(20).
Then there exists unique solution uδ,n

h = (un
1 , . . . , un

M ) of the scheme (23)
for any δ > 0, n = 1, . . . , N .

Proof. From definition (20), it follows that off diagonal elements −τan−1
ij ,

j ∈ Ci, of the system (23) are symmetric. The positive term bn−1
i given by

(19) affects only diagonal which is equal to bn−1
i + τ

∑
j∈Ci

an−1
ij . Thus, the

matrix of the system (23) is symmetric and diagonally dominant M-matrix
which imply that it always has unique solution.

By the same argument we get also

Proposition 2. Let coefficients of the scheme (23) be given by (21)-(22).
Then there exists unique solution uε,n

h = (un
1 , . . . , un

M ) of the scheme (23)
for any ε > 0, n = 1, . . . , N .
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Remark. With ε or δ very small the diagonal dominance of the system (23)
can be weak, thus one has to be carefull with a choice of proper solver.

Before solving (23) we have to put |∇uc
i | into (19) or (21). For that goal,

we use strategy proposed in ([4]) which is natural also for the complementary
volume method. Using the Gauss function as smoothing kernel Gσ one can
replace the term Gσ∗un−1 by solving the linear heat equation for time σ with
initial datum given by un−1. This linear equation is solved numerically at
the same grid by just one implicit time step of length σ. Thus, as a realization
of convolution we look for a function uc which is a solution of linear heat
equation discretized in time by backward Euler method with step σ

uc − un−1

σ
= ∆uc(24)

where ∆ denotes Laplace operator. The discrete approximation of uc, func-
tion uc

h ∈ Vh, is found by the same idea as given in (13)-(16) applied to
equation (24), i.e. we solve (23) with un

i replaced by uc
i and with bn−1

i ≡
bi = |Vi|, an−1

ij ≡ aij = |eij |
hij

. Then |∇uc
i | is computed by (17) and we put

this value into the Perona-Malik function g in (19) or (21).

3 Stability estimates and existence of generalized solution

Before analysis of our linear semi-implicit scheme, let us note another pos-
sible approach for time-scale discretization of (1) based on interesting ap-
proximation of degenerate diffusion term given in [32]. Following idea of
Walkington one could, instead of (10), use the following implicit nonlinear
semi-discretization in time-scale

1
gn−1|∇un−1|

un − un−1

τ
− 2∇.

(
∇un

|∇un| + |∇un−1|

)
= 0(25)

where averaging of gradient term from previous and current time-scale step
is considred in denominator of divergence term. Such scheme leads to W 1,1

estimate, i.e. estimate on decay of total variation of discrete time-scale so-
lutions. It is a basic property of the flow by mean curvature and solution
of level set equation as well and can be interpreted as a curve shortening
property ([9], [21], [20], [24], [25]). Any reasonable numerical approxima-
tion should also respect this fact. Following [32] one can multiply (25) by
un −un−1 and integrate it over Ω. Then by integration per-partes and using
zero Neumann bounadary conditions one gets

∫
Ω

(un − un−1)2

τgn−1|∇un−1|dx + 2
∫

Ω

∇un.(∇un − ∇un−1)
|∇un−1| + |∇un| dx = 0.(26)
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Using the relation

2a(a − b) = a2 − b2 + (a − b)2(27)

where a, b are arbitrary real numbers, and by a simple manipulations related
to the sum in denominator∫

Ω
(un−un−1)2

τgn−1|∇un−1|dx +
∫
Ω

|∇un|2−|∇un−1|2
|∇un−1|+|∇un| dx+

+
∫
Ω

|∇un−∇un−1|2
|∇un−1|+|∇un|dx =

∫
Ω

(un−un−1)2

τgn−1|∇un−1|dx+(28)

+
∫
Ω

|∇un−∇un−1|2
|∇un−1|+|∇un|dx +

(∫
Ω |∇un|dx −

∫
Ω |∇un−1|dx

)
= 0

which means that

‖∇un‖L1(Ω) ≤ ‖∇un−1‖L1(Ω)(29)

and by recursion

‖∇un‖L1(Ω) ≤ ‖∇u0‖L1(Ω), 1 ≤ n ≤ N(30)

which represents the important stability property of this nonlinear scheme.
However, the previous scheme leads (after any spatial discretization) to

solving of nonlinear system of equations in each discrete time-scale level
which is rather non-efficient approach. In order to have convergence, which
is however very slow, one has to use fixed point-like nonlinear iterations;
faster possibilities like Newton’s method has no guarantee to converge ([32])
and are also rather complicated from implementation point of view for this
type of problem.

In regard to analysis, stability and efficiency of the method, our contri-
bution is that we get existence of generalized discrete solution (limit when
regularization parameter tends to 0) in subsequent time-scale steps and de-
cay of total variation of such discrete solutions also for the scheme (10), or
more precisely for fully discrete scheme (23) which is much more simple
and efficient since it is linear. As linear, it allows to use preconditioned it-
erative linear solvers at every time-scale level and achieve in such way fast
and stable solution (we present some CPU time statistics in Sect. 4).

In order to derive an analogue of the estimate (30) for our fully discrete
scheme we use the following result (see e.g. [32])
Lemma. Let Th be a two-dimensional mesh having simplicies with interior
angles not exceeding π/2 and let u, v ∈ Vh, and w be piecewise constant
on Th. Then

∫
Ω

w∇u.∇vdx =
M∑
i=1


∑

j∈Ci

αij(w)(ui − uj)


 vi,(31)
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where αij(w) = 1
hij

∑
T∈Eij

wT cT
ij and wT denotes value of w in T ∈ Th.

Then we can prove the following assertions.

Theorem 1. There exists limit un
h of a subsequence of uδ,n

h for δ → 0 where

uδ,n
h is the solution of the scheme (23) with coefficients given by (19)–(20).

Moreover for this generalized solution un
h the following estimates hold

‖un
h‖L∞(Ω) ≤ ‖u0

h‖L∞(Ω), ‖∇un
h‖L1(Ω) ≤ ‖∇u0

h‖L1(Ω), 1 ≤ n ≤ N.

(32)

Proof. Let us rewrite (23) in the form

un
i +

τ

bn−1
i

∑
j∈Ci

an−1
ij (un

i − un
j ) = un−1

i(33)

and let max uδ,n
h = max(un

1 , . . . , un
M ) be achieved in the ith node. Then

the whole second term on the left hand side is nonnegative and thus value
un

i ≤ un−1
i ≤ max(un−1

1 , . . . , un−1
M ). In the same way we can prove the

relations for minima and together we have

min u0
i ≤ min un

i ≤ max un
i ≤ max u0

i , n ≤ N(34)

which imply

‖uδ,n
h ‖L∞(Ω) ≤ ‖u0

h‖L∞(Ω), 1 ≤ n ≤ N.(35)

Since estimate (35) is independent on δ we can choose convergent sub-
sequence of uδ,n

h as δ → 0. The limit of this subsequence we denote by
un

h ∈ Vh and it is clear that it fulfills the first estimate of the Theorem. To
get the second estimate of the Theorem, let us multiply (23) by un

i − un−1
i

and sum it over all nodes. We get

M∑
i=1

bn−1
i

(un
i − un−1

i )2

τ
+

M∑
i=1

∑
j∈Ci

an−1
ij (un

i −un
j )(un

i −un−1
i ) = 0(36)

using definition of an−1
ij and (31) we obtain

M∑
i=1

bn−1
i

(un
i − un−1

i )2

τ
+

∫
Ω

∇uδ,n
h .∇(uδ,n

h − un−1
h )

|∇un−1
h |δ

dx = 0.(37)

We denote second term of this equation by II and further we denote

Ω0 = {T ∈ Th; |∇un−1
T | ≤ δ}
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Ω1 = {T ∈ Th; |∇un−1
T | > δ}.

Using the relation (27) we can rewrite the second term in the equation (37)
as follows

II =
∫

Ω0

|∇uδ,n
h |2
δ

dx −
∫

Ω0

∇uδ,n
h .∇un−1

h

δ
dx

+
1
2

∫
Ω1

|∇uδ,n
h |2 − |∇un−1

h |2 + |∇uδ,n
h − ∇un−1

h |2

|∇un−1
h |

dx.(38)

Since the following identity holds

|∇uδ,n
h − ∇un−1

h |2 = (|∇uδ,n
h | − |∇un−1

h |)2

+

∣∣∣∣∣
∇uδ,n

h

|∇uδ,n
h |

− ∇un−1
h

|∇un−1
h |

∣∣∣∣∣
2

|∇uδ,n
h ||∇un−1

h |,

we get

II =
∫
Ω0

|∇uδ,n
h |2
δ dx −

∫
Ω0

∇uδ,n
h .∇un−1

h
δ dx+

+1
2

∫
Ω1

|∇uδ,n
h |2−|∇un−1

h |2−(|∇uδ,n
h |−|∇un−1

h |)2
|∇un−1

h | dx+

+
∫
Ω1

(|∇uδ,n
h |−|∇un−1

h |)2
|∇un−1

h | dx + 1
2

∫
Ω1

∣∣∣∣ ∇uδ,n
h

|∇uδ,n
h | − ∇un−1

h

|∇un−1
h |

∣∣∣∣
2

|∇uδ,n
h |dx.

Because the first term of (37) and last two terms in the previous expression are
nonnegative, using Cauchy-Schwartz and then Young inequality we obtain

∫
Ω1

|∇uδ,n
h |dx +

∫
Ω0

|∇uδ,n
h |2
δ dx ≤

∫
Ω1

|∇un−1
h |dx +

∫
Ω0

|∇uδ,n
h |dx ≤

∫
Ω1

|∇un−1
h |dx + 1

2

∫
Ω0

|∇uδ,n
h |2
δ dx + 1

2

∫
Ω0

δdx

from where

1
2

∫
Ω0

|∇uδ,n
h |2
δ

dx +
∫

Ω1

|∇uδ,n
h |dx ≤

∫
Ω1

|∇un−1
h |dx +

1
2
δ|Ω0|.(39)

If we use again

∫
Ω0

|∇uδ,n
h |dx ≤ 1

2

∫
Ω0

|∇uδ,n
h |2
δ

dx +
1
2
δ|Ω0|(40)

we obtain
‖∇uδ,n

h ‖L1(Ω) ≤ ‖∇un−1
h ‖L1(Ω) + δ|Ω0|.(41)
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Let uδ,n
h be subsequence converging to un

h corresponding to vector un
h =

(un
h,1, u

n
h,2, . . . , u

n
h,M ). It is clear that there exists subsequence of the previ-

ous one for which |∇uδ,n
T | → |∇un

T |,∀T ∈ Th as δ → 0. Thus‖∇uδ,n
h ‖L1(Ω)

→ ‖∇un
h‖L1(Ω) for δ → 0. From the estimate (41) then follows that

‖∇un
h‖L1(Ω) ≤ ‖∇un−1

h ‖L1(Ω) which gives the second estimate of the
Theorem.

Theorem 2. There exists limit un
h of a subsequence of uε,n

h for ε → 0 where
uε,n

h is the solution of the scheme (23) with coefficients given by (21)-(22).
Moreover for this generalized solution un

h the following estimates hold

‖un
h‖L∞(Ω) ≤ ‖u0

h‖L∞(Ω), ‖∇un
h‖L1(Ω) ≤ ‖∇u0

h‖L1(Ω), 1 ≤ n ≤ N.

(42)

Proof. In the same way as in the proof of Theorem 1 we get

‖uε,n
h ‖L∞(Ω) ≤ ‖u0

h‖L∞(Ω), 1 ≤ n ≤ N(43)

and from there the first estimate of this Theorem. Now, we prove the second
estimate. Let us again multiply (23) by un

i −un−1
i and sum it over all nodes.

As in the previous proof we obtain

M∑
i=1

bn−1
i

(un
i − un−1

i )2

τ
+

∫
Ω

∇uε,n
h .∇(uε,n

h − un−1
h )

|∇un−1
h |ε

dx = 0.(44)

Let us use the notation

∇εv = (vx, vy, ε), ∇0v = (vx, vy, 0).

where vx, vy denote partial derivatives of a function v in 2D case (in 3D
analogously). Then

|∇εu
n−1
h | = |∇un−1

h |ε,
|∇0u

ε,n
h | = |∇uε,n

h |, ∇εu
n−1
h .∇0u

ε,n
h = ∇uε,n

h .∇un−1
h .(45)

We again denote second term of equation (44) by II . Using the relation (27)
we have

II =
1
2

∫
Ω

|∇uε,n
h |2 − |∇un−1

h |2 + |∇uε,n
h − ∇un−1

h |2

|∇un−1
h |ε

dx.(46)

We can compute

|∇uε,n
h − ∇un−1

h |2 = |∇uε,n
h |2 − 2|∇uε,n

h ||∇un−1
h |ε+

|∇un−1
h |2ε + 2|∇uε,n

h ||∇un−1
h |ε − 2∇uε,n

h · ∇un−1
h − ε2 =

(|∇uε,n
h | − |∇un−1

h |ε)2 +
(

2 − 2∇uε,n
h ·∇un−1

h

|∇uε,n
h ||∇un−1

h |ε

)
|∇uε,n

h ||∇un−1
h |ε − ε2
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and using (45) we get

2 − 2∇uε,n
h · ∇un−1

h

|∇uε,n
h ||∇un−1

h |ε
=

∣∣∣∣∣
∇0u

ε,n
h

|∇0u
ε,n
h | − ∇εu

n−1
h

|∇εu
n−1
h |

∣∣∣∣∣
2

which together gives us

II = 1
2

∫
Ω

|∇uε,n
h |2−|∇un−1

h |2ε
|∇un−1

h |ε dx + 1
2

∫
Ω

(|∇uε,n
h |−|∇un−1

h |ε)2
|∇un−1

h |ε dx+

+1
2

∫
Ω

∣∣∣∣ ∇0uε,n
h

|∇0uε,n
h | − ∇εun−1

h

|∇εun−1
h |

∣∣∣∣
2

|∇uε,n
h |dx

and finally

M∑
i=1

bn−1
i

(un
i −un−1

i )2

τ +
∫
Ω

(|∇uε,n
h |−(|∇un−1

h |ε)2
|∇un−1

h |ε dx+

1
2

∫
Ω

∣∣∣∣ ∇0uε,n
h

|∇0uε,n
h | − ∇εun−1

h

|∇εun−1
h |

∣∣∣∣
2

|∇uε,n
h |dx+

1
2

∫
Ω

|∇uε,n
h |2−|∇un−1

h |2ε−(|∇uε,n
h |−|∇un−1

h |ε)2
|∇un−1

h |ε dx = 0.

Since the first three terms are positive we have for the last one

1
2

∫
Ω

2|∇uε,n
h ||∇un−1

h |ε − 2|∇un−1
h |2ε

|∇un−1
h |ε

dx ≤ 0

from where∫
Ω

|∇uε,n
h |dx ≤

∫
Ω

|∇un−1
h |εdx =

∫
Ω

√
|∇un−1

h |2 + ε2dx

≤
∫

Ω
|∇un−1

h |dx + ε|Ω|,

holding for any ε > 0. The rest of the proof uses the same arguments as in
the end of the proof of Theorem 1.

4 Discussion on numerical results

This Section is devoted to discussion on numerical computations by the
semi-implicit complementary volume scheme (23) and also on computa-
tional efficiency of used iterative solvers. In computations we have chosen
g(s) = 1

1+Ks2 with a constant K > 0 and the convolution is realized using
(24) with σ less than τ . The space step h in image processing experiments
is always given as 1/n, where n is number of pixels in vertical direction.
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Fig. 2. Initial image (left), result of smoothing after 10 (middle) and 30 (right) scale steps
(see Example 1)

Fig. 3. Initial image (left), and its multiscale analysis (right) after 20 scale steps (see Example
2)

Example 1. In Fig. 2 we smooth an initial 321 × 373 pixels image (ancient
coat-of-arms of Bratislava plotted in the left part of the Figure) scanned from
the book with neither paper nor colors of good quality. We present results
after 10 and 30 discrete scale steps, with parameters τ = 0.001, σ = 0.0001,
ε2 = 10−10, K = 2. In Tables 1 - 4 we give CPU-times for computing one
scale step by different iterative solvers.

Example 2. In this example we process medical image (463 × 397 pixels)
and in Fig. 3 we present result after 20 discrete steps of the scheme (23).
The parameters were τ = 0.0001, σ = 0.00001, K = 4, δ = 10−3.

Example 3. In this example we present multiscale analysis of mamogram
(171 × 192 pixels). In Fig. 4 we present original (left) and results after 30
and 100 discrete steps. The parameters were τ = 0.0001, σ = 0.00001,
ε2 = 10−6, K = 5.

Example 4. In this example we corrupt original image plotted in Fig. 5
(150 × 150 pixels) by structural noise (Fig. 6, left) and by 30% salt and
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Fig. 4. Initial image (left), result of multiscale analysis after 30 (middle) and 100 (right)
scale steps (see Example 3)

Fig. 5. Original un-noisy image (see Example 4)

Fig. 6. Initial image corrupted by a structural noise (left), result of filtering by level set
equation after 2 (middle) and 10 (right) scale steps (see Example 4)

pepper noise (Fig. 7, left). Then we reconstruct the original by level set
equation (8). The parameters were τ = 0.00005, σ = 0.00001, ε2 = 10−10,
g = 1.

Example 5. In Fig. 8 we test our algorithm in simple situation of known exact
solution of the level set equation (8) given by a shrinking circle into the point.
We consider unit circle which extincts at time 0.5. From our comparison one
can see precise coincidence of exact and numerical solutions and only very
small error in extinction time which is for numerical solution 0.5010. The
parameters were h = 0.01, time step τ = 0.0001 and ε2 = 10−6.

Example 6. In Fig. 9 we test the behaviour of semi-implicit complementary
volume algorithm (23) in nonconvex curve evolution by mean curvature. We
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Fig. 7. Initial image corrupted by salt and pepper noise (left), result of filtering by level set
equation after 2 (middle) and 10 (right) scale steps (see Example 4)
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Fig. 8. Comparison of the curve evolution given by the scheme (23) (solid lines represent
zero level set of numerical solution in t = 0, 1, 2, 3, 4) and by exact solution given by
shrinking unit circle (dots) at the same time moments (see Example 5)

evolve numerically the initial nonconvex curve given in the top. In all images
we plot by solid lines numerical solution by (23) and by points numerical
solution given by conceptually different method based on discretization of
the so-called intrinsic heat equation ([8], [9], [24], [25]). In case of scheme
(23) we use space discretization parameter h = 0.01, time step τ = 0.001,
ε2 = 10−6 and both solutions are plotted at the same time moments (t =
0.05, 0.1, 0.2, 0.3, 0.5, 0.8) after which curve is shrinking in circular form
into a point. From the comparison one can see a precise coincidence of two
methods during evolution.

Finally we remark on solving of linear systems in discrete scale step of
the semi-implicit method. The huge number of unknowns in each system,
the sparsity pattern and the properties of the coefficient matrices suggest to
use conjugate gradient (CG) method. With a good preconditioner, the total
amount of steps required for convergence can be reduced dramatically, at
the cost of slight increase in the number of operations per step, resulting in
much more efficient algorithms in general.

It is well known that standard incomplete factorization (IC) methods
exist for M-matrices ([19]) arising in our discretizations, and that modified
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Fig. 9. Comparison of numerical solutions using semi-implicit complementary volume
scheme for solving level set equation (solid lines) and Lagrangean approach based on solving
the intrinsic heat equation (points) (see Example 6)

incomplete factorization (MIC) methods exist for weakly diagonally domi-
nant matrices ([12]). The classical approaches IC(0), MIC(0) allow only to
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fill entries in the Cholesky factor C where the original matrix has nonzeros.
Several developments marked the last years. Two distinct ways of develop-
ing incomplete factorization preconditioners with improved accuracy were
developed. The first approach is based on a symbolic factorization view,
i.e. only requires the nonzero structure of the matrix to determine which
fill-ins to drop. During the factorization process a level of fill is recursively
introduced to each fill-in element from the level of fill-in of its parents. Then
each fill-in that is introduced and whose level exceeds a certain threshold
p is dropped, IC(p), MIC(p). The second common approach is to modify
the factorization by including a dropping rule based on the numerical size
T of the fill-ins introduced, ICT(p). Although the relation between the size
of the dropped elements and the number of iterations required to achieve
convergence is far from being completely understood, experience reveals
that generally dropping small elements is more likely to produce a better
quality preconditioner than dropping large elements. A great drawback of
the level-of-fill approach is that it is difficult to predict the amount of fill-in
that will be generated and thus memory requirements.

In our experimentations we have followed ([17]) who proposed a new
incomplete Cholesky factorization depending on a parameter p that specifies
the amount of additional memory that is available (in multiples of the di-
mension of the problem) without no need of a drop tolerance. The proposed
method ([17]) retains the nk +p largest elements in the lower triangular part
of the k-th column of C, where nk is the number of elements in the k-th
column of C ( ICL(p) CG ). The good performance of that precondition-
ing conjugate gradient algorithm and the growing memory requirements for
big images, suggest us the following variant. Following the complementary
volume discretization properties that lead to strict diagonal dominance in
the matrix we allow to our algorithm to retain a variable number of nk + pk

largest elements in the lower triangular part of the k-th column of C.
In Tables 1 and 2 we report the number of matrix-vector multiplications

used to obtain convergence in the solution of the linear system taken from
the first scale step in Example 1, as well as CPU times in seconds on Digital
Alpha XP1000 workstation. In particular in Table 1 the results were obtained
by conjugate gradient algorithm without preconditioning (second column),
by IC(0) and MIC(0) preconditioning (third and fourth column, respectively)
and IC with threshold ICT(p,T) CG (last column). In Table 2 we compare the
preconditioner ICL(p) CG proposed by ([17]) (second column), modified
version MICL(p) CG (fourth column), our variable preconditioning ICL(0 ≤
p ≤ pmax) CG and modified version of it MICL(0 ≤ p ≤ pmax) CG (third
and fifth column, respectively).

From the results of the Tables we can see that by the incomplete Cholesky
preconditioned conjugate gradient we obtain a fast convergence. The prob-
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lem of knowing in advance the memory requirements is solved by the pro-
posed preconditioner. By considering p = 6 we need a storage of about
three times the number of nonzero elements of the original matrix, but with
a variable p we reduce it to twice. Moreover using variable p and modified
incomplete Cholesky preconditioner we can obtain the same results of speed
with only 30% more memory (see column fifth of Table 2). Tables 3 and
4 reports the same statistics, but taking a smaller scale step τ = 0.00001
in Example 1. One can see that CG behaves better, but there is again an
important improvement by preconditioners in case of small ε.

In other Examples the behaviour was similar. As stopping criterion we
have used ‖rk‖2 <= tol ‖r0‖2 with tolerance tol = 0.01, where ‖.‖2 means
discrete L2 norm and rk is residual in kth iteration.

Table 1. Comparison of preconditioned conjugate gradient solvers

� Mult / time CG no prec IC(0) CG MIC(0) CG ICT(6,0.0001) CG

ε2 = 10−3 103/3.29 18/1.43 17/1.36 11/1.23
ε2 = 10−4 180/5.71 27/1.97 25/2.05 12/1.34
ε2 = 10−5 328/10.35 40/2.94 39/2.95 11/1.16
ε2 = 10−6 559/17.57 68/4.86 68/4.88 9/0.91
ε2 = 10−10 No Conv. 79/5.23 79/5.34 9/0.91

Table 2. Comparison of preconditioned conjugate gradient solvers with limited memory

� Mult / time ICL(6) CG ICL(0 ≤ p ≤ 6) CG MICL(3) CG MICL(0 ≤ p ≤ 3) CG

ε2 = 10−3 4/0.87 4/0.78 4/0.90 6/0.87
ε2 = 10−4 5/0.91 5/0.87 6/0.96 3/1.05
ε2 = 10−5 6/0.97 6/0.97 8/1.07 10/1.22
ε2 = 10−6 5/0.94 7/1.08 10/1.22 11/1.31
ε2 = 10−10 6/1.07 6/1.05 11/1.29 11/1.30

Table 3. Comparison of preconditioned conjugate gradient solvers in case of smaller scale
step

� Mult / time CG no prec IC(0) CG MIC(0) CG ICT(6,0.0001) CG

ε2 = 10−6 55/1.8 8/0.6 8/0.68 4/0.57
ε2 = 10−10 163/5.15 15/1.2 14/1.24 7/0.82

Table 4. Comparison of preconditioned conjugate gradient solvers with limited memory in
case of smaller scale step

� Mult / time ICL(6) CG ICL(0 ≤ p ≤ 6) CG MICL(3) CG MICL(0 ≤ p ≤ 3) CG

ε2 = 10−6 3/0.6 3/0.63 6/0.7 3/0.51
ε2 = 10−10 5/0.66 5/0.68 3/0.53 3/0.52
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