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Abstract. Numerical approximation of a nonlinear diffusion
equation of mean curvature flow type is discussed. Computa-
tional results related to image processing are presented.

In this paper we are dealing with the numerical approxima-
tion for (Evans & Spruck type) regularization of the following
nonlinear degenerate parabolic equation

ut = g(|∇u|)|∇u|∇.(
∇u

|∇u| ) (0.1)

in a domainΩ ⊂ IRN , which is accompanied with homo-
geneous Neumann boundary conditions and with some initial
condition. The aim is to use the equation (0.1) or, more pre-
cisely, its reasonable regularization, for image and shape anal-
ysis. Then, initial condition represents the processed image
and the functionu, the solution of (0.1), the result ofnonlin-
ear (geometrical) scaling([1], [2], [14], [20]). This kind of
application of equation (0.1) is based on the motion of image
silhouettes by their mean curvature. Thus, the image geometri-
cal features are strongly respected and (0.1) is a representative
geometry driven diffusion model.

Providedg(s) = 1, (0.1) is calledlevel set equation, which
has been proposed by Osher & Sethian ([18],[21]) for com-
putation of moving fronts in interfacial dynamics. It has been
used by Evans & Spruck ([11]) for a definition ofgeneral-
ized mean curvature flowof hypersurfaces, too. Thelevel set
equationmoves each level set (namely, level line in 2D and
level surface in 3D) ofu with the velocity proportional to its
normal mean curvature field. Moreover, it yields the so called
morphological principle; if u is a solution then, for any nonde-
creasing functionϕ, ϕ(u) is a solution as well. Thiscontrast
invariant property has large significance in the theory of im-
age processing ([1]). On the other hand, these ideas have been
used in [3], where the model like (0.1) has been suggested for
computational image and shape analysis.

Applying the level set equationto initial image yields
the silhouettes smoothing. We document this phenomenon in
Figs. 1–4. Solving numerically a regularization of (0.1) (see
(0.2)–(0.4)) we try to obtain a realistic (smooth) shape of 3D

object – left heart ventricle ([17]). We visualize the level sur-
face which represents the boundary of the volume containing
the blood in several discrete moments of cardiac cycle. On
the left sides of the figures, the unfiltered isosurfaces are plot-
ted. There are many nonrealistic fingers, incisions and peaks
caused by aquisition. We can move such surface in the direc-
tion of its inside normal vector field with the velocity pro-
portional to the mean curvature. The motions of convex and
concave pieces are opposite due to the curvature sign, and
the large fingers shrink faster due to curvature dependence of
flow. Thus, locally in scale, we can obtain reasonable smooth-
ing of the isosurface. The results of such image processing are
plotted on right sides of Figs. 1–4.

On the other hand, the model (0.1) can be used succes-
sively for image selective smoothing with conserving of edge
positions ([19], [5], [3], [12], [13], [4]). The Perona-Malik
functiong(s) depending on|∇u| – edge indicator (g(s) → 0
for s → ∞) is used to ”stop” the motion of the silhouette-
edges. The regions bettween them are smoothed due to the
diffusion process. Here, we present Fig. 5 where two chromo-
zomes are extracted from an initial rather noisy 3D-image by
image selective smoothing (0.1) withg(s) = 1/(1 + s2).

A 2D example is given in Fig. 6. The ancient coat-of-arms
of Slovak town Modra is scanned from a book where neither
the paper nor the colours were of a good quality (left). On the
right, the scaled-smoothed version is presented.

There are several approaches to solve mean curvature flow
problem, primarily related to free boundary problems with
surface tension. Some of them deal with the so called ”La-
grangean approach” where the moving curve or surface itself
is the main object of modelling and computing ([16], [15], [9],
[10]). The ”Eulerian approach” of Osher & Sethian handles
implicitly the mean curvature motion passing the problem to
higher dimensional space and solving there thelevel set equa-
tion. What has been somewhat artificial in interfacial dynamics
is very natural for image processing; we handle in one all ge-
ometrical information contained in image greylevel intensity
functionu, unknown in (0.1).

The level set equationitself is degenerate parabolic and
complicated from the computational point of view. Its viscos-
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Fig. 1. The heart ventricle in systole phase – visualized from the
result of aquizition(left) and after the 3D image processing by mean
curvature flow(right)

Fig. 2.The heart ventricle in open phase – visualized from the result of
aquizition(left)and after the 3D image processing by mean curvature
flow (right)

Fig. 3.The heart ventricle in open phase – visualized from the result of
aquizition(left)and after the 3D image processing by mean curvature
flow (right)

Fig. 4. The heart ventricle in diastole phase – visualized from the
result of aquizition(left) and after the 3D image processing by mean
curvature flow(right)

ity solution ([6], [7], [11]) can be tracked numerically e.g.
by special techniques based on solution of Hamilton-Jacobi
equations of first order ([18], [21]). We follow a totally dif-
ferent numerical approach. The motivation is to use standard
numerical methods for solving parabolic PDEs, namely a fi-
nite element method for discretization in space and a kind
of implicit method in scale. We solve a parabolic problem
(in nondivergence form, however) which is close to the basic
equation (0.1). For this purpose we use a special regularization
depending on a small parameterε used by Evans & Spruck in
the proof of existence of a weak solution ofgeneralized mean
curvature flow([11]). Their regularization is interpreted as a
motion of a graph, with a slope proportional to1/ε, which is
thus close to a cylinder with basis given by moving curve or
surface. From [11], it is guaranteed that, forε → 0, solutions
of the regularized problems tend to the viscosity solution of
the level set equation.

We therefore solve numerically the following initial-
boundary value problem

1√
ε + |∇u|2 ut − g(|∇u|)∇.(

∇u√
ε + |∇u|2 ) (0.2)

= 0 in I × Ω,

∂νu = 0 on I × ∂Ω, (0.3)

u(0, .) = u0 in Ω, (0.4)
where1 > ε > 0 is a (small) real number,I = (0, T ) is scale
interval andΩ ⊂ IRN .

The semidiscrete version (Galerkin approximation) of (0.2)
–(0.4) then reads as follows∫

Ω

uh,tϕh

g(|∇uh|)√ε + |∇uh|2 +
∫

Ω

∇uh.∇ϕh√
ε + |∇uh|2 (0.5)

= 0, ∀ϕh ∈ Xh, t ∈ I,

uh(0, .) = uh0, (0.6)
whereuh(t, .) ∈ Xh is the approximation ofu, Xh is space
of linear finite elements with grid size parameterh anduh0 is
the so called minimal surface projection of continuous initial
datau0 (see [8]).
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Fig. 5. Extraction of the chromozomes from the 3D image by mean curvature flow with velocity depending on the gradient of solution

In [8], the motion of two-dimensional nonparametric sur-
face by its mean curvature, governed by equation

1√
1 + |∇u|2 ut − ∇.(

∇u√
1 + |∇u|2 ) = 0 in I × Ω, (0.7)

is considered, providedu = 0 on ∂Ω, Ω ⊂ IR2 and starting
with smooth initial graph. For the fixedε > 0, the structure
of (0.2)–(0.4) differs only slightly from (0.7). Thus, in 2D
case, one can use straightforwardly the ideas of Deckelnick
and Dziuk to obtain the existence and uniqueness of the so-
lution of the problems (0.2)–(0.4), (0.5)–(0.6), respectively,
in proper functional spaces. Moreover the difference between
u, solution of regularized problem (0.2)–(0.4), anduh, solu-
tion of (0.5)–(0.6), depends onh in qualitatively same way
as in [8] (Theorem 3.2). Thus the convergence ofuh to u in
L∞(I, L2(Ω)) ∩ L2(I, H1(Ω) is guarranteed forh → 0.

In practical computations we solve (0.5)–(0.6) by a kind
of semi-implicit method – treating the nonlinearities from the
previous scale step. So, we choose discrete scale stepτ and in
each discrete scale momentti = iτ we solve

∫
Ω

(ui
h − ui−1

h )ϕh

g(|∇ui−1
h |)

√
ε + |∇ui−1

h |2

+τ

∫
Ω

∇ui
h.∇ϕh√

ε + |∇ui−1
h |2

= 0,

∀ϕh ∈ Xh

for the unknown functionui
h. The convergence for such a full

discrete scheme as well as the analysis of the limit behaviour
ε → 0 is an open question.

The computational grid is given naturally by the pixel
(voxel) structure of the initial image. In experiments docu-
mented in Figs. 1–4 we used scale stepτ = 10−4, regulariza-
tion parameterε = 10−6 and we have computed21 discrete
scale steps. For the experiment from Fig. 5 we have choosen
τ = 10−3, ε = 10−6; the initial state and images after6, 12
and30 scale steps are plotted. In Fig. 6, the parameters are the
same and we plot initial image and scaling version after 10
steps. In both cases we haveg(s) = 1/(1 + s2).
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Fig. 6. Processing of the 2D image by mean curvature flow with velocity depending on the gradient of solution
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