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a b s t r a c t

In this paper, we propose a cell-centered finite volume method for advective and normal
flows on polyhedron meshes which is second-order accurate in space and time for smooth
solutions. In order to overcome a time restriction caused by CFL condition, an implicit
time discretization of inflow fluxes and an explicit time discretization of outflow fluxes are
used in an iterative procedure. For an efficient computation, an 1-ring face neighborhood
structure is introduced. Since it is limited to access unknown variables in an 1-ring face
neighborhood structure, an iterative procedure is proposed to resolve the limitation of
assembled linear system. Two types of gradient approximations, an inflow-based gradient
and an average-based gradient, are studied and compared from the point of numerical
accuracy. Numerical schemes are tested for an advective and a normal flow of level-set
functions illustrating a behavior of the proposed method for an implicit tracking of a
smooth and a piecewise smooth interface.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Level-set methods are widely used as practical numerical tools when a tracking of a dynamic interface is required in
engineering applications [1,2]. Such requirements also occur in particular applications based on flow dynamics of several
phases or combustion models in engines [3,4], for which several software tools and libraries are developed and used by a
large community of researchers and engineers. To use these tools and libraries with a wide range of computational domains,
flexible shapes of cell such as a polyhedron shape are preferable in cases of a complex computational boundary [5].Moreover,
one can find various applications of level set methods e.g. in pharmaceutical sciences [6], colloidal transport [7], biofilm
formation [8], or geothermal energy exploitation [9].

An appropriate numerical discretization method to work with a polyhedron mesh is a finite volume method (FVM)
designed for general shapes of computational cells. An attractive property of FVM is a direct approximation of local
conservation property with the models of conservation laws. Therefore, many variations of FVM [10–13] are used with a
polyhedronmesh for the problems of fluid dynamics or the combustionmodeling which usually need a complicated domain
in engineering applications.
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All these factors give a reasonable motivation to develop a FVM also when the level-set equations on polyhedronmeshes
are necessary to be solved. The aim of this paper is to propose a FVM to find a numerical solution of level-set equations
for an advective and a normal flow that is accurate and robust when used with a polyhedron mesh. In particular, we aim
to implement it in the AVL FIRE R⃝1 that is used for many real world engineering applications in the fluid dynamics and
combustion modeling.

A flux-based level-set method in [14] is available for an unstructured mesh, but it is based on a vertex-centered finite
volume method in space and on a fully explicit time discretization, and it is proposed for simpler meshes used with finite
element methods. In this paper we propose a semi-implicit cell-centered FVM on polyhedron meshes for an advective and
a normal flow that is second-order accurate in space and time for smooth solutions.

For a normal flow, the authors in [15] suggest to use an inflow-based gradient (IBG) with the second order total variation
diminishing Runge–Kutta method in an explicit time discretization. There are two drawbacks of the method in [15] that
we aim to resolve in this paper. Firstly, the IBG approximation with the explicit time discretization in [15] seems to be
suitable for the normal flow due to a fully upwinded form, but it has an insufficient accuracy with the semi-implicit method
in the case of an advective flow. Secondly, the time discretization in [15] is fully explicit with a time step restricted by CFL
condition in order to avoid instabilities in numerical solutions. The restriction of time step is very impractical in three types of
meshes extensively used in real world engineering problems: i) locally adaptive meshes, ii) moving meshes with elongation
or compression in a certain direction, and iii) non-uniformmesheswith largely varying size of computational cells that occur
often in applications with complex boundaries.

Well-knownapproaches to avoid the restriction of the time step are implicit or semi-implicit timediscretizationmethods.
In [16–19], an inflow-implicit outflow-explicit (IIOE) method for the discretization of an advective and a normal flow is
proposed and used. The IIOE methods in [16–19] prove to work well for structured grids, but it has been an open issue how
to implement them efficiently also for polyhedron meshes. In [20], the IBG IIOE method is derived for polyhedron meshes,
and it is developed for normal flows.

In this paper, together with the IBG as in [15,20], we introduce an average-based gradient (ABG) into an iterative IIOE
scheme and explain all necessary details of the implementation including a tessellation of nonplanar faces of computational
cells. We compare the accuracy of ABG and IBG not only for a normal flow but also for an advective flow. Furthermore, we
show an efficiency of an iterative IIOE method to overcome an 1-ring face neighborhood structure.

The paper is organized as follows. In Section 2, we start to briefly introduce the mathematical model. In Sections 2.2–
2.5, we explain the steps of iterative IIOE method: the tessellation of nonplanar faces, the ABG and the IBG approximation,
the iterative procedure, and a brief 1D study of the method. In Section 3, we present numerical experiments with some
discussion. Finally in Section 4 we conclude the results.

2. Iterative IIOE finite volume method

2.1. Mathematical model

An advective and a normal flow equation is numerically solved in level-set method:

∂

∂t
φ(x, t) + u(x, t, φ(x, t)) · ∇φ(x, t) = 0, (x, t) ∈ Ω × [0, T ], (1)

where the initial and Dirichlet boundary conditions are given:

φ(x, 0) = φ0(x), x ∈ Ω,

φ(x, t) = φb(x, t), (x, t) ∈ ∂Ω × (0, T ].
(2)

A computational domain is Ω ⊂ R3, T is the final time, and we deal with two forms of the velocity functions:

u(x, t, φ(x, t)) = v(x, t) or u(x, t, φ(x, t)) = ±
∇φ(x, t)
|∇φ(x, t)|

. (3)

The first and second velocity in (3) give an advective flow and normal flow for an evolution of surface described by a zero
level set of φ, respectively.

In the following subsections, a detailed explanation of proposedmethod is presented. Firstly,we introduce somenotations
to explain a numerical scheme on 3D polyhedron cell and explain how to tessellate a face of distorted cell into triangles.
Secondly, we explain the average-based gradient and show later the differences with the inflow-based gradient [15] in 1D
case. Thirdly, we propose an iterative IIOE method.

1 https://www.avl.com/fire.

https://www.avl.com/fire
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Fig. 1. When a face of cell is nonplanar, the face is tessellated into triangles; from a blue point on the left cell of nonplanar face, two consecutive vertices of
the face are selected to construct one triangle. Note that a blue point is usually given by an area average face center (4). A red point on the right cell presents
the center of triangle and it is denoted by xf , f ∈ F . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

2.2. Distorted cell and subface tessellation

Let Ω̄ =
⋃

p∈IΩ̄p ⊂ R3 be a computational domain, where an open set Ωp with the non-zero volume |Ωp| is a cell in
discretized domain and I is the set of cell indices. A distorted cell means that the cell has a nonplanar face, which usually
exists when there is a complex computation boundary. It is an unrealistic assumption that all faces of Ωp for all p ∈ I are of
a planar shape in a case of industrial problems.

Whenever a face is not triangle, the face is tessellated into triangles; from a given center of the face, two consecutive
vertices of the face are selected to construct one triangle. A center x∗ of face whose vertices are xi, i = 1, . . . , r is usually
given by the area average. To make it simple, using a cyclic notation xr+1 = x1, the area average face center is computed by

x∗
=

∑r
i=1 |∆i| xi∑r
i=1 |∆i|

, (4)

where |∆i| is the area of ∆i, xi is the center of mass on ∆i, and ∆i is a triangle of xi, xi+1, and x0 =
1
r

∑r
j=1xj for i = 1, . . . , r .

Then, the ith tessellated triangle at the face is defined by three points: xi, xi+1, and x∗; see Fig. 1. The index set F denotes all
triangles ef , f ∈ F tessellated from a face or a triangle face of Ωp for all p ∈ I. We denote xf as the center of triangle ef .

To indicate the neighbor cells of Ωp we consider only the cells whose face is shared:

Np = {q ∈ I : there exists a face ef ⊂ ∂Ωq ∩ ∂Ωp, f ∈ F}.

The faces of Ωp are indicated by two sets:

Fp = {f ∈ F : ef ⊂ ∂Ωp} and Bp = {f ∈ Fp : ef ⊂ ∂Ωp ∩ ∂Ω}.

If Ωp is a cell whose all faces are not overlapped to ∂Ω , then we call the cell as an internal cell and Bp = ∅. Otherwise, we
call the cell as a boundary cell. In a similar way, an internal face ef , f ∈ F , means that the face is not overlapped to ∂Ω and
a boundary face eb, b ∈ F , is a part of ∂Ω . Throughout the rest of paper, the subscript b indicates the face index whose face
is a boundary face. When a quantity is defined on a face ef and it depends on a cell sharing the face, the cell index should
be explicitly indicated at the first subscript and the face index at the second subscript. For instance, for a face ef , f ∈ Fp, the
outward normal vector to the face is indicated by npf . Note that we also use the length of the normal vector as the area of
the face, that is, |npf | = |ef |. If a face ef is an internal face for f ∈ Fp, there exists a cell Ωq, q ∈ I, such that ef ⊂ ∂Ωp ∩ ∂Ωq.
Then, clearly, npf = −nqf . Whenever a directional vector is denoted, we use a notation d with relevant indices:

dpq = xq − xp, p, q ∈ I.

2.3. Average-based or inflow-based gradient

In this section, we focus on a spatial discretization of the proposed method and a time discretization is explained in the
next section. From the governing equation (1) and using Gauss’s theorem, we have∫

Ωp

∂φ

∂t
+

∫
Ωp

∇ · (φu) −

∫
Ωp

φ∇ · u = 0,

and a spatial discretization is written∫
Ωp

∂φ

∂t
+

∑
f∈Fp

φpf

∫
ef

u · npf −

∑
f∈Fp

φp

∫
ef

u · npf = 0 . (5)
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Let us denote the flux of velocity at a face ef :

apf =

∫
ef

u · npf ≃ u(xf , t, φ(xf , t)) · npf (6)

Since ef is a triangle, xf is the center of mass, and the flux is calculated by Gaussian quadrature of degree 1, the integration
is exact for polynomials of degree 1. We define disjoint signed index sets

B−

p = {b ∈ Bp | apb < 0} and B+

p = Bp \ B−

p ,

F−

p = {f ∈ Fp \ Bp | apf < 0} and F+

p = (Fp \ Bp) \ F−

p ,
(7)

and an inflow or outflow face ef means that the sign of flux is negative or not, respectively. For instance, the face index of
inflow face ef attached to a cell Ωp must be f ∈ F−

p ∪B−
p . Using the inflow and outflow faces, the spatial discretization of (5)

is divided into the signed index sets:∫
Ωp

∂φ

∂t
+

∑
f∈F−

p

(
φpf − φp

)
apf +

∑
f∈F+

p

(
φpf − φp

)
apf

+

∑
b∈B−

p

(
φpb − φp

)
apb +

∑
b∈B+

p

(
φpb − φp

)
apb = 0.

(8)

The rest of section explains how to approximate the value φpf or φpb in (8). Note that the first order upwind scheme is
obtained by:

φpf =

{
φp, if apf ≥ 0,
φq, if apf < 0,

where there is q ∈ Np such that ef ⊂ ∂Ωp ∩ Ωq ̸= ∅, for f ∈ F .
The authors in [15] use an IBG to approximate the value φpf or φpb for a normal flow and we would like to compare it

with an ABG for an advective and a normal flow as explained below. The procedure to compute an IBG or ABG is explained
in four steps.

Firstly, we compute a cell-centered gradient ∇pφ as a least square minimizer of a functional:

∇pφ ≡ argmin
y

∑
x∈Sp

wp(x)
⏐⏐y · (x − xp) − (φ(x) − φp)

⏐⏐2, (9)

where a weight function is wp(x) = |x − xp|−2 and a set of points Sp at the cell p ∈ I is defined by:

Sp ≡

{
{xq | q ∈ Np} if Bp = ∅,

{xq | q ∈ Np} ∪ {xb | b ∈ Bp} if Bp ̸= ∅.
(10)

Note that∇pφ at a boundary cellΩp uses a boundary value fromDirichlet condition if it is available, otherwise one can apply
a linearly extended value on the boundary, see [15].

With a given Dirichlet boundary value φb, b ∈ B, the explicit form of gradient in (9) can be obtained from

M∇pφ =

∑
q∈Np

dpq

|dpq|
2

(
φq − φp

)
+

∑
b∈Bp

dpb

|dpb|
2

(
φb − φp

)
, (11)

where a coefficient matrix is obtained by

M =

∑
q∈Np

dpq ⊗ dpq

|dpq|
2 +

∑
b∈Bp

dpb ⊗ dpb

|dpb|
2 .

Note that the matrix is always symmetric and invertible because |Np ∪ Bp| ≥ 4 and a cell in 3D mesh is not flat. Since a
multiplication of the inverse of matrix and vectors in the right-hand side of (11) can be pre-computed, computational cost
of computing the gradient by the least square method (9) is very low.

Secondly, an internal vertex value φ(xv), v ∈ V where the set V denotes all vertices xv of all faces but not on the boundary,
is approximated by an inverse distance average from adjacent cells. For a fixed vertex index v ∈ V , let us denote Nv as a
subset of cell indices where a cell Ωp contains the internal vertex xv:

Nv ≡
{
p ∈ I | xv ∈ ∂Ωp

}
, v ∈ V.

Then the internal vertex value is approximated from the cell-centered values by Newton’s approximation and the inverse
distance average:

φ(xv) =

∑
p∈Nv

1
|dpv |

(φ(xp) + ∇φ(xp) · dpv)∑
p∈Nv

1
|dpv |

, dpv = xv − xp, p ∈ Nv, v ∈ V.
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Note that a boundary vertex value is directly calculated from Dirichlet boundary condition if it is available.
Thirdly, a face gradient is computed at the center of a face. For an internal face ef , f ∈ Fp, there exists q ∈ I such that

ef ⊂ ∂Ωp ∩ ∂Ωq. Then, we define two tetrahedrons whose base is ef and two opposite apices are xp and xq. We denote all
vertices of two tetrahedrons as Pf . Then, a face gradient βf is computed by an weighted minimization:

(αf , βf ) = argmin
(af ,bf )∈R4

∑
x∈Pf

wf (x)
⏐⏐af + bf · (x − xf ) − φ(x)

⏐⏐2, (12)

where the weight function is defined by wf (x) = |x − xf |−2. The explicit form of minimizer for (12) can be computed by
a similar method to (11). Note that this construction can be seen as a generalization of diamond-cell strategy on a regular
structured cubic mesh [16]. Furthermore we note that the face gradient is used to evaluate the fluxes of velocity apf in (6) in
the case of normal flow.

Finally, we define an ABG or IBG as an inverse distance average of some face gradients:

(ABG) : Dpφ =

∑
f∈Fp

1
|dpf |

βf∑
f∈Fp

1
|dpf |

. (13)

(IBG) : D−

p φ =

∑
f∈F−

p ∪B−
p

1
|dpf |

βf∑
f∈F−

p ∪B−
p

1
|dpf |

if F−

p ∪ B−

p ̸= ∅, (14)

where D−
p = 0 if F−

p ∪ B−
p = ∅.

Now, we compute the face value φpf in (5) from the gradient Dpφ = Dpφ in (13) or D−
p φ in (14). When a face value is

computed at an internal face, the value φpf in (5) is computed straightforwardly:

f ∈ Fp \ Bp, p ∈ I ⇒ ∃! q ∈ Np such that ef ⊂ ∂Ωp ∩ ∂Ωq

⇒ φpf =

{
φp + Dpφ · (xf − xp) if apf ≥ 0,
φq + Dqφ · (xf − xq) if apf < 0.

(15)

When a face value is computed at a boundary face, the value φpf in (5) is computed by

b ∈ Bp(̸= ∅), p ∈ I ⇒ φpb =

{
φp + D−

p φ · (xb − xp) if apb ≥ 0,
φb if apb < 0. (16)

Note that we use the Dirichlet boundary condition on an inflow boundary. From (15) and (16), we finally obtain the spatial
discretization:∫

Ωp

∂tφ = −

∑
f∈F−

p

(
φq + Dqφ · dqf − φp

)
apf −

∑
f∈F+

p

(
Dpφ · dpf

)
apf

−

∑
b∈B−

p

(
φb − φp

)
apb −

∑
b∈B+

p

(
Dpφ · dpb

)
apb,

(17)

where the gradient Dpφ = Dpφ in (13) or D−
p φ in (14), dqf = xf − xq, and for each f ∈ Fp \ Bp, p ∈ I there exists an index

q ∈ Np such that ef ⊂ ∂Ωp ∩ ∂Ωq.

2.4. Iterative IIOE method

Let us denote an evenly divided time step ∆t = T/N for a fixed N ∈ N and φn
p = φ(xp, n∆t), p ∈ I. An explicit time

discretization is used in [15] for a normal flow equation and the time step is restricted by the CFL condition. In case of
polyhedron cells with a complex computational boundary, it is very difficult to make an evenly distributed size of cells and
it is inevitable to have a small size of cell somewhere in a computation domain. In case of adaptive mesh, a small size of cell
is purposely generated in order to obtain a high accuracy. Moreover, for a moving mesh commonly used in a combustion
engine simulation, a size of cell is elongated or compressed in a certain direction. Therefore, it is crucial in practice to design
a scheme for such cases to overcome a restriction of time step.

Inspired by [16–19], a possible solution is to use an IIOE method, where the time discretization on an outflow and inflow
face is treated explicitly and implicitly, respectively:

|Ωp|

∆t

(
φn
p − φn−1

p

)
+

∑
f∈F−

p

(
φn
q + Dqφ

n
· dqf − φn

p

)
an−1
pf

+

∑
b∈B−

p

(
φn
b − φn

p

)
an−1
pb +

∑
f∈B+

p ∪F+
p

(
Dpφ

n−1
· dpf

)
an−1
pf = 0.

(18)

Note that the nonlinearity in the fluxes apf of velocity in (6) is treated explicitly in (18).
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The scheme (18) represents a linear system of algebraic equations. For practical reasons, the simplest overlapping domain
decomposition is required under the 1-ring face neighborhood structure in order to simplify the parallel computations.
Considering such requirement of the 1-ring face neighborhood structure, there is an obstacle to directly use (18). From a cell
Ωp, it is possible to access all neighbor cells, that is, Ωq, q ∈ Np. However, in order to compute the gradient in the second
term on the left-hand side in (18), we need a neighbor of the cell Ωq which is usually placed at the 2-ring face neighborhood
from Ωp.

Since the 1-ring face neighborhood structure cannot provide the second face neighbor cell from Ωp, we alternatively
propose an iterative IIOE method to complete the time discretization of (17):

|Ωp|

∆t

(
φn,k
p − φn−1

p

)
+

∑
f∈F−

p

(
φn,k
q + Dqφ

n,k−1
· dqf − φn,k

p

)
an−1
pf

+

∑
b∈B−

p

(
φn
b − φn,k

p

)
an−1
pb +

∑
f∈B+

p ∪F+
p

(
Dpφ

n−1
· dpf

)
an−1
pf = 0,

(19)

where k = 1, . . . , K and φn,0
= φn−1. Note that Dqφ

n,k−1 is computed by φn,k−1
p , p ∈ I and φn

b , b ∈ B.
A crucial advantage of using the iterative IIOE method (19) is that the matrix of linear system in (19) is an M-matrix

and more sparse than the one in (18). A disadvantage is the necessity to use an iterative step which is not the case when
solving (18) directly.

Rewriting (19) as a matrix equation

Mφn,k
= F(φn−1, φn,k−1), (20)

the kth iteration (19) stops at the smallest K0 when the residual error is less than a threshold, for instance, 10−12:∑
p∈I

⏐⏐⏐(Mφn,K0
)
p − F(φn−1

p , φ
n,K0
p )

⏐⏐⏐∑
p∈I |Mpp|

< 10−12, (21)

where
(
Mφn,K0

)
p is the pth component in a multiplication of a matrix M and a vector φn,K0 and the denominator is the sum

of absolute value of diagonal elementsMpp inM. A numerical solution φn is updated by φn,K0 when the number of iterations
K0 is large enough such that (21) is satisfied.

2.5. 1D comparison

Before the section on numerical experiments in 3D, we would like to show the formulation of (18) in 1D in order to see
a difference between ABG and IBG. Let us denote a computational domain:

Ω̄ = [0, 1] ⊂

⋃
i∈I

Ii, Ii =

[
xi− 1

2
, xi+ 1

2

]
, xi− 1

2
=

(
i −

1
2

)
h,

where Ω̄ is evenly divided by a small length h ≪ 1. For the simplicity, we only consider an advective flow with a positive
constant velocity v > 0:

∂φ

∂t
+ v

∂φ

∂x
= 0. (22)

Now the particular cases of the IIOE method (19) can be written on an internal cell Ii:

• If an ABG is used, then Dpφ = Dpφ in (13) and

φn
i − φn−1

i

∆t
+

v

2

(
3φn

i − 4φn
i−1 + φn

i−2

2h
+

φn−1
i+1 − φn−1

i−1

2h

)
= 0. (23)

• If an IBG is used, then Dpφ = D−
p φ in (14) and

φn
i − φn−1

i

∆t
+

v

2

(
2φn

i − 3φn
i−1 + φn

i−2

2h
+

φn−1
i − φn−1

i−1

h

)
= 0. (24)

The formulation (23) using ABG shows an average of an implicit second-order backward difference scheme and an explicit
central difference scheme in the point xi for the both schemes. The formulation using IBG (23) shows the average of an
implicit second-order backward difference scheme in the point xi+ 1

2
and an explicit central difference scheme in xi− 1

2
. One

can also see the stencil of ABG consists of onemore point than the one of IBGwhichmay result in higher accuracy in practical
computations.
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Table 1
The number of cells (c) in hexahedron and polyhedron shapes is enumerated. ∆t is the time step in (19). The
length h is an average of diagonal length of a box enclosing each cell. Note that we generate approximately 8
times smaller volumes between consecutive levels of polyhedron mesh.

Hexahedrons in a box (H) Polyhedrons in box (P)

Level ∆t c h c h

1 2.0 · 10−2 27,000 3.3 · 10−2 4,129 7.5 · 10−2

2 1.0 · 10−2 216,000 1.7 · 10−2 32,962 3.7 · 10−2

3 5.0 · 10−3 1,728,000 8.3 · 10−3 262,996 1.8 · 10−2

4 2.5 · 10−3 13,824,000 4.2 · 10−3 2,106,130 9.8 · 10−3

Note that the authors in [18] provide an analysis of 1D case for the linear advection equation with a variable velocity
where a second order accuracy and a stability for the basic IIOE scheme are proved. Moreover, the authors in [21] perform
a numerical von Neumann stability analysis for IBG and ABG schemes on uniform tensor grids and they prove the second
order accuracy for both schemes. A similar analysis in a 3D polyhedron mesh is beyond the scope of the current work.

3. Numerical experiments

In following subsections, numerical properties of the proposed method (19) are discussed in various examples. The most
examples are computed on twomeshes, hexahedrons and polyhedrons, generated by AVL FIRE R⃝, see some characteristics
in Table 1, where the computational domain is a box:

Ω = [−0.5, 0.5]3 ⊂ R3. (25)

Some examples are presented to check an experimental order of convergence (EOC) of the proposed method. An algebraic
multigrid method in AVL FIRE R⃝ on decomposed computational domains with the 1-ring face neighborhood structure is
used to solve the matrix equation (20). Moreover, a time step ∆t in (19) for each level from 1 to 4 in Table 1 is fixed for all
examples except the cases in Section 3.4.

Let us denote two initial functions whose zero level set is either a sphere or a cube:

φ0(x) = φs(x; a, r) or φc(x; a, r), (26)

where

φs(x; a, r) = |x − a| − r, (27)
φc(x; a, r) = max

j
{|xj − aj|} − r. (28)

The particular test examples are specified by an initial value and velocity in (1):

Test 1. Translating a sphere:

φ0 = φs

(
x;
(

−
0.1
√
3
, −

0.1
√
3
, −

0.1
√
3

)
, 0.2

)
, u =

(
1

√
3
,

1
√
3
,

1
√
3

)
.

Test 2. Rotating a sphere (see Fig. 2):

φ0 = φs (x; (−0.25, 0, 0) , 0.2) , u = (−πx2, πx1, 0) .

Test 3. Rotating a cube:

φ0 = φc (x; (−0.25, 0, 0) , 0.2) , u = (−πx2, πx1, 0) .

Test 4. Shrinking a sphere:

φ0 = φs (x; (−0.25, 0, 0) , 0.2) , u = −
∇φ

|∇φ|
.

Test 5. Shrinking a cube:

φ0 = φc (x; (−0.25, 0, 0) , 0.2) , u = −
∇φ

|∇φ|
.

Test 6. Expanding a sphere:

φ0 = φs (x; (−0.25, 0, 0) , 0.1) , u =
∇φ

|∇φ|
.
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Table 2
An EOC of translating a sphere (Test 1) at T = 0.1 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 1: Translating a sphere

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 7.49 · 10−4 – 1.30 · 10−4 – 6.63 · 10−4 –
2 1.83 · 10−5 2.04 3.35 · 10−5 1.95 1.47 · 10−4 2.17
3 4.37 · 10−6 2.06 8.35 · 10−6 2.00 3.21 · 10−5 2.20
4 1.06 · 10−6 2.04 2.09 · 10−6 2.00 7.63 · 10−6 2.07

IBG on H

1 1.78 · 10−4 – 4.59 · 10−4 – 1.48 · 10−3 –
2 4.47 · 10−5 2.00 1.20 · 10−4 1.94 3.08 · 10−4 2.27
3 1.11 · 10−5 2.00 2.98 · 10−5 2.01 6.56 · 10−5 2.23
4 2.78 · 10−6 2.00 7.43 · 10−6 2.00 1.55 · 10−5 2.08

ABG on P

1 8.21 · 10−4 – 1.54 · 10−3 – 5.00 · 10−3 –
2 2.13 · 10−4 1.95 4.21 · 10−4 1.87 1.61 · 10−3 1.64
3 4.87 · 10−5 2.13 9.24 · 10−5 2.19 4.61 · 10−4 1.80
4 9.74 · 10−6 2.32 1.85 · 10−5 2.32 7.86 · 10−5 2.55

IBG on P

1 1.54 · 10−3 – 3.73 · 10−3 – 9.56 · 10−3 –
2 3.79 · 10−4 2.02 1.01 · 10−3 1.89 3.44 · 10−3 1.48
3 8.86 · 10−5 2.10 2.11 · 10−4 2.25 6.94 · 10−4 2.31
4 1.82 · 10−5 2.28 4.38 · 10−5 2.27 1.43 · 10−4 2.28

Fig. 2. The figures from left to right are numerical solutions of rotating a sphere and rotating a cube.

Test 7. Expanding a cube:

φ0 = φc (x; (−0.25, 0, 0) , 0.1) , u =
∇φ

|∇φ|
.

Since it is possible to compute exact solutions of Test 1 to Test 7 on (0, T ], we use the exact valuesφb in Dirichlet boundary
conditions and we compute the following errors for all examples:

L1 =
1

|Ω|

∫
Ω

⏐⏐φ(x, T ) − φe(x)
⏐⏐ ≃

1
|Ω|

∑
p∈I

⏐⏐φ(xp, T ) − φe(xp)
⏐⏐ |Ωp|, (29)

L1loc =
1

|Γ |

∫
Γ

⏐⏐φ(x, T ) − φe(x)
⏐⏐ ≃

∑
p∈J⊊I

⏐⏐φ(xp, T ) − φe(xp)
⏐⏐ |Ωp|∑

p∈J⊊I |Ωp|
, (30)

L∞

loc = max
x∈Γ

{⏐⏐φ(x, T ) − φe(x)
⏐⏐} ≃ max

p∈J⊊I

{⏐⏐φ(xp, T ) − φe(xp)
⏐⏐} , (31)

where φe is an exact solution, Γ is a zero level set of φe, and J is a set of cell indices whose signs of vertex values of the exact
solution φe are not identical.

In following sections we discuss the results of numerical experiments for the ABG and IBG used in (19).

3.1. Experimental order of convergence

From Test 1 to Test 7, all cases, except Test 3 and Test 7, show that the EOC for the errors (29) and (30) is around 2; see
EOCs from tbl8]Tables 2 to 8.
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Table 3
An EOC of rotating a sphere (Test 2) at T = 1.0 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 2: Rotating a sphere

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 2.80 · 10−4 – 1.02 · 10−3 – 4.00 · 10−3 –
2 7.20 · 10−5 1.96 2.38 · 10−4 2.10 6.52 · 10−4 2.62
3 1.83 · 10−5 1.98 5.93 · 10−5 2.01 1.43 · 10−4 2.19
4 4.61 · 10−6 1.99 1.48 · 10−5 2.00 3.38 · 10−5 2.08

IBG on H

1 7.34 · 10−4 – 3.85 · 10−3 – 1.76 · 10−2 –
2 1.96 · 10−4 1.91 8.59 · 10−4 2.16 2.39 · 10−3 2.88
3 5.08 · 10−5 1.95 2.10 · 10−4 2.03 4.77 · 10−4 2.33
4 1.29 · 10−5 1.97 5.23 · 10−5 2.00 1.16 · 10−4 2.04

ABG on P

1 2.16 · 10−3 – 7.70 · 10−3 – 1.98 · 10−2 –
2 5.66 · 10−4 1.90 2.77 · 10−3 1.47 1.15 · 10−2 0.79
3 1.51 · 10−4 1.93 5.24 · 10−4 2.40 1.31 · 10−3 3.13
4 3.25 · 10−5 2.22 1.05 · 10−4 2.32 2.79 · 10−4 2.23

IBG on P

1 4.30 · 10−3 – 1.59 · 10−2 – 3.78 · 10−2 –
2 1.28 · 10−3 1.75 7.11 · 10−3 1.16 2.85 · 10−2 0.41
3 3.47 · 10−4 1.88 1.55 · 10−3 2.20 4.78 · 10−3 2.58
4 7.68 · 10−5 2.17 3.04 · 10−4 2.35 7.61 · 10−4 2.65

Table 4
An EOC of rotating a cube (Test 3) at T = 1.0 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 3: Rotating a cube

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 2.52 · 10−3 – 4.57 · 10−3 – 2.16 · 10−2 –
2 1.01 · 10−3 1.33 2.17 · 10−3 1.07 1.76 · 10−2 0.30
3 3.79 · 10−4 1.41 9.41 · 10−4 1.21 1.04 · 10−2 0.76
4 1.46 · 10−4 1.38 2.94 · 10−4 1.25 6.62 · 10−3 0.65

IBG on H

1 4.98 · 10−3 – 8.18 · 10−3 – 2.74 · 10−2 –
2 2.28 · 10−3 1.13 4.57 · 10−3 0.84 2.25 · 10−2 0.28
3 9.76 · 10−4 1.22 2.28 · 10−3 1.00 1.31 · 10−2 0.78
4 4.14 · 10−4 1.24 1.07 · 10−3 1.10 8.74 · 10−3 0.59

ABG on P

1 9.80 · 10−3 – 1.46 · 10−2 – 4.10 · 10−2 –
2 4.25 · 10−3 1.21 7.82 · 10−3 0.90 2.93 · 10−2 0.48
3 1.79 · 10−3 1.24 3.69 · 10−3 1.09 1.84 · 10−2 0.67
4 6.64 · 10−4 1.43 1.50 · 10−3 1.30 1.22 · 10−2 0.59

IBG on P

1 1.57 · 10−2 – 1.86 · 10−2 – 5.59 · 10−2 –
2 7.75 · 10−3 1.02 1.24 · 10−2 0.59 4.15 · 10−2 0.43
3 3.54 · 10−3 1.13 6.72 · 10−3 0.88 2.56 · 10−2 0.70
4 1.39 · 10−3 1.34 3.00 · 10−3 1.16 1.67 · 10−2 0.62

Concerning the exceptions, we note that in Test 3 singularities in the solution exist on diagonal planes in the box domain
that are advected along the rotational flow and that make it difficult to have EOC ≃ 2. In Test 7, in addition to the previous
singularities, a so-called rarefaction from eight corners of the cubic isosurfaces brings an extra difficulty. In both singular
cases we end up having EOC ≃ 1 in L1 and L1loc norms and less than 1 in L∞

loc norm. Such behavior of higher order numerical
methods for the advection is well-known for nonsmooth solutions with singularities, particularly, for the isosurfaces having
initially sharp corners. Similar behavior of EOC is reported e.g. in [14,22] for analogous examples in 2D case.

From Figs. 3–6, the yellow surface presents the initial zero level set and the green surface is the zero level set of numerical
solutions at T = 0.02, T = 0.06, and T = 0.1.

We emphasize that unlike the linearly extrapolated boundary values used in [15] and [20], the Dirichlet boundary
condition is applied to all examples in the proposed method (19). In such a way one can avoid the errors from an inexact
treatment of boundary condition and measure the errors coming only from the discretization scheme.
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Table 5
An EOC of shrinking a shape (Test 4) at T = 0.1 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 4: Shrinking a sphere

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 1.15 · 10−4 – 7.12 · 10−4 – 1.99 · 10−3 –
2 2.88 · 10−5 2.00 1.79 · 10−4 2.00 4.99 · 10−4 1.99
3 7.12 · 10−6 2.02 4.46 · 10−5 2.00 1.34 · 10−4 1.90
4 1.77 · 10−6 2.01 3.11 · 10−6 2.01 3.11 · 10−5 2.10

IBG on H

1 9.74 · 10−5 – 4.72 · 10−4 – 1.32 · 10−3 –
2 2.43 · 10−5 2.00 1.19 · 10−4 1.99 2.87 · 10−4 2.21
3 6.05 · 10−6 2.01 3.07 · 10−5 1.96 7.29 · 10−4 1.98
4 1.51 · 10−6 2.00 7.62 · 10−6 2.01 1.65 · 10−5 2.14

ABG on P

1 6.31 · 10−4 – 3.62 · 10−3 – 1.12 · 10−2 –
2 1.61 · 10−4 1.97 1.43 · 10−3 1.33 3.47 · 10−3 1.69
3 3.99 · 10−5 2.01 3.97 · 10−4 1.85 9.43 · 10−4 1.88
4 8.59 · 10−6 2.22 7.93 · 10−5 2.32 1.90 · 10−4 2.39

IBG on P

1 6.16 · 10−4 – 3.41 · 10−3 – 1.08 · 10−2 –
2 1.58 · 10−4 1.97 1.39 · 10−3 1.29 3.46 · 10−3 1.64
3 3.90 · 10−5 2.01 3.94 · 10−4 1.82 8.94 · 10−4 1.95
4 8.40 · 10−6 2.22 7.78 · 10−5 2.34 1.77 · 10−4 2.34

Fig. 3. Isosurfaces of numerical solution computed by ABG for shrinking a sphere (Test 4). The level surfaces are obtained by −0.1, 0, 0.1, 0.2, 0.3 and the
green surface is zero level set of numerical solution. The view is only on a side of negative y-axis and the yellow sphere is the initial zero level set of φ0
in (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Isosurfaces of numerical solution computed by ABG for shrinking a cube (Test 5). The level surfaces are obtained by −0.1, 0, 0.1, 0.2, 0.3 and the
green surface is zero level set of numerical solution. The view is only on a side of negative y-axis and the yellow cube is the initial zero level set of φ0 in (1).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 6
An EOC of shrinking a cube (Test 5) at T = 0.1 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 5: Shrinking a cube

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 5.82 · 10−4 – 2.01 · 10−3 – 5.78 · 10−3 –
2 4.63 · 10−5 3.65 2.38 · 10−4 3.08 2.22 · 10−3 1.38
3 1.16 · 10−5 2.00 6.66 · 10−5 1.84 1.10 · 10−3 1.01
4 2.89 · 10−6 2.00 1.77 · 10−5 1.91 5.51 · 10−4 1.00

IBG on H

1 4.74 · 10−4 – 1.65 · 10−3 – 5.85 · 10−3 –
2 3.03 · 10−5 3.96 1.67 · 10−4 3.30 2.35 · 10−3 1.31
3 7.28 · 10−6 2.06 4.20 · 10−5 1.99 1.13 · 10−3 1.06
4 1.82 · 10−6 2.00 1.03 · 10−5 2.03 5.66 · 10−4 1.00

ABG on P

1 2.84 · 10−3 – 1.19 · 10−2 – 2.38 · 10−2 –
2 1.06 · 10−3 1.42 4.71 · 10−3 1.34 1.31 · 10−2 0.86
3 2.91 · 10−4 1.86 1.42 · 10−3 1.73 6.57 · 10−3 1.00
4 6.10 · 10−5 2.26 2.86 · 10−4 2.31 2.78 · 10−3 1.24

IBG on P

1 2.70 · 10−3 – 1.16 · 10−2 – 2.40 · 10−2 –
2 9.79 · 10−4 1.46 4.43 · 10−3 1.39 1.30 · 10−2 0.89
3 2.71 · 10−4 1.85 1.32 · 10−3 1.75 6.52 · 10−3 0.99
4 5.73 · 10−5 2.24 2.70 · 10−4 2.29 2.62 · 10−3 1.31

Table 7
An EOC of expanding a shape (Test 6) at T = 0.1 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

Test 6: Expanding a sphere

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 2.45 · 10−4 – 7.40 · 10−4 – 2.09 · 10−3 –
2 6.43 · 10−5 1.93 1.84 · 10−4 2.01 5.73 · 10−4 1.86
3 1.71 · 10−5 1.91 4.45 · 10−5 2.05 1.28 · 10−4 2.16
4 5.81 · 10−6 1.55 1.10 · 10−5 2.01 3.09 · 10−5 2.05

IBG on H

1 3.52 · 10−4 – 1.68 · 10−3 – 7.97 · 10−3 –
2 1.13 · 10−4 1.64 3.37 · 10−4 2.32 2.08 · 10−3 1.94
3 4.17 · 10−5 1.44 2.47 · 10−5 3.77 1.09 · 10−4 4.26
4 1.65 · 10−5 1.33 7.61 · 10−6 1.70 1.67 · 10−5 2.71

ABG on P

1 1.74 · 10−3 – 8.73 · 10−3 – 3.12 · 10−2 –
2 4.27 · 10−4 2.02 9.23 · 10−4 3.24 4.32 · 10−3 2.85
3 1.19 · 10−4 1.84 3.87 · 10−4 1.25 7.09 · 10−4 2.61
4 3.02 · 10−5 1.98 7.34 · 10−5 2.40 1.30 · 10−4 2.45

IBG on P

1 2.24 · 10−3 – 1.28 · 10−2 – 4.24 · 10−2 –
2 5.47 · 10−4 2.03 1.06 · 10−3 3.59 5.78 · 10−3 2.88
3 1.74 · 10−4 1.65 2.41 · 10−4 2.14 7.84 · 10−4 2.88
4 5.17 · 10−5 1.75 4.52 · 10−5 2.42 1.35 · 10−4 2.54

3.2. ABG vs IBG

From the EOC in Section 3.1, the ABG and IBG work very similarly. To see more clearly which one is better, we present a
ratio in Table 9 computed by

ratio =
error from IBG
error from ABG

. (32)

Note that the ratio computed by Test 1 is very similar to Test 2 or Test 3, so it is omitted in Table 9. The ratio shows that the
errors fromABG are similar to or between twice and three times less than the errors from IBG. The casewhen the errors from
IBG are smaller than the errors from ABG is in the example of shrinking a sphere or a cube. In Fig. 7, the numerical results
from Test 1 are illustrated that clearly shows the result from ABG is more accurate than the one from IBG.
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Fig. 5. Isosurfaces of numerical solution computed by ABG for expanding a sphere (Test 6). The level surfaces are obtained by −0.09, 0, 0.1, 0.2, 0.3 and
the green surface is zero level set of numerical solution. The view is only on a side of negative y-axis and the yellow sphere is the initial zero level set of φ0
in (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Experimental order of convergence (EOC) of expanding a cube (Test 7) at T = 0.1 on H and P in Table 1: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31),
respectively.

Test 7: Expanding a cube

L1 EOC L1loc EOC L∞

loc EOC

Level ABG on H

1 2.86 · 10−3 – 4.90 · 10−3 – 8.60 · 10−3 –
2 1.16 · 10−3 1.31 1.97 · 10−3 1.31 3.97 · 10−3 1.11
3 5.75 · 10−3 1.01 1.05 · 10−3 0.91 2.70 · 10−3 0.56
4 2.90 · 10−4 0.99 5.51 · 10−4 0.93 2.03 · 10−3 0.41

IBG on H

1 3.24 · 10−3 – 5.79 · 10−3 – 1.12 · 10−2 –
2 1.36 · 10−3 1.25 2.47 · 10−3 1.23 5.66 · 10−3 0.99
3 6.53 · 10−4 1.06 1.28 · 10−3 0.94 3.62 · 10−3 0.65
4 3.22 · 10−4 1.02 6.57 · 10−4 0.97 2.45 · 10−3 0.56

ABG on P

1 7.30 · 10−3 – 1.43 · 10−2 – 2.92 · 10−2 –
2 3.38 · 10−3 1.11 6.28 · 10−3 1.19 1.44 · 10−2 1.02
3 1.58 · 10−3 1.10 3.03 · 10−3 1.05 7.90 · 10−3 0.87
4 6.84 · 10−4 1.21 1.33 · 10−3 1.19 4.12 · 10−3 0.94

IBG on P

1 8.64 · 10−3 – 1.64 · 10−2 – 3.42 · 10−2 –
2 4.07 · 10−3 1.09 6.89 · 10−3 1.25 1.58 · 10−2 1.12
3 1.93 · 10−3 1.08 3.57 · 10−3 0.95 8.58 · 10−3 0.88
4 8.45 · 10−4 1.19 1.61 · 10−3 1.15 4.74 · 10−3 0.86

Fig. 6. Isosurfaces of numerical solution computed by ABG for expanding a cube (Test 7). The level surfaces are obtained by −0.09, 0, 0.1, 0.2, 0.3 and the
green surface is zero level set of numerical solution. The view is only on a side of negative y-axis and the yellow cube is the initial zero level set of φ0 in (1).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 9
An error ratio in (32) is listed from selected test cases.

Error ratio

H P H P

Level L1 L1loc L∞

loc L1 L1loc L∞

loc L1 L1loc L∞

loc L1 L1loc L∞

loc

Test 2: Rotating a sphere Test 3: Rotating a cube

1 2.62 3.78 4.42 1.99 2.07 1.91 1.98 1.79 1.27 1.60 1.28 1.36
2 2.72 3.61 3.67 2.22 2.56 2.48 2.26 2.10 1.28 1.83 1.58 1.42
3 2.78 3.54 3.34 2.29 2.95 3.65 2.57 2.43 1.27 1.97 1.82 1.39
4 2.81 3.54 3.43 2.36 2.90 2.73 2.84 2.79 1.32 2.10 2.00 1.37

Test 4: Shrinking a sphere Test 5: Shrinking a cube

1 0.85 0.66 0.67 0.98 0.94 0.96 0.81 0.82 1.01 0.95 0.97 1.01
2 0.85 0.67 0.57 0.98 0.97 1.00 0.66 0.70 1.06 0.93 0.94 0.99
3 0.85 0.69 0.55 0.98 0.99 0.95 0.63 0.63 1.03 0.93 0.93 0.99
4 0.85 0.69 0.53 0.98 0.98 0.99 0.63 0.58 1.03 0.94 0.94 0.94

Test 6: Expanding a
sphere

Test 7: Expanding a
cube

1 1.44 2.28 3.82 1.29 1.47 1.36 1.13 1.18 1.31 1.18 1.14 1.17
2 1.75 1.83 3.62 1.28 1.15 1.34 1.17 1.25 1.43 1.20 1.10 1.09
3 2.44 0.55 0.85 1.46 0.62 1.11 1.14 1.23 1.34 1.22 1.18 1.09
4 2.85 0.69 0.54 1.71 0.62 1.04 1.11 1.19 1.21 1.24 1.21 1.15

Fig. 7. The numerical results of Test 1 on the z-plane: The blue curve is the exact solution and the red one is the numerical solution at T = 0.1 from (19).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 10
For Tests 1 and 4 on P , the error values and corresponding EOC show how
many k iterations are practically necessary to obtain the close results from
K = K0 in (19).

L1 EOC L1loc EOC L∞

loc EOC

K Translating a sphere with ABG on P

1 2.48 · 10−4 0.97 4.16 · 10−4 1.01 6.67 · 10−4 1.18
2 1.22 · 10−5 2.19 2.02 · 10−5 2.30 8.25 · 10−5 2.53
3 9.70 · 10−6 2.33 1.85 · 10−5 2.32 7.85 · 10−5 2.55
4 9.73 · 10−6 2.32 1.85 · 10−5 2.32 7.86 · 10−5 2.55
K0 9.74 · 10−6 2.32 1.85 · 10−5 2.32 7.86 · 10−5 2.55

K Shrinking a sphere with ABG on P

1 4.38 · 10−4 1.05 7.92 · 10−5 2.33 1.94 · 10−4 2.27
2 2.36 · 10−5 1.77 7.94 · 10−5 2.31 1.81 · 10−4 2.38
3 9.51 · 10−6 2.13 7.93 · 10−5 2.32 1.82 · 10−4 2.37
4 8.65 · 10−6 2.21 7.93 · 10−5 2.32 1.80 · 10−4 2.39
K0 8.59 · 10−6 2.22 7.93 · 10−5 2.32 1.80 · 10−4 2.39

3.3. Iterative IIOE method

The main disadvantage of using the iterative IIOE scheme (19) compared with the noniterative form (18) is the extra k
iterations to satisfy the small residual criterion (21). Since the matrix from (19) is an M-matrix and it is more sparse than
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Table 11
A time stepping used in Tests 1 and 2 on polyhedron meshes in Table 1: CFLM and CFLm are the CFL numbers calculated by the minimum and maximum
size of cell, respectively. CFLh is obtained by the average length h in Table 1.

CFL1 CFL2
Level ∆t CFLM CFLm CFLh ∆t CFLM CFLm CFLh
1 0.15 7.67 0.88 2.00 0.3 15.34 1.76 4.00
2 0.075 6.57 0.97 2.03 0.15 13.13 1.93 4.05
3 0.0375 7.01 0.98 2.08 0.075 14.03 1.96 4.17
4 0.01875 7.65 1.07 1.91 0.0375 15.31 2.13 3.83

Fig. 8. A polyhedron mesh is from the first level in Table 1 and it only shows a half of computational domain in order to illustrate the CFL number on each
cell. The average values of CFL number in CFL1 and CFL2 are approximately 2 amd 4 shown in Table 1.

the one in (18), it takes less computational cost to solve each iteration than (18). However, if a lot of iterations are necessary
to have the second order convergence, the scheme (19) cannot be practically used.

In Table 10, for Test 1 and Test 4 on the polyhedron mesh P in Table 1, we use a fixed number of K iterations with
K = 1, . . . , 4 and K = K0 means that the result is from satisfying the 10−12 residual error in (21). The errors shown in
Table 10 are from the level 4 at T = 0.1. In the case of advective flow, K = 2 is large enough to have very close EOC as
computed by the case K = K0, and K = 3 shows almost the same error as for the case of K = K0. In the case of normal flow,
K = 1 is enough for the errors L1loc and L∞

loc and it is consistent with the observations in [20]. In the case of L1, the choice
K = 3 shows almost the same error as for the case K = K0.

3.4. A time stepping

Two examples are tested to show stability and a similar behavior of EOC shown in Tables 2 and 5 in cases of a large time
step which violates the CFL condition in advective and normal flows:

Example 1. Translating a sphere:

φ0 = φs

(
x;
(

−
0.3
√
3
, −

0.3
√
3
, −

0.3
√
3

)
, 0.2

)
, u =

(
1

√
3
,

1
√
3
,

1
√
3

)
.

Example 2. Shrinking a sphere:

φ0 = φs (x; (0, 0, 0) , 0.4) , u = −
∇φ

|∇φ|
.

Since it is more challenging on a polyhedron mesh, the above examples are tested by the proposed method (17) with ABG
on all levels of P in Table 1. The time steps of CFL1 and CFL2 cases in Table 11 are 7.5 and 15 times larger than the time step
used in Tests 1 and 4 at each level and the corresponding maximal CFL numbers are approximately 7 and 14, respectively,
and the average CFL numbers are approximately 2 and 4, respectively. In Fig. 8, the CFL numbers are illustrated on each cell.
Example 1. and Example 2. are tested with two CFL numbers shown in Table 11. The EOC of the examples shown in Table 12
is similar in Tables 2 and 5 which are obtained by smaller time step at each level.
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Table 12
An EOC of Examples 1. and 2. at T = 0.3 on P in Table 1 with ABG: L1 , L1loc , L

∞

loc are computed by (29), (30), and (31), respectively.

CFL tests

L1 EOC L1loc EOC L∞

loc EOC
Level Example 1. with CFL1
1 1.87 · 10−3 – 6.01 · 10−3 – 1.57 · 10−2 –
2 5.02 · 10−4 1.90 1.72 · 10−3 1.81 6.54 · 10−3 1.27
3 1.37 · 10−4 1.88 4.90 · 10−4 1.81 1.26 · 10−3 2.37
4 3.61 · 10−5 1.92 1.29 · 10−4 1.93 3.02 · 10−4 2.06

Example 1. with CFL2
1 5.98 · 10−3 – 1.69 · 10−2 – 4.73 · 10−2 –
2 1.96 · 10−3 1.61 7.88 · 10−3 1.10 3.33 · 10−2 0.51
3 5.64 · 10−4 1.80 2.41 · 10−3 1.71 6.78 · 10−3 2.30
4 1.54 · 10−4 1.87 6.21 · 10−4 1.96 2.19 · 10−3 1.63

Example 2. with CFL1
1 1.17 · 10−3 – 6.55 · 10−3 – 1.02 · 10−2 –
2 2.82 · 10−4 2.05 2.36 · 10−3 1.47 6.86 · 10−3 0.57
3 6.82 · 10−5 2.05 5.93 · 10−4 2.00 1.22 · 10−3 2.49
4 1.46 · 10−5 2.23 2.49 · 10−4 2.31 2.49 · 10−4 2.49

Example 2. with CFL2
1 1.26 · 10−3 – 6.46 · 10−3 – 9.74 · 10−3 –
2 2.87 · 10−4 2.14 2.37 · 10−3 1.44 6.84 · 10−3 0.51
3 6.84 · 10−5 2.07 5.94 · 10−4 2.00 1.22 · 10−3 2.49
4 1.46 · 10−5 2.23 1.19 · 10−4 2.32 2.49 · 10−4 2.29

4. Conclusions

The iterative IIOE FVM for the level-set equations of advective and normal flows on polyhedronmeshes is presented. The
method is second-order accurate in space and time for smooth solutions. The crucial step of the tessellation of nonplanar
faces in polyhedron cells is required to obtain the second-order accurate schemes.

Two types of the gradient approximations at the cell center are derived and compared for representative examples: ABG
and IBG. In this paper, we suggest to use the ABG scheme that has the stencil in the explicit part enlarged additionally when
compared with the IBG scheme.

We propose the iterative IIOE to fulfill the 1-ring face neighborhood restriction of assembled matrix, when solving the
linear system of equations. In each iteration one has to solve a linear systemwhere thematrix is a M-matrix identical for the
IBG and ABG schemes and the off-diagonal components of matrix are only connected by the unknowns of neighboring cells
over faces. For the chosen representative numerical examples we can show that it is enough to use two iterations to obtain
the second-order accurate results, and that the third iteration gives the results very close to the ones obtained by the fully
iterative form with the prescribed norm of the residual.

Furthermorewe compare the errors in several norms of the IBG and ABG schemes for the chosen examples. Except for the
case of the shrinking sphere we can report better accuracy for the ABG scheme. Therefore we recommend the ABG scheme
in general for the level-set equations of advective and normal flows.
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