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Abstract In this paper, a semi-implicit method is proposed to solve a propagation
in a normal direction with a cell-centered finite volume method. An inflow-based
gradient is used to discretize the magnitude of the gradient and it brings the second
order upwind difference in an evenly spaced one dimensional domain. In three di-
mensional domain, we numerically verify that the proposed scheme is second order.
The implementation is straightforwardly combined with a conventional finite vol-
ume code and 1-ring face neighborhood for parallel computation. An experimental
order of convergence and a comparison of wall clock time between semi-implicit
and explicit method are illustrated by numerical examples.
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1 Introduction

We solve a partial differential equation for a propagation in a normal direction [11]:

∂tφ(x, t)+F(x)|∇φ(x, t)|= G(x), (x, t) ∈Ω × [0,T ], (1)

where Ω ⊂ R3 is a computational domain, T is the final time, the speed function
F and the force term G are fixed, and the initial condition is given on Ω . Equa-
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tion (1) has been extensively used to solve evolving interfacial problems in many
applications such as image processing, computer vision, combustion, fluid dynam-
ics, etc; more details are given in [10, 14] and the references therein. In contrast to
a standard structured mesh in image processing, real world three dimensional (3D)
problems from physics or engineering are usually defined on a complicated geom-
etry, for example, the combustion problems in 3D engines. Moreover, in industrial
applications, a polyhedron mesh has been used extensively because of its shape flex-
ibility [12]. In this paper, in order to extend topological advantages of the level set
method into industrial problems with complicated geometry, we propose a numeri-
cal algorithm to solve the governing equation (1) on polyhedron meshes. We impose
a linear extension at boundary, that is, a “ghost” value is linearly extrapolated from
the boundary value. It can be properly discretized in a cell-centered finite volume
method. Moreover, it allows us to use the simplest structure of decomposed domains
for parallel computation which is the 1-ring face neighborhood structure.

Inspired by the methods in [16, 5, 7, 8, 3, 6], we propose a semi-implicit method
to solve (1). It is very crucial to design a method to reduce a time step restriction
in a polyhedron mesh. When the geometrical shape of a computational domain is
complex, it is inevitable to have nonuniform size of cell volumes and it gives a severe
restriction of time stepping in an explicit method because of the CFL condition
for very small cells. The main difference between the proposed method and the
methods in [2, 7, 8, 9] is an approximation of the gradient. Instead of using a cell-
centered gradient to achieve the second order scheme, we approximate a gradient
by an inverse distance average of face gradients only from inflow sides, named by
the inflow-based gradient. In an evenly discretized 1D domain, the inflow-based
gradient brings the correct second order upwind discretization of magnitude of the
gradient in (1).

In the rest of the paper, the inflow-based gradient is introduced in Sec. 2 and then
a semi-implicit method is proposed. In Sec. 3, the experimental order of conver-
gence (EOC) is investigated and the wall clock time of semi-implicit and explicit
method is compared.

2 Semi-implicit method with inflow-based gradient

In order to explain the proposed method for a 3D mesh, some notations are intro-
duced. The sets of indices to uniquely indicate cells, faces, and vertices are denoted
by C , F , and V , respectively. A whole computational domain Ω̄ ⊂R3 is discretized
by open cells Ωp such that Ω̄ =

⋃
p∈C Ω̄p with the volume |Ωp| 6= 0. We define two

sets of neighbor information of Ωp, p ∈ C ; the first is the neighbor cells whose face
is shared by Ωp, Np = {q∈C : there exists a facee f ∈ ∂Ωq∩∂Ωp, f ∈F} and the
second is the attached faces to Ωp and they are indicated by two sets:Fp = { f ∈F :
e f ∈ ∂Ωp} and Bp = { f ∈Fp : e f ∈ ∂Ωp∩∂Ω}. Note that a nonplanar face of a
polyhedron cell should be tessellated into triangles to make its sub-face as a plane.
From a given face center of a nonplanar face, a triangle is defined by two consecu-
tive vertices of the face and the face center. By an abuse of notation, F includes all
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tessellated faces.

2.1 Inflow-based gradient finite volume method

With simple coefficient G = 0 in the governing equation (1) and using Gauss’s theo-
rem, we have a standard spatial discretization at p∈C in cell-centered finite volume
method:∫

Ωp

∂tφ + ∑
f∈Fp

(
φp f −φp

)
ap f = 0, ap f =

∫
e f

F
∇φ

|∇φ |
·n' Ff

∇φ f

|∇φ f |ε
·np f , (2)

where n is a unit outward normal vector at a face e f , f ∈Fp, Ff is a value of F at
the face center, np f = |e f |n, and |∇φ f |ε = (ε2 + |∇φ f |2)

1
2 with a small ε > 0. The

spatial discretization is explained by two steps; the first is to define an inflow-based
gradient and the second is to compute a face value φp f .

An inflow-based gradient computed by face gradients is defined at a cell center.
A face gradient is obtained by a minimization from the values close to a face such as
cell centers and vertices. A vertex value is linearly interpolated from cell-centered
gradients. A cell-centered gradient with a linear extrapolation at boundary is ob-
tained by a minimizer of a functional f (y) = ∑x∈Sp wp(x)

∣∣y · (x− xp)− (φ(x)−
φp)
∣∣2, where a weight function is wp(x) = |x−xp|−2 and a set of points Sp at the

cell p ∈ C is either {xq | q ∈ Np} if Bp = /0 or {xq | q ∈ Np}∪ {xb | b ∈ Bp} if
Bp 6= /0. From a cell-centered gradient, a vertex value can be approximated by an
inverse distance average and linear approximation from adjacent cells.

Before we define an inflow-based gradient, a face gradient should be computed
in order to obtain a flux in (2) at a face e f , f ∈F . Let us denote P f as a set of points
around a face center: either {xp,xq}∪V f if ∃! p,q ∈ C such that e f ∈ ∂Ωp∩ ∂Ωq
or {xp} ∪V f if ∃! p ∈ C such that f ∈ Bp 6= /0, where V f are vertices of a face
e f . Note that P f is a generalization of diamond-cell strategy in a regular struc-
tured cube mesh [1]. A face value α f and gradient βββ f are obtained by minimizer of

a functional g(a f ,b f ) = ∑x∈P f
w f (x)

∣∣a f +b f · (x− x f )− φ(x)
∣∣2, where a weight

function w f (x) = |x− x f |−2 at the face center x f . Note that a face value α f on a
boundary face is a linearly extended value. Finally, we define an inflow-based gra-
dient as an inverse distance average of face gradients only from inflow faces with an
inverse distant dp f = |x f −xp|−1 and its sum Wd = ∑ f∈A −p dp f :

D−p φ =W−1
d ∑

f∈A −p

dp f βββ f , (3)

where A −
p =B−p ∪F−

p , B−p = {b∈Bp |apb < 0}, and F−
p = { f ∈Fp\Bp |ap f <

0}. If A −
p = /0, then we define D−p φ = 0.

Now, we compute a face value φp f in (2) from the inflow-based gradient. When
a face value is computed at an internal face, a face value φp f in (2) is computed
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straightforwardly:

f ∈Fp \Bp, p ∈ C ⇒ ∃! q ∈Np such that e f ∈ ∂Ωp∩∂Ωq

⇒ φp f =

{
φp +D−p φ · (x f −xp) if ap f ≥ 0,
φq +D−q φ · (x f −xq) if ap f < 0.

(4)

When a face value is computed at a boundary face, we use the linear extrapolation
and then a face value φp f in (2) is formulated by

b ∈Bp(6= /0), p ∈ C ⇒ φpb =

{
φp +D−p φ · (xb−xp) if apb ≥ 0,
αb if apb < 0.

(5)

Note that the boundary constraint face value αb, b ∈Bp is obtained by imposing a
linear extrapolation. From (4) and (5), we finally have the spatial discretization:∫

Ωp

∂tφ =− ∑
f∈F−p

(
φq +D−q φ ·dq f −φp

)
ap f − ∑

f∈F+
p

(
D−p φ ·dp f

)
ap f

− ∑
b∈B−p

(αb−φp)apb− ∑
b∈B+

p

(
D−p φ ·dpb

)
apb,

(6)

where B+
p = Bp \B−p , F+

p = (Fp \Bp) \F−
p , dq f = x f − xq, and for each

f ∈Fp \Bp, p ∈ C there exists an index q ∈Np such that e f ⊂ ∂Ωp∩∂Ωq. From
a tedious derivation of (6) in an evenly spaced 1D domain, the inflow-based gradient
in the above formula brings the second order upwind difference of the magnitude
of the gradient. Note that the first order upwind difference is used in well-known
standard schemes [11, 13].

2.2 Semi-implicit method

Let us denote an evenly divided time step ∆ t = T/N for a fixed N ∈ N and φ n
p =

φ(xp,n∆ t). Inspired by [3, 7, 8, 9, 16], the outflow information is used explicitly
and we propose to use the inflow information partly implicitly and partly iteratively
because of a limitation of sharing variables in the 1-ring face neighborhood structure
of decomposed domains:

|Ωp|
∆ t

(
φ

n,k
p −φ

n−1
p

)
+ ∑

f∈F−p

(
φ

n,k
q +D−q φ

n,k−1 ·dq f −φ
n,k
p

)
an−1

p f

+ ∑
b∈B−p

(
α

n,k−1
b −φ

n,k
p

)
an−1

pb + ∑
f∈A +

p

(
D−p φ

n−1 ·dp f
)

an−1
p f = 0,

(7)

where k = 1, . . . ,K and A +
p = B+

p ∪F+
p . The above system of equations can be

written by
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level Pb Pc

1 4,033 3,947
2 30,683 28,410
3 241,726 224,548
4 1,914,579 1,788,209

Fig. 1 The first and second from the left figure are polyhedron cells in a box (Pb) and a cylinder
(Pc) shape generated by AVL FIRE R© and the right table is the number of cells at each level. If
one level gets higher, the average volume of cells is approximately 8 times smaller.

 |Ωp|
∆ t
− ∑

f∈A −p

an−1
p f

φ
n,k
p + ∑

f∈F−p

an−1
p f φ

n,k
q = R(φ n−1

p ,φ n,k−1
p ), (8)

where the right-hand side R is a collection of explicit information:

R(φ n−1
p ,φ n,k−1

p )≡
|Ωp|
∆ t

φ
n−1
p − ∑

b∈B−p

α
n,k−1
b an−1

pb

− ∑
f∈F−p

D−q φ
n,k−1 ·dq f an−1

p f − ∑
f∈A +

p

D−p φ
n−1 ·dp f an−1

p f .

For all examples in Sec. 3, we fix K = 1 and update φ n = φ n,1 using φ n,0 = φ n−1 in
the above formulas. Moreover, ε = 10−12 in (2) is fixed.

3 Numerical experiments

Two examples are presented to check an EOC of the proposed method. An algebraic
multigrid method (AMG) in AVL FIRE R© on decomposed computational domains
with 1-ring face neighborhood structure is used to solve (8) for all examples. In
Fig. 1, a box shape Ω̄ = [−0.05,0.05]3 ⊂R3 and a cylinder shape whose height 0.1
and radius is 0.05 are chosen to be a computational domain and polyhedron cells are
generated in four levels to check EOC. A time step ∆ t in (7) for each level from 1
to 4 is fixed to be 3.0 ·10−3, 1.5 ·10−3, 7.5 ·10−4, and 3.75 ·10−4, respectively.

The first example is a bidirectional flow from an analytically represented shape:

∂tφ(x, t)±|∇φ(x, t)|=±1, (x, t) ∈Π
±× [0,T ], (9)

where a closed surface Π is given such that Π = ∂Π+ ∩ ∂Π−, Π̄+ ∪ Π̄− = Ω̄ ,
Π+ ∩Π− = /0 and an initial value φ(x,0) is positive on Π+, negative on Π−, and
zero at x ∈ Π . The bidirectional flow computes a signed distance function from Π

using linear extrapolation at boundary. In Table 1, Π is chosen as a sphere whose
radius is 0.02 and a cube whose edge is 0.04 and T = 0.3 is large enough to reach a
steady state of (9) in a given box or cylinder shape domains in Fig. 1. From a sphere
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Sphere Cube

Pb Pc Pb Pc

level L1 EOC L1 EOC L1 EOC L1 EOC

1 1.90 ·10−4 - 1.70 ·10−4 - 1.09 ·10−3 - 8.30 ·10−4 -
2 5.24 ·10−5 1.86 4.29 ·10−5 1.98 5.29 ·10−4 1.05 4.38 ·10−4 0.92
3 1.30 ·10−5 2.00 1.08 ·10−5 1.99 2.54 ·10−4 1.06 1.94 ·10−4 1.17
4 3.10 ·10−6 2.07 2.60 ·10−6 2.06 1.28 ·10−4 0.99 9.55 ·10−5 1.02

level L∞ EOC L∞ EOC L∞ EOC L∞ EOC

1 8.67 ·10−4 - 8.09 ·10−4 - 3.87 ·10−3 - 4.17 ·10−3 -
2 4.40 ·10−4 0.98 3.92 ·10−4 1.04 2.14 ·10−3 0.85 2.13 ·10−3 0.97
3 2.71 ·10−4 0.70 2.36 ·10−4 0.73 8.88 ·10−4 1.27 8.51 ·10−4 1.32
4 1.17 ·10−4 1.20 1.11 ·10−4 1.08 4.45 ·10−4 1.00 4.52 ·10−4 0.91

level L∞
ε EOC L∞

ε EOC

1 4.90 ·10−4 - 4.24 ·10−4 -
2 1.84 ·10−4 1.41 1.93 ·10−4 1.14 N/A
3 4.88 ·10−5 1.92 4.41 ·10−5 2.13
4 1.43 ·10−5 1.77 1.22 ·10−5 1.85

Table 1 The EOC of bidirectional flow (9); more details in Sec. 3.

Pb Pc

level 1 2 3 4 1 2 3 4

Sphere Ti 1.09 4.59 21.39 79.10 1.04 4.38 21.31 86.59
Te 5.79 24.70 113.49 491.35 5.49 23.48 112.98 406.89

Cube Ti 1.08 4.55 21.18 96.16 1.03 4.27 21.48 86.90
Te 5.78 24.65 113.36 491.35 5.49 23.37 13.42 406.29

Table 2 A comparison of wall clock time between semi-implicit (Ti) and explicit (Te) method of
solving (9) until T = 0.003; From the level 1 to 4, the numbers of CPUs are 2, 8, 32, and 128,
respectively. The wall clock time is the average of 5 repeated computations.

shape, the EOC from L1-norm is second order but it is the first order from L∞-norm.
It is because L∞-norm is sensitive on a singularity placed at the center of sphere.
If the singularity is avoided in L∞

ε = L∞(Ωε) where Ωε = {x ∈ Ω ||x| > ε} and
ε = 0.01, the the EOC from L∞

ε is around 2. From a cube shape, the EOC from L1

and L∞-norms is the first order which is caused by a lot of discontinuities of gradient
in a solution.

In Table 2, we compare the wall clock time between semi-implicit and explicit
method in the first example. The time step in an explicit method is computed by
the same CFL condition in [2] and it is roughly three times smaller than the time
steps in Fig. 1 used for the proposed semi-implicit method. The wall clock time
of the proposed method only takes 18.75% of an explicit method in the average of
Ti/Te ∗ 100 and it is caused by choosing a relatively large time step compared to
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Shrinking spheres Shrinking octahedrons

Pb Pc Pb Pc

level L1
loc EOC L1

loc EOC L1
loc EOC L1

loc EOC

1 2.34 ·10−4 - 2.65 ·10−4 - 7.47 ·10−4 - 6.05 ·10−4 -
2 6.37 ·10−5 1.88 6.86 ·10−5 1.95 4.09 ·10−4 0.87 3.77 ·10−4 0.68
3 1.43 ·10−5 2.15 1.37 ·10−5 2.33 1.51 ·10−4 1.44 1.35 ·10−4 1.48
4 3.05 ·10−6 2.23 2.78 ·10−6 2.30 4.41 ·10−5 1.77 3.90 ·10−5 1.80

Expanding spheres Expanding octahedrons

Pb Pc Pb Pc

level L1
loc EOC L1

loc EOC L1
loc EOC L1

loc EOC

1 1.60 ·10−4 - 1.36 ·10−4 - 7.08 ·10−4 - 6.15 ·10−4 -
2 4.02 ·10−5 1.99 3.80 ·10−5 1.84 3.35 ·10−4 1.08 3.31 ·10−4 0.89
3 1.05 ·10−5 1.94 9.34 ·10−6 2.03 1.80 ·10−4 0.89 1.71 ·10−4 0.95
4 2.50 ·10−6 2.07 2.35 ·10−6 1.99 9.64 ·10−5 0.90 9.31 ·10−5 0.88

Table 3 The EOC of a propagation in a normal direction (10); more details in Sec. 3.

an explicit method. Note that for the explicit method a second order total variation
diminishing (TVD) Runge-Kutta method [4, 15] is used.

The second example is a propagation of surface which makes a given surface to
shrink or expand along its normal direction:

∂tφ(x, t)±|∇φ(x, t)|= 0, (x, t) ∈Ω × [0,T ], (10)

where an initial level set function is a signed distance function of spherical and octa-
hedron shapes. In case of shrinking shapes, we use the initial shapes as two spheres
whose centers are (±0.025,0,0) and radius is 0.02 or two octahedrons whose cen-
ters are same as the spheres and an edge is 0.02

√
2 and the final time T = 0.006.

In case of expanding shapes, we use the initial shapes as two spheres whose centers
are (±0.025,0,0) and radius is 0.024 or two octahedrons whose centers are same as
the spheres and an edge is 0.024

√
2 and the final time T = 0.006. Note that the ex-

panding two separated shapes merge as one shape at the final time. In this example,
since the meaningful numerical results are only on the zero level set, we measure
a local error from L1

loc ≡ L1(Γ ), where Γ is the zero level set of exact solution. In
Table 3, the EOC from L1

loc-norm is presented. The EOC of shrinking octahedrons
is supposed to be the first order because of discontinuities of gradient on the zero
level set but it seems to be higher than 1. The EOC of shrinking spheres is higher
than expanding spheres because the solution of shrinking spheres do not have any
singularities on the zero level set. As it is expected, the EOC of expanding octahe-
drons is close to the first order and it is because of discontinuities of gradient and
linearly extended boundary values.
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4 Conclusion

We proposed a new semi-implicit level set method for motion in normal direction
which is second order accurate on three-dimensional polyhedron meshes.
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