J Sci Comput @ CrossMark
DOI 10.1007/s10915-017-0364-4

Inflow-Based Gradient Finite Volume Method
for a Propagation in a Normal Direction
in a Polyhedron Mesh

Jooyoung Hahn!@® - Karol Mikula? . Peter Frolkovic?
Branislav Basara!

Received: 21 January 2016 / Revised: 10 January 2017 / Accepted: 13 January 2017
© Springer Science+Business Media New York 2017

Abstract An inflow-based gradient is proposed to solve a propagation in a normal direction
with a cell-centered finite volume method. The proposed discretization of the magnitude of
gradient is an extension of Rouy—Tourin scheme (SIAM J Numer Anal 29:867-884, 1992)
and Osher—Sethian scheme (J Comput Phys 79:12-49, 1988) in two cases; the first is that the
proposed scheme can be applied in a polyhedron mesh in three dimensions and the second
is that its corresponding form on a regular structured cube mesh uses the second order
upwind difference. Considering a practical application in three dimensional mesh, we use
the simplest decomposed domains for a parallel computation. Moreover, the implementation
is straightforwardly and easily combined with a conventional finite volume code. A higher
order of convergence and a recovery of signed distance function from a sparse data are
illustrated in numerical examples on hexahedron or polyhedron meshes.

Keywords Inflow-based gradient - Cell-centered finite volume method - Level set method -
Polyhedron mesh - Rouy—Tourin scheme - Propagation in normal direction

Karol Mikula was supported by VEGA 1/0808/15 and APV V-15-0522. Peter Frolkovi¢ was supported by
VEGA 1/0728/15 and APV V-15-0522.

B Jooyoung Hahn
jooyoung.hahn@avl.com

Karol Mikula
karol.mikula@stuba.sk

Peter Frolkovic¢
peter.frolkovic @stuba.sk

Branislav Basara
branislav.basara@avl.com

I AVL LIST GmbH, Graz, Austria

Department of Mathematics and Descriptive Geometry, Slovak University of Technology,
Bratislava, Slovakia

Published online: 24 January 2017 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0364-4&domain=pdf
http://orcid.org/0000-0003-4357-1009
http://orcid.org/0000-0002-3561-6943

J Sci Comput

1 Introduction

In this paper, we numerically solve a propagation in a normal direction:
a
5¢(X, N+ FXIVex,) =6Kx), (x,1)eQx[0,T], (1.1

where Q@ Cc R3isa computational domain, 7 is the final time, the speed function F and the
force term G are fixed, and the initial condition ¢ (x, 0) = ¢ (x) is given on 2. The viscosity
solution has been intensively studied and used in many fields such as geometrical optics,
control theory, computer vision, and etc. For more details of applications and numerical
schemes in steady and non-steady cases, we refer the readers to the literature [3,4] and the
references therein. The proposed discretization of (1.1) is based on a cell-centered finite
volume method (FVM) and it can be considered as an extension of standard schemes [1,2]
in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in
three dimensions (3D) and the second is that its corresponding form on a regular structured
cube mesh uses the second order upwind difference.

In contrast to a standard regular structured cube mesh mainly used in level set literature [3,
4], we focus on an extension of numerical scheme into a polyhedron mesh in 3D. A polyhedron
mesh in industrial applications has been used because of its shape flexibility and automatic
discretization of highly complicated computational domains; see more details in [5] and
the references therein. Moreover, in computational fluid dynamics (CFD), the author in [5]
shows the advantages of polyhedral meshes compared to tetrahedral meshes. In order to
use topological advantages of level set method in industrial and practical CFD problem:s,
it is necessary to investigate a possible extension of classical numerical methods [1,2] into
polyhedron meshes. In a steady case of (1.1), the fast marching method (FMM) [4] or the
fast sweeping method (FSM) [6] have been used and improved in literature. The extension
of FSM into tetrahedron meshes [7] and a parallel computation [8] are studied. However, a
correct enforcement of natural causality in a polyhedron mesh with a decomposed domain
structure for parallel computation still remains a challenging task. In [9], computing signed
distance functions on a polyhedral domain is achieved with the use of mathematical theories
in the unsteady Eikonal equation.

The standard numerical schemes in [1,2] capture a nature of propagation by using
an upwind discretization. They can be easily extended to multidimensional domains in a
dimension-by-dimension manner. A higher order discretization such as well-known weighted
essentially non-oscillatory (WENO) schemes [10,11] can be used. A higher order WENO
scheme in an unstructured mesh has been also developed in [12,13] and the references
therein. However, it is still complicated to adequately collect a stencil structure in decom-
posed domains of polyhedron mesh for parallel computing and to efficiently reconstruct a
function of a required order. An advantage of the proposed scheme is that a complicated
reconstruction in a polyhedron mesh is not used and we only need the simplest structure
of decomposed domains, that is, the 1-ring face neighborhood structure. The implementa-
tion of proposed scheme with a parallel computation is straightforwardly combined with a
conventional finite volume code.

A method in [14] to numerically solve (1.1) is used in an unstructured mesh with a
vertex-centered FVM. In [15-17], semi-implicit methods for solving advection equations and
motions in a normal direction are introduced to remove a time step restriction caused by CFL
condition. The main differences between the mentioned methods and the proposed method are
aboundary condition and an approximation of gradient. Concerning the first difference, since
a Dirichlet boundary condition may not be specified in many real applications, we impose a

@ Springer

J Sci Comput

linearly extended boundary condition to use the inflow information on the boundary. A zero
Neumann boundary condition is not an option to be applied because it forces a distortion of
zero level set on the boundary. Concerning the second difference, in contrast to cell-centered
gradient in [14-17], a gradient is approximated by an average of constraint face gradients
only from inflow sides. A different computation of gradient successfully provides correct
upwind discretization of the magnitude of gradient on polyhedron meshes.

The outline of paper is organized as follows. In the rest of introduction, we review the
standard numerical schemes [1,2] in one dimensional domain. In Sect. 2, a proposed scheme is
introduced in 3D and compared with the standard schemes in one dimension (1D). Numerical
properties of proposed scheme are presented in Sect. 3.

1.1 Observation in One Dimension

First of all, we review the standard numerical schemes of discretizing the magnitude of gradi-
entin [1] and [2] to numerically solve a governing Eq. (1.1). Standard schemes are presented
with respect to specific cases in 1D because it is easy to understand numerical properties
of discretization. Secondly, we address some issues to improve the standard schemes and
discuss about how to extend them into 3D polyhedron mesh.

Let us denote a computational domain:

_) 1
Q:[O,l]CUli, Ii:[xi_%,xl._,’_%:l, xi_%:<l—§>h,
ieT

where Q is evenly divided by a small length 7 <« 1. Using simple coefficients F = 1
and G = 0in (1.1), we have:

¢ ¢
—+|—|=0. 1.2
ot + 0x (12)
Introducing the first order forward and backward differences at an interval I;
1 biv1 =i . ¢i — ¢i-1
8l.+¢:7h , 0 ¢:7h ,

where ¢; = ¢ (x;) and x; = ih, Rouy—Tourin [1] and Osher—Sethian schemes [2] are pre-

sented to discretize the magnitude of gradient ’%‘ at x; in (1.2):
Rouy-Tourin : ’max(afl¢, _81'H¢’ O)‘

1
Osher—Sethian : (max(a;1¢, 0)% + min(d;' . 0)2) 2

Now, we consider four representative cases illustrated by Fig. 1 and Rouy—Tourin and Osher—
Sethian schemes on each case are written in Table 1. The schemes clearly show a correct
upwind directional discretization in Cases 1 and 2. An upwind discretization captures a
propagation nature in (1.1) from the correct direction. The schemes can be extended into
multidimensional domains in a dimension-by-dimension manner. It means that a mesh type
should be restricted to structured cubes which can not be practically used in many real
applications. A higher order differences can be used in a structured cube mesh. However,
they are not straightforwardly extended into unstructured meshes. In Case 3, the schemes are
identically same. In Case 4, all methods show different approximation of possibly nonsmooth
points. Rouy—Tourin scheme tries to keep an upwind nature but Osher—Sethian scheme uses
derivatives from all directions.

@ Springer

J Sci Comput

Ta L iLw? Tu il L iLa L iDw I T

Xiv2 Xiey2 Xive Xisn2 Xiae Xisn2 Xive Xiw2
Case 1 Case 2 Case 3 Case 4

Fig. 1 Four cases of understanding some properties of numerical methods from [1] and [2]

Table 1 A comparison of

Rouy—Tourin [1] and . Rouy-Tourin Osher—Sethian
Osher—Sethian schemes [2] with n—1 —1
respect to special cases in Fig. 1 ! 19; I(N 19; 1¢|
2 10;" 9| 10, ¢l
3 0 0
1
4 max {1070l 107 0l] (07'9?+ 0 9?)’

In this paper, we would like to design a numerical scheme to solve a governing Eq. (1.1) in
a 3D polyhedron mesh and improve the previous Rouy—Tourin and Osher—Sethian schemes
as follows.

e Second order upwind discretization in a regular structured cube mesh.

e A parallel computation in 1-ring face neighborhood structure.

o A straightforward implementation in a 3D polyhedron mesh.

e Imposing the linear extended boundary condition.

In the rest of section, each point is briefly discussed. In 1D or a structured cube mesh in 3D,
the second order forward and backward upwind differences

—¢it2 +4¢iv1 — 3¢ 3¢ —4pi—1 + di2
2h 2h ’

can be easily used by a straightforward dimension-by-dimension extension of Rouy—Tourin
and Osher—Sethian schemes. However, in case of unstructured meshes, computing the back-
ward or forward upwind difference is nontrivial because faces of meshes are not simply
aligned along the coordinates. The main challenge is to design a scheme of discretizing the
magnitude of gradient in 3D polyhedron mesh whose 1D correspondence can be represented
by the second order upwind discretization. Another challenge is whether the scheme still
provides a second order rate of convergence (EOC) in 3D polyhedron mesh for a smooth
solution of (1.1). We solve such a difficulty by proposing an inflow-based gradient defined
by constraint face gradients in Sect. 2. The proposed discretization of the magnitude of gra-
dient can be understood as an extension of Rouy—Tourin and Osher—Sethian schemes into a
polyhedron mesh. The meaning of extension is that 1D correspondence of proposed scheme
can replace the first order difference in Rouy—Tourin and Osher—Sethian schemes with the
second order upwind difference of Cases 1 and 2 in Table 1.

A FVM is areasonable choice to easily deal with a standard decomposed domain structure
for a parallel computation and diverse mesh types. In decomposed computational domains

0% = (1.3)

;¢ =

@ Springer

J Sci Comput

for parallel computation in 3D, we use the 1-ring face neighborhood structure which only
allows the smallest number of neighbor cells of a cell, whose faces are shared. The 1-ring
face neighborhood structure has been used in modern industrial CFD because of its simple
structure. The physical limitation of accessing neighbor cells obviously reduce the memory
and complexity of obtaining decomposed domains but it directly makes difficult to design a
higher order scheme which usually needs a large neighborhood information. The difficulty
can be resolved by the locality of computing the proposed inflow-based gradient.

A reason why we use cell-based FVM rather than a vertex-based FVM in [14] and [16]
is because of a reasonable boundary condition in many practical applications. The Dirichlet
boundary condition can be imposed on special examples where the influx data at the boundary
is explicitly given. In general cases of normal flow evolution from arbitrary shapes, it is
impossible to obtain unknown inflow data at the boundary. Zero Neumann boundary condition
is also not a good choice on inflow regions of the boundary. It always forces a data gradient
to be orthogonal to a boundary normal vector and then it is inevitable to have a distortion
of zero level set close to the boundary. A reasonable choice to reduce such a distortion is
a linearly extended boundary condition. Considering a simple implementation of imposing
linearly extended boundary condition, a cell-centered FVM is more preferable choice than a
vertex-based FVM because only boundary face values are necessary in the former method.
The latter method usually has a difficulty to impose certain boundary conditions such as
Neumann or linearly extended types because boundary normal vectors at corners are singular
and boundary vertex values should be computed in an underdetermined system; see more
details in [18]. It is not necessary to solve such a system in cell-centered FVM to impose
linearly extended boundary condition. In Sect. 2, a detailed explanation of proposed scheme
is presented. After that, we present 1D correspondence of the proposed method to compare
with standard schemes in Table 1.

2 Inflow-Based Gradient Finite Volume Method

In this section, a detailed explanation of the proposed scheme is presented with linearly
extended boundary condition. Some notations are defined in Sect. 2.1 for the clear explanation
in 3D and then the detail steps of proposed scheme and inflow-based gradient are presented
in Sect. 2.2. At the end of section, we rewrite the proposed scheme in 1D in order to show a
similarity to previous methods in Sect. 1.1.

2.1 Notations

Let @ C R3 be a whole computational domain:

o=Ja,

pel

where an open set 2, C R3 with the volume | pl # Orepresents a cell of discretized mesh
which is one of hexagonal, tetrahedral, prism, or polyhedral shapes. We denote the set of
indices to uniquely indicate cells, faces, and vertices as Z, F, and V, respectively.

Since a face of polyhedron mesh is not always a plane, a nonplanar face is tessellated into
triangles to make its sub-face planar. From a given face center of a nonplanar face, triangles
of tessellation are defined by two consecutive vertices of the face and the face center. The
index set F now indicates all planar faces, respectively sub-faces, of cells.

@ Springer

J Sci Comput

In order to explain a finite volume method in 3D, a neighbor information of Q,, p € Z,
should be specified. We define two information; neighbor cells and attached faces to €2,,. For
the neighbor cells, we only indicate cells whose face is shared:

N, ={q €T : there exists a face ey C 3y N3, f € F}.

In 2D structured rectangular mesh, ,, indicates five stencil points except p. The attached
faces to €2, are indicated by two sets:

Fp={f €F: er €,
By, =1{f €F,: ef €dQ,NoQ).

Obviously, B, C Fp, forall p € Z. If Q, is a cell whose all faces are not overlapped to
the boundary of computational domain, then B, = @. Note that the index sets NV, and F),
normally have the same cardinality. However, it is not always true because of nonconvex
element.

In a cell-centered finite volume method, function values ¢, = ¢(x,) or ¢ = ¢(xy) are
evaluated at a cell center x,, or a face center Xy, p € T or f € F, respectively. For a given
vertex index v € V, we denote X, as a position of the vertex of a cell. If a quantity is uniquely
defined on a face ey regardless to cells sharing the face, we use a unique face index f € F,
for instance, a face center Xy of a face e . If a quantity is defined on a face ey depending on
cells sharing the face, we explicitly indicate a cell index at the first subscript and a unique
face index at the second subscript. For instance, for a face index f € F, C F attached to
the cell 2, p € Z, the outward normal vector to the face is indicated by n 7. If the face e s
is an internal face, there is a cell 4, g € Z, such that ey C 92, N 3€2,. Then, obviously,

Npp = —Ngy.

We also use the length of the normal vector as the area of the face:

npe| =gl =ley|.

2.2 Cell-Centered Finite Volume Method

We focus on a spatial discretization of the proposed method at a fixed time and later present
a time discretization at the end of subsection. With simple coefficients ' = 1 and G = 0 in
the governing Eq. (1.1) and using Gauss’s theorem, we have

3¢ Ve Vo
has A =0,
/szp o "o, <¢|V¢|> o, ?V Vel

and its spatial discretization is written

9 / / —0
/g,, TR Z), vg "=

where n, is an outward normal vector to £2,, at a face ey, f € F,. Denoting the flux of

velocity at a face ey as
Vo Voy
apr = ‘Npf X ——— N7, 2.1)
o /ef Vol P T Ve

@ Springer

J Sci Comput

where V¢ r is a gradient evaluated at the face center, a cell-centered finite volume formulation
is presented:

o
/g sz + D (bor —9p)aps =0. pel. 2.2)

feFp

Similar to many other finite volume methods, the most crucial part is to evaluate a face value
¢pr depending on a sign of flux a, . For instance, an upwind scheme is obtained by:

¢p, if apr >0,
bpr = [" Pf.
@q, if apr <0,

where there is ¢ € NV}, such that ey € 3Q, N 2, # @, for f € F. In the rest of section, we
explain the proposed method into two steps.

e Step 1. Define an inflow-based gradient.
e Step 2. Compute a face value ¢, in (2.2).

Note that the inflow-based gradient in Step 1 evaluated at a cell center is used to define a
face value ¢, in Step 2.

Step. I Define an Inflow-Based Gradient

An inflow-based gradient is a cell-centered vector and defined by constraint face gradients
and signs of flux in (2.1). A constraint face gradient is obtained by a constraint minimization
from the values close to a face such as cell centers and vertices. A vertex value is interpolated
from cell-centered gradients. Note that an inflow-based gradient calculated at cell center is
different from a cell-centered gradient.

Now, in order to define an inflow-based gradient, we start to obtain a standard cell-centered
gradient with linearly extended boundary condition. Let us fix a cell center x,, and find a
gradient V¢ (x,,). We define a set of points S, at the cell p € Z:

{{xq|qup} if B, =0,

S, =
P xy 1qg €Ny Uxp | b € By) if By, # 0.

We use a weighted minimization to find a cell-centered gradient of ¢ (x,), p € I:

Vo(x,) =argmin 1y R D w,(0]y- (x = xp) = (9(0) - s 1
yeR XeS,

where a weight function is defined by

wy)= —
P Ix — xp|?

Applying the Gateaux derivative to the above energy functional, we have:

4,0 ®d,x® B d,(x) .
2 a,0p |)= > |dp(x)|2(¢(x) $(x,)), 2.3)

XeS), XeS,

where d,(x) = X — X,,. In case of B, = ¢, the matrix Eq. (2.3) is well-defined and it has a
unique solution. However, in case of B, # ¥, we have to know the value ¢ (x;) at a boundary

@ Springer

J Sci Comput

face e, b € B,. Since linearly extended boundary condition is used, we apply Newton’s
method to approximate a boundary face value:

¢ (xp) = ¢(xp) + VO(xp) - (Xp —Xp), b€ By.

Inserting the Newton’s approximation into (2.3), the terms from x;, € S, and b € B), are
canceled out because of a simple algebraic relation:

Ay xp) _ _ &) : _ 4pxp) ®d,(xp)
4,) (P 0%0) — 0Xp)) = g 0 S (Vo) - dyp(30)) = == 75— Vo (%)
Therefore, the matrix Eq. (2.3) is rewritten:
4,0 @ d, (x) N
2 4,0 |)= > G P -ee). @

xe 5; XES]*)
where S; = {x, | ¢ € N,}. Consequently, the boundary value ¢ (x), b € B, is not
practically used to compute a gradient if a linearly extended boundary condition is imposed.
Whenever |S; | > 2 whichis most of cases in 3D mesh structure, the coefficient matrix in (2.3)
is always invertible because a mesh in 3D is not flat. Unfortunately, a cell of |S;“,| < 2 possibly
exists in given boundary cells, for example, a corner cell of tetrahedron mesh. Such aboundary
cell 2, can be tessellated to satisfy with ISZI > 2. Note that the cell-centered gradient (2.3)
on five stencil points in 2D structured rectangular mesh is the gradient calculated by a centered
difference scheme.

As long as a cell-centered gradient is available, a vertex value ¢ (x,) can be approximated
by an inverse distance average from adjacent cells. For a fixed vertex index v € V, let us
denote N, as a subset of cell index where a cell Q p contains the vertex X,:

NM={peTix, €0Q,}, veV.

Then, a vertex value from cell-centered values is approximated by Newton’s approximation
and inverse distance average:

1
> (@ (xp) + Vo (xp) - dpy)

ol
NU
P(x,) = 2= : , dpy =%y, —Xp, peNy, vEV. (2.5

2 Idpol

FENL'

Note that a vertex value ¢ (X,) on a boundary face is averaged by an inverse distance from
linearly extended values from cell centers and cell centered gradients which already contain
the linearly extended boundary condition. In case of computing (2.5) in 1-ring face neighbor-
hood structure for parallel computation, a summation routine in message passing interface
(MPI) is only necessary on vertices shared by decomposed domains.

Before we define an inflow-based gradient, a constraint face gradient should be computed
in order to obtain a flux in (2.1) at a face ey, f € F. Let us denote Py as a set of points
around the face center x . For a precise definition of the point set Py, we need to denote
vertices of a face e:

Vi={xpli=1...,1V¢l}, VyCV

@ Springer

J Sci Comput

where Vr is a set of vertex indices of face e . Then, a set of points Py at the face f € F is
defined:

 [{xp %} UV, i 3 p, g € T suchthat ef € 982, N9,
P lx,J UV, if 31 p e T suchthat f € B, # 0.

Note that Py is a generalization of diamond-cell strategy in a regular structured cube
mesh [15]. We use a constraint minimization to find constraint face values « s and gradi-

ents f3 :

(s B) = argmin (apbp) RS wrmlay +by - x—xp) - | ¢
rl= xePy
(2.6)

where a weight function is defined by

wr(x) = x—x P
Note that the values ¢ (x) for all x € Py are already computed in previous steps and the
minimization is well-defined because of [Ps| > 4. From the minimization functional, the
constraint face value oy on a boundary face is linearly extended value. A reason of using
inequality constraint is because a norm of level set gradient is preferable to be 1 in order to keep
a signed distance function. The unity constraint may be also reasonable but it is numerically
challenging because it is nonconvex minimization. The inequality constraint (2.6) is convex
and the minimizer (et s, B 7) is obtained uniquely [19].

Finally, we define an inflow-based gradient as an inverse distance average of constraint
face gradients only from inflow sides. In order to present inflow sides more carefully, we are
using signed disjoint index sets:

B, ={beBplap, <0} and B;:Bp\[)’_,

B B 2.7
Fy={f € Fy\Bplay <0} and Ff = (F,\Bp)\F,.

Note that a face index set), can include both boundary and internal faces but signed face

index sets]—'}‘," or]—'; do not include boundary faces. Now, the definition of inflow-based

gradient is given by constraint face gradients only from inflow sides:

> o
d f

peros; ST

_ if 7> UBy # 0.
D¢ = >] p =P 2.8)

— |dpf|
feF, UB;,
0 if]-'; U B; = (.

A schematic procedure to compute inflow-based gradient in 2D is illustrated in Fig. 2. The
inflow-based gradient in 1D case is derived at the end of section and it is forward or backward
difference depending on a sign of flux. In the rest of subsection, we use the inflow-based
gradient to compute a face value and present the proposed algorithm with time discretization.

@ Springer

J Sci Comput

0 Ny 5

(@) (2 4) (b) (2:5) (c) (2:6) (d) (2:8)

Fig. 2 A schematic procedure to compute an inflow-based gradient in 2D is illustrated from (a) to (d). The
red color means the information to compute and the blue or green color presents given information. In d, the
blue and green edges present inflow and outflow fluxes, respectively (Color figure online)

Step. 2 Compute a Face Value ¢,r in (2.2)

The finite volume formulation in (2.2) is divided into the signed face index sets (2.7):
¢
o a1 + Z (Ppr — bp) aps + Z (Bpr — Pp) aps
P feF, feF;

+ Z (bpp — ¢p) apy + Z (¢pp — ¢p) app = 0.

beB, beBjy

(2.9)

A time discretization is shown in details after the proposed spatial discretization is completed.
The only remaining thing is to compute a face value ¢, in disjoint sets (2.7) with linearly
extended boundary condition.

Firstly, when a face value is computed at an internal face, it is computed straightforwardly:

feFy\Bp, peZl = 3'qeN, suchthat ey € 92, NIy

bp+ D, b (xp —xp) if apr >0, (2.10)
= ¢pr = r .

g+ Dy (Xp —xg) if apr <O.

The flux value a, s in (2.1) is computed by a constraint face gradient:
Vor B f
apf = Vol "Dpp = T,
f JET 1Bl

where ¢ = 107%* is fixed for all examples in Sect. 3. It is numerically more stable to
compute (2.1) with a regularization in order to completely make sure ‘%‘ < 1. Note that

the internal constraint face value ay, f € F, \ B, in (2.6) is different from a face value ¢, ¢
in (2.10). When a cell-centered gradient is used in (2.10) instead of inflow-based gradient,
we show how the whole method in 1D is changed in Sect. 2.3. From (2.8), an inflow-based
gradient can be understood as an approximation of a gradient at cell center only from inflow
direction. The magnitude of inflow-based gradient is less than 1 because of |8 ;| < 1, which
gives a limitation of slope to approximate a face value ¢, . At the next subsection, we show
that such a limitation can be interpreted as a slope limiter in case of 1D domain.

Secondly, when a face value is computed at a boundary face, we formally introduce a
ghost cell value ¢« = ¢ (x4%):

¢p + D;(ﬁ c(xp — Xp) if aph = 0,

. (2.11)
bgx + By - (xp —Xgx) if app <0,

beBy(#0), pel = qbp,,:{

@ Springer

J Sci Comput

where X« = X + hnp, h > 0 and n,, is an outward normal vector to the boundary face. The
value ¢ (x,+) should be computed in advance, where X+ is located at outside of computational
domain 2. Applying linearly extended boundary condition at X, the value ¢ (x,4+) can be
computed by Newton’s approximation with a constraint boundary value and gradient (2.6):

& (xXgr) = ap + By, - (Xg+ — Xp).

Combining the above formulation and (2.11), the boundary face value is computed:

¢p+D,¢ - (Xp—Xp) if ap, >0,

(2.12)
op if ap, <O0.

beBy(#W), pel = ¢pp= {

Note that the boundary constraint face value a,, b € B, is obtained by consistently imposing
linearly extended boundary condition.
Inserting (2.10) and (2.12) into (2.9), we finally have the spatial discretization of proposed
method:
¢

o, 30 = £@p), (2.13)

where

L@ ==Y (b +D;6 dgr—dp)apr— Y (Dyd-dpr) aps

feF; feFy
- Z (O‘b - ¢p) aph — Z (D;¢ : dpb) Apb,
beB, beBy

d,r = Xy — X4, and for each f € F), \ By, p € Z, there exists an index ¢ € N}, such that
ey C 082, N 082, Let us denote a time discretization as an ordered set:

{h=0<t1<...<ty =T} and At, =ty41 —t,, n=0...k—1.

Since spatial discretizations in (2.11) and (2.12) provide the second order scheme, we com-
patibly use the second order total variation diminishing (TVD) Runge—Kutta method [20,21]
in explicit time discretization. That is, re-writing (2.13)

7(4):
o (0
the numerical solution at the next time step is obtained by
At *
Pl = 7¢+ <¢p ”ll(qﬁZ)).
12,

Since the propose scheme (2.13) is explicit, the time step At, should be restricted and we
use the same method as [14]:

¢y

-1

Aty =CFL-minty, 7, =2 SO dapsl| .
feF-uUB~

where C FL = 0.9 is fixed for all examples in Sect. 3.

@ Springer

J Sci Comput

2.3 Similarities to Previous Schemes

In this subsection, we would like to show how the proposed inflow-based gradient provides a
second order upwind discretization in 1D as an extension of well-known schemes introduced
in Sect. 1.1.

In order to present the proposed scheme in 1D domain, a constraint face value and gra-
dient (2.6) should be calculated and they are a value at the interface between two intervals.
From (2.6), we obtain

¢i + bit
oy =T and By =6 (0349).

where § is defined by

X .

— if x| > 1,
8(x) = { Ix|
X otherwise.

Then, an inflow-based gradient in 1D is obtained by (2.8):

By if 4,y <0and a,_; >0,
Bi_1 ifai+1 >0and g;_1 <0,
— _ 2 2 2
Di¢=10 ifa,,1 >0and a ; >0, (2.14)
1 2 2
E(ﬂi+%+ﬂi7%) ifai+%<0andai7%<0,

where a; ir] and q, | are fluxes in (2.1) at two end points of an interval /;. We would like
to empha51ze that the inflow-based gradient contains derivative information at the end points
of I; only from inflow side. However, assuming 8 (x) = x to simplify an observation, a central
difference gradient at the center of /; used in [15,17]:

biv1 —di-1 _ 1

Cip =8¢ = 5

SOne+ae) =3 (buy+hy) @13)
shows a mixture of derivative information at the end points of /; regardless of signs of flux.
The inflow-based gradient uses the same derivative information but it has four different cases
depending on signs of flux.

From a formal expression of FVM of (1.1) on an interval /; with F = 1 and G = 0,

where

¢
ax

J

face values in the proposed schemes are computed:

=i = g (0 =)y + (by ~0r)ay). @10

4,120 = ¢i+%:¢i+%Di_¢’ and @120 = ¢
a 1 0 = ¢

h —
vy <0 = &1 =dit1 — 3D 9,

@ Springer

J Sci Comput

Now, let us compare all cases in Fig. 1 in details. In the Case 1, the proposed scheme in 1D
on an interval /; is written:

1 h h
Mip = n <(¢i + Eﬂi,% - ¢i> (D) + (¢i—1 + 5/3,-,% - ¢i) : (—1)))

Now, by using a different representation of §; 1

By =3 (0540) = priiho,

where
- it 195401 > 1,
pis1 = 1 10719l o 2.17)
1 otherwise,

itis easy to observe that a nonlinear slope limiter p is used to approximate face values ¢, 1
and ¢, _ ! of the interval [;:

1 h _ h _
Mip = W <<¢i + 5,01‘31- o — ¢i> (D) + <¢i—1 + E,Oi—lai_l@ - ¢i> : (—1)> .
If we assume that ¢ is a signed distance function, then the proposed scheme for the Case 1
in Fig. 1 exactly provides the second order upwind discretization because of p = 1:
3¢ —4¢i1 + di2 D)
M = o =19, "¢l.

With a similar computation, the spatial discretization (2.16) of proposed scheme for all cases
in Fig. 1 can be written:

19;72¢| Case 1,
M = 19;2p| Case 2, 2.18)
7o Case 3, '

%83(}5 Case 4,

where Bi_2¢ and 8i+2¢ are the second order upwind differences in (1.3) and 352¢ is a second
order central difference of second derivative:

$it2 = 3¢it1 +4¢i —3pi1 +di2 %P
h? Toox? |,

i

07 = + 0.

If the proposed scheme (2.18) is compared with Rouy—Tourin and Osher—Sethian schemes
in Table 1, an upwind discretization is clearly improved to the second order difference. An
inflow-based gradient essentially provides the second order upwind discretization. In the
formulation (2.10), if a central difference gradient (2.15) is used instead of inflow-based
gradient, then the main part of scheme (2.16) for a Case 1 in Fig. 1 is changed as an average
of central difference and the second order backward difference:

109 + 16,29
S

It is not purely upwind discretization compared to the Case 1 in the proposed scheme (2.18).
Note that we numerically observe an instability in some examples in Sect. 3 when (2.19) is

M;¢p = (2.19)

@ Springer

J Sci Comput

used instead of (2.18). In Case 3, all methods are identically same and we have a second
order central difference of second derivative in Case 4. When a level set is smooth enough
to have bounded derivatives, the Case 4 is numerically ignored as 7 — 0. We may roughly
understand the Case 4 in the proposed scheme as localized numerical viscosity solution.
Since the proposed scheme is based on FVM, it can be used in polyhedron meshes, which is
not straightforwardly possible to Rouy—Tourin and Osher—Sethian schemes.

3 Numerical Experiments

In the following subsections, various experiments are presented to show numerical properties
of proposed scheme. The examples are computed in different shapes of meshes generated
by AVL, FIRE® and we always use decomposed computational domains with 1-ring face
neighborhood structure.

3.1 Bidirectional Flow

We present an example which can be applied to accurately find a signed distance function
or reinitialize the level set function. We assume that a closed surface IT is given to divide a
computational domain into two open sets IT™ and I1™:

N=9ntnon-, Ntunl =, O NI~ =4.

Then, we solve two governing equations, so-called bidirectional flow:

iqb(x, D+IVex. =1 (x,1)el" x[0,T],
at

5 (3.1)
5,20 - Vo I =-1. (0 ell” x[0,T],

where linearly extended boundary condition is imposed on 9€2. Note that it is formally same
as well-known reinitialization equation in [22]:

a
5¢(X, 1)+ sgn(@o()) (Vo (x, | — 1) =0, (x,1) € I” x [0, T],

where [1° = Q \ I, sgn(x) is a sign function, and ¢ (x) is a continuous function whose
zero level set is IT and its value on TIT and I1~ is positive and negative, respectively. In
level set literature in surface evolution, it is a useful equation to recover a signed distance
function. However, it is also notoriously difficult to numerically solve on unstructured meshes
especially with finite volume method [23].

We assume that a given surface I1 is analytically represented or a triangulated surface. In
a discretized domain, a level set function value is fixed on a cell contains a part of surface.
Such a value can be analytically obtained or approximated from a triangulated surface. We
denote three types of cells in a discretized computational domain:

e={&:pertur’ur =1},
where ZF, 7%, and Z~ are mutually disjoint and Z+ N Z% N Z~ = ¢. If all corners of a cell

p € T are located in [T or [T, then p € Z% or p € Z~, respectively. The index set Z° is
the complement set of Z+ U Z~. An initial level set is given on the discrete domains:

@ Springer

J Sci Comput

dr, pelt,
$o(Xp) = 1do(xp), p e 10, (3.2)
d—, pel.

The value d is either an exact value from an analytically represented signed distance function
or an approximated signed distance value from a point to a triangulated surface. The values
d* and d~ can be any positive and negative values, respectively. In the examples of Figs. 4
and 5, d* = 0.002 and d~ = —0.002 are used. The values d are fixed along the time
evolution, that is, ¢ (x,,1) = d,(x) forall p € 79 and r > 0. The initial values dy are
extremely sparse in 3D computational domain and they are propagated into a whole domain
to recover a signed distance function as t — oo in (3.1). Note that a method [24] can be used
to compute the values dy if analytic values are not available and a triangulated surface of I1
is given.
Now, we consider computational domains of two shapes: a box shape

Q=JQp=1-005005 CcR’
pel

and a cylinder shape whose height is 0.1 and radius is 0.05. The discrete cell 2, is either a
hexahedron or polyhedron mesh in Fig. 3. In order to check an EOC, four levels of meshes
in Table 2 are used and we approximately generate 8 times smaller volume if one level gets
higher. In the examples of bidirectional flow from an analytically given initial function, since
the zero level set of an initial function is frozen and an exact solution is known, it is interested
to see the global errors when the final time 7 is large:

L% = max {[$(x. T) = ¢* (0|} = max {|$(xp. T) = ¢°x)]} (3.3)
1 1
L'= ﬁfglmx,)= ¢@| = & D10) = x| 12,1, (B4

pel

where ¢¢ is an exact solution. Considering the size of computational domain and the speed
of propagation, T = 0.2 is large enough to propagate all initial values through the whole
domain. The level set functions at 7 = 0.2 of bidirectional flow (3.1) from a sphere and a
cube are illustrated in Fig. 4.

Hy

Fig. 3 The types of cells in H;, and P}, or P, meshes are hexahedrons and polyhedrons, respectively. The
inside structures of box and cylindirical shape are illustrated

@ Springer

J Sci Comput

Table 2 The number of cells(c),
faces(f), and vertices(v) of
meshes in Fig. 3 are enumerated

level c f v

Hexahedrons in a box (H;)

1 27, 000 83,700 29,791
2 216, 000 658, 800 226,981
3 1,728, 000 5,227,200 1,771,561
4 13, 824, 000 41, 644, 800 13,997, 521
Polyhedrons in box (Pp,)
1 4,033 28,458 24,428
2 30, 683 222,745 192, 065
3 241,726 1,782,338 1,540,615
4 1,914,579 14,227,431 12,312,855
Polyhedrons in cylinder (P.)
1 3,947 27, 643 23,695
2 28,410 206, 829 178,418
We approximately generate 8 3 224,548 1, 658, 925 1,434,376
times smaller volume if one level 4 1,788,209 13,301, 701 11,513,491

gets higher

In the case of bidirectional flow from a sphere, a partial L é and LZ° errors are additionally
computed using (3.3) and (3.4) on a subdomain Q. = {x € Q| |x| > €}, ¢ = 0.01. Since
no singularities of solution occur in the subdomain, the EOC of proposed method exhibits
second order accuracy on hexahedron and polyhedron meshes; see Table 3. We note that
the Li and L' errors provide nearly same results of EOC as they are not sensitive to the
singularity of solution at the center of sphere. However, the EOC from LZ° and L errors
shows a clear difference with only the L2° error showing second order accuracy. In the case
of bidirectional flow from a cube we present only the EOC using the global L' or L* errors
for which one observes the first order accuracy; see Table 4.

For given triangulated surfaces, a qualitative comparison is presented to show a practical
robustness of the proposed method. We use the Stanford Bunny and Dragon from the Stanford
3D scanning repository.! A meshing toolkit AVI, FAME is applied to slightly modify the
original triangulated surfaces in order to make a closed and oriented surface.

For the Dragon example in Fig. 5, hexahedron and polyhedron meshes are generated
in a box shape to enclose the entire triangulated surfaces of the Dragon and we solve the
bidirectional flow to obtain a signed distance function. In order to obtain a proper initial
condition (3.2), we start with finding the first layer of cells which have an intersection with
a given triangulated surface. After that, from an octree structure generated on a triangulated
surface, we can efficiently search a triangle which has a minimum distance to a vertex of cell.
The angle weighted pseudonormal [25] is used to verify topological information whether
a vertex of cells in the first layer is located outside or inside of a triangulated surface. For
the other cells which are not in the first layer, we use a simple flood fill algorithm to decide
the topological status from the first layer. A cell center value in the first layer is calculated
by weighted least square algorithms from the vertex values of the cell. We illustrate a given
triangulated surface in Fig. 5a. The isocurves of numerical solution on xy, xy, and zx-planes
are shown in Fig. 5b. The isosurfaces at the different level values are plotted from hexahedron
mesh in Fig. 5S¢ and polyhedron mesh in Fig. 5d. The results from two different mesh types

1 http://graphics.stanford.edu/data/3Dscanrep.

@ Springer

http://graphics.stanford.edu/data/3Dscanrep

J Sci Comput

Fig. 4 Results of bidirectional flow (3.1) at T = 0.2 from a sphere and a cube: The first column is the
isosurfaces of level set functions. The second column is the isocurves on x, y, z-planes

have almost no noticeable visual differences and it shows that the proposed algorithm robustly
work in 3D polyhedron meshes.

For the Stanford bunny example in Fig. 6, we use the modified triangulated surface to
generate hexahedron or polyhedron meshes into the Standford bunny and only one side
of bidirectional flow is solved to obtain a distance function from the triangulated surface.
Note that there is small perturbation of initial surface when the meshes are generated and
it slightly changes the location of surface boundary shown in Figs. 6a, c. The cell shape in
(a) is hexahedron. A dominant cell shape in (c) is polyhedron, but there are also prism and
hexahedron shapes. The isosurfaces at the different level values are plotted from hexahedron
mesh in Fig. 6b and polyhedron mesh in Fig. 6d. Even though the cell shapes are irregular
in both cases and there is a mixture of cells in (c), results computed by the proposed method
are stable.

3.2 Shrinking and Expanding Shapes

In this subsection, from an analytically given surface shape, we illustrate the surfaces which
shrinks or expands along the surface normal direction. The expanding or shrinking shapes
are obtained by solving (1.1) with F = +1 and G = O:

%(f)(x, HE|IVex,)| =0, (x,1) e Qx[0,T],

@ Springer

J Sci Comput

Table 3 Experimental order of convergence (EOC) of bidirectional flow from a sphere in Fig. 4

Sphere Hp, Pp Pe

Level L EOC L EOC LY EOC
1 732107 - 4.23.1074 - 3.83-1074 -

2 1.92-107° 1.93 1.87-1074 1.18 1.77-10~4 1.12
3 4.88-107° 1.97 4.97-1075 1.91 4.54.1075 1.96
4 1.24.1070 1.98 1.51-1075 1.72 1.31-1075 1.79
Level L EOC L® EOC L EOC
1 3.41-107% - 7.57-10~4 - 5381074 -

2 1.73-10~4 0.98 4.80-10~4 0.66 3.78-107% 0.51
3 9.52.107 0.86 2.45.1074 0.97 2.04-1074 0.89
4 4.11-1073 1.21 9.97.105 1.29 9.87-107° 1.05
Level Ll EOC L EOC Ll EOC
1 1.55-107° - 1.55-1074 - 1.38-1074 -

2 3.85-107° 2.01 498107 1.64 4.08 1073 1.76
3 9.53-1077 2.01 1.35-1075 1.88 1.13-107° 1.86
4 2381077 2.00 3.56-107° 1.92 2.96-107° 1.93
Level L EOC L! EOC L EOC
1 1.58-107 - 1.56- 1074 - 1.38- 1074 -

2 3.91-107° 2.02 5.02-1075 1.64 4.13.1075 1.75
3 9.65-1077 2.02 1.36-107° 1.88 1.14-1075 1.85
4 2.40-1077 2.00 3.59-107° 1.92 3.00- 107 1.93

The information of Hj,, Pp, and P meshes are listed in Table 2. The L and L1 errors are computed by (3.3)
and (3.4), respectively. The L2° and Lé errors are computed by (3.3) and (3.4) with Q¢ = {x € Q| [x| > €}
and € = 0.01, respectively

with an initial condition ¢o(x) = ¢ (x, 0). Similar to examples in [15], spherical and octahe-
dron shapes are used to obtain an initial level set ¢g in a normal directional motion:

Fs(er, e2,r) ={x:hs(x,¢1,r) =0 or hs(x,¢2,7) =0},
FO(cls c27r) = {X : hO(Xa clar) = O or hO(X7 c25r) = 0}7

where shape functions 4 and h, are defined by

3
hg(x,c,r)=|x—c¢|—r and hy(x,c,7) = Z |x; —¢i| —r. 3.5)
=1

In order to check an EOC, four levels of meshes in Table 2 are used. Since the numerical
results are meaningful only on the zero level set in these examples, we measure the local
error instead of using the global norms in (3.4) or (3.3):

@ Springer

J Sci Comput

Table 4 Experimental order of convergence (EOC) of bidirectional flow from a cube in Fig. 4

Cube Hp Py Pe

Level L® EOC L>® EOC L® EOC
1 2.14-1073 3391073 - 3.46-1073

2 1.16- 1073 0.87 1.87-1073 0.86 1.91-1073 0.86
3 5.23-1074 1.16 6.53-1074 1.51 6.60 - 10~4 1.53
4 2.89.1074 0.85 3.74-1074 0.81 3.77-107% 0.81
Level L EOC L! EOC L EOC
1 6.74 1074 - 7.51-1074 - 5.46-1074

2 3.56-1074 0.92 3.39-1074 1.15 2.94.1074 0.89
3 1.58- 1074 1.18 1.56- 1074 1.13 1.12- 1074 1.39
4 8.44.1075 0.90 8.01-1075 0.96 5.43-107° 1.04

The information of H;,, Pp, and P, meshes are listed in Table 2. The L and L' errors are computed by (3.3)
and (3.4), respectively

——— Y. |G T) = (x| 12,
D 190l ,i5r
peJCT

1 _L/ _ e ~
L, = T F|¢(X» T) — ¢ (x)| =~

(3.6)

where ¢¢ is an exact solution, I is a zero level set of ¢¢, and 7 is a set of cell index whose
signs of vertex values of the exact solution are not identical.

For a shrinking motion, we use ' = —1 and G = 0 in (1.1) and the initial level set ¢ is
a signed distance function from a surface

c¢; = (—0.025,0, 0),
I's(er, c2,7) or T'y(er, ca, r) with { e, = (0.025,0, 0), (3.7)
r =0.02.

Note that ¢ is negative inside of shape and positive outside of shape. The final time 7 = 0.005
is fixed and then the exact solution is ¢¢ = ¢g + T only on a zero level set. The numerical
results of level set function at T = 0.005 from the proposed scheme are illustrated in Fig. 7.

The EOC of L l] ¢ €rror shown in Table 5 is around 2 for shrinking spheres as the error is
computed only on a smooth part of solution. As expected the first order rate of convergence is
observed for shrinking octahedrons because of the discontinuous gradient of solution along
edges. However, the EOC seems to be higher than 1.

For an expanding motion, we use F = 1 and G = 0 in (1.1) and the initial level set is a
signed distance function from a surface

¢ = (—0.025,0,0),
Ty(e1, ¢2,7) or Ty(er, ¢, r) with ¢y = (0.025,0, 0), (3.8)
r =0.024.

The value r is purposely set to be larger than shrinking cases in order to have a merged shape
at the same final time 7 = 0.005. Since ¢y is negative inside of shape and positive outside

@ Springer

J Sci Comput

(b)

(c) (d)

Fig. 5 a A given triangulated surface. b Isocurves of (3.1) on xy, xy, and zx-planes. ¢ Isosurfaces of a result
computed on a hexahedron mesh. d Isosurfaces of a result computed on a polyhedron mesh

(a) (b) (d)
Fig. 6 a A hexahedron mesh generated by a triangulated surface. b Isosurfaces of a result computed by
proposed method on the mesh (a). ¢ A polyhedron mesh generated by a triangulated surface. d Isosurfaces of

a result computed by proposed method on the mesh (¢)

@ Springer

J Sci Comput

(a)

Fig. 7 a: The results of shrinking shapes at 7 = 0.005 from the initial shapes I's and I, (3.7) on H}, mesh

in Fig. 3. b and c: Isocurves on xy-plane and yz-plane, respectively

Table 5 Experimental order of convergence (EOC) of shringking shapes in Fig. 7

Level Shrinking spheres
Hp Pp Pec
1 1 1
L}, EOC L}, EOC L}, EOC
1 2901079 - 1.03-1074 - 1.09- 1074 -
2 5.37-107° 2.43 4.49.1075 1.19 421-1075 1.37
3 7.53-.1077 2.83 1.02-1075 2.14 8.74 1070 2.27
4 1.39-1077 243 2.15-107° 2.24 1.89- 1070 2.21
Level Shrinking octahedrons
Hb Pb Pc
1 1 1
Ll EOC L. EOC Ll EOC
1 3.63-1074 6.64-1074 5531074
2 2.00- 1074 0.86 3.63-1074 0.87 3.42.107% 0.69
3 6.79 - 107 1.56 1.61-1074 1.17 1.41-1074 1.28
4 1.32.107° 2.36 4.81-107° 1.74 431-107° 1.71

The information of Hy,, Pp, and Pk is listed in Table 2. The L 11 ¢ €tror (3.6) is computed at 7 = 0.005

@ Springer

J Sci Comput

(a)

Fig. 8 a: The results of expanding shapes at 7 = 0.005 from the initial shapes I'y and I',, (3.8) on H}, mesh

in Fig. 3. b and c: Isocurves on xy-plane and yz-plane, respectively

Table 6 Experimental order of convergence (EOC) of expanding shapes in Fig. 8

Level Expanding spheres

Hp Py Pe

Ll EOC L. EOC Ll EOC
1 5.67-107° - 1.37-107% - 1.16- 104 -
2 1.64-107° 1.78 435.107° 1.66 425.107° 1.44
3 4.26-107° 1.91 1.37-107 1.67 1251072 1.77
4 1.11-107° 1.97 3.59.107° 1.93 3.23.107° 1.95
Level Expanding octahedrons

Hp Py P

Ll EOC L. EOC L. EOC
1 2.08-10~% - 5.06-10~% - 4.47.10~% -
2 1.24-107% 0.75 245.1074 1.04 231-107% 0.95
3 5121077 1.27 1.11-10~* 1.14 1.02-10~* 1.18
4 259107 0.98 4.63-107° 1.27 430107 1.24

The information of H, Pp, and P is listed in Table 2. The Llloc error (3.6) is computed at 7' = 0.005

@ Springer

J Sci Comput

of shape, the exact solution is ¢ = ¢9 — T only on a zero level set. The numerical results
of level set function at 7" = 0.005 from the proposed scheme are illustrated in Fig. 8.

The EOC of Llla .. error for expanding spheres in Table 6 is close to 2. As expected the
EOCof L 110 . error for expanding octahedrons in Table 6 is around 1 because of the presence
of discontinuous gradient of solution.

4 Conclusion

In this paper, we propose a numerical scheme to solve a propagation in a normal direction with
a linearly extended boundary condition. The proposed scheme is based on a cell-centered
finite volume method and it is designed to be used in a 3D polyhedron mesh which is
common in real CFD applications. An inflow-based gradient provides a second order upwind
discretization of the magnitude of gradient in the case of a regular structured cube mesh.
From numerical examples, the second order rate of convergence is observed experimentally
for smooth solutions in appropriate norms.

Acknowledgements We would like to thank to Dr. Peter Priesching in AVL LIST GmbH, Graz, Austria
and Dr. Kiwan Jeon in National Institute for Mathematical Sciences, Daejeon, South Korea for and to
Dr. Peter Sampl and MSc. Dirk Martin in AVL LIST GmbH, Graz, Austria, for generating polyhedron and
hexahedron meshes of the Stanford bunny and Dragon examples. We sincerely appreciate valuable comments
and feedback from anonymous referee.

References

1. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29,
867-884 (1992)

2. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on
Hamilton—Jacobi formultaions. J. Comput. Phys. 79, 12-49 (1988)

3. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2000)

4. Sethian, J.A.: Level Set Methods and Fast Marching Methods, Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materical Science. Cambridge University Press, New
York (1999)

5. Peri¢, M.: Flow simulation using control volumes of arbitrary polyhedral shape. ERCOFTAC Bull. 62,
25-29 (2004)

6. Zhao, H.K.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603-627 (2005)

7. Qian, J., Zhang, Y.-T., Zhao, H.K.: Fast sweeping methods for Eikonal equations on triangular meshes.
SIAM J. Numer. Anal. 45, 83-107 (2007)

8. Detrixhe, M., Gibou, F., Min, C.: A parallel fast sweeping method for the Eikonal equation. J. Comput.
Phys. 237, 46-55 (2013)

9. Dapogny, C., Frey, P.: Computation of the signed distance function to a discrete contour on adapted
triangulation. Calcolo 49, 193-219 (2012)

10. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115,
200-212 (1994)

11. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202—
228 (1996)

12. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton—Jacobi equations on triangular
meshes. STAM J. Sci. Comput. 24, 1005-1030 (2003)

13. Tsoutsanis, P., Titarev, V., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes
in three space dimensions. J. Comput. Phys. 230, 1585-1601 (2011)

14. Frolkovi¢, P., Mikula, K.: High-resolution flux-based level set method. STAM J. Sci. Comput. 29, 579-597
(2007)

15. Mikula, K., Ohlberger, M.: A new level set method for motion in normal direction based on a semi-implicit
forward—backward diffusion approach. SIAM J. Sci. Comput. 32, 1527-1544 (2010)

@ Springer

J Sci Comput

20.

21.

22.

23.

24.

25.

Frolkovi¢, P., Mikula, K., Urb4n, J.: Semi-implicit finite volume level set method for advective motion of
interfaces in normal direction. Appl. Numer. Math. 95, 214-228 (2015)

Mikula, K., Ohlberger, M., Urbdn, J.: Inflow-implicit/outflow-explicit finite volume methods for solving
advection equations. Appl. Numer. Math. 85, 16-37 (2014)

Bertolazzi, E., Manzini, G.: A unified treatment of boundary conditions in least-square based finite-volume
methods. Comput. Math. Appl. 49, 1755-1765 (2005)

. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian

method. SIAM J. Imaging Sci. 4, 313-344 (2011)

Shu, Chi-Wang, Osher, Stanley: Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 439-471 (1988)

Gottlieb, Sigal, Shu, Chi-Wang: Total variation diminishing runge—kutta schemes. Math. Comput. 67,
73-85 (1998)

Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible
two-phase flow. J. Comput. Phys. 114, 146-159 (1994)

Lv, X., Zou, Q., Zhao, Y., Reeve, D.: A novel coupled level set and volume of fluid method for sharp
interface capturing on 3D tetrahedral grids. J. Comput. Phys. 229, 2573-2604 (2010)

Ausas, R.F., Dari, E.A., Buscaglia, G.C.: A geometric mass-preserving redistancing scheme for the level
set function. Int. J. Numer. Methods Fluids 65, 989-1010 (2011)

Baerentzen, J.A., Aanaes, H.K.: Signed distance computation using the angle weighted pseudonormal.
IEEE Trans. Vis. Comput. Gr. 11, 243-253 (2005)

@ Springer

	Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh
	Abstract
	1 Introduction
	1.1 Observation in One Dimension

	2 Inflow-Based Gradient Finite Volume Method
	2.1 Notations
	2.2 Cell-Centered Finite Volume Method
	Step. 1 Define an Inflow-Based Gradient
	Step. 2 Compute a Face Value φpf in (2.2)

	2.3 Similarities to Previous Schemes

	3 Numerical Experiments
	3.1 Bidirectional Flow
	3.2 Shrinking and Expanding Shapes

	4 Conclusion
	Acknowledgements
	References

