
STABILITY AND CONSISTENCY OF THE SEMI-IMPLICIT
CO-VOLUME SCHEME FOR REGULARIZED MEAN CURVATURE

FLOW EQUATION IN LEVEL SET FORMULATION
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Abstract. We show stability and consistency of the linear semi-implicit complementary volume
numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature
flow equation in the level set formulation. The numerical method is based on the finite volume
methodology using so-called complementary volumes to a finite element triangulation. The scheme
gives solution in efficient and unconditionaly stable way.

Key words. mean curvature flow, level set equation, numerical solution, semi-implicit scheme,
complementary volume method, unconditional stability, consistency.

1. Introduction. The curvature driven level set equation [30]

ut − |∇u|∇.

( ∇u

|∇u|

)

= 0,(1.1)

as well as its nontrivial generalizations, is used in the applications as the motion of
interfaces (free boundaries) in thermomechanics (solidification, crystal growth) and
computational fluid dynamics (free surface flows, multi-phase flows of immiscible flu-
ids, thin films), the smoothing and segmentation of images and the surface recon-
structions in the image processing, computer vision and computer graphics (see e.g.
[32, 29, 2, 1, 6, 19, 31, 15, 17]), and in many further situations related to the motion of
implicit curves or surfaces. On the other hand, the convergence of numerical schemes
to unique viscosity solution [9, 14, 7] of equation (1.1) is often an open problem, it
is an exception to find an analysis of convergence of the methods used for solving
the curvature driven flows in the level set formulation. The level set equation (1.1)
represents the so-called Eulerian approach to curve and surface evolutions. It moves
level sets (curves in 2D, surfaces in 3D) of the function u in the normal direction with
the velocity proportional to the (mean) curvature. The curves and surfaces are rep-
resented implicitly and thus the formulation automatically allows topological changes
in the interface which yields robustness of the method.

In [10] Deckelnik and Dziuk proved convergence of their finite element numerical
scheme to solution of the mean curvature flow of graphs which can be further adjusted,
using the Evans and Spruck regularization [14], to the situation of motion of level sets
by the mean curvature [11]. Convergence of a particular finite difference scheme has
been proved by Oberman in [28] using the technique of Barles and Souganidis [3].
More results are available for schemes based on different than level set formulation.
The convergent schemes for the so-called direct (parametric, Lagrangean) approach
to curvature driven flows were suggested and studied e.g. in [13, 21]; for further La-
grangean methods we refer e.g. to [12, 25, 26]. Other than the level set, but also
Eulerian, approach is represented by the phase field method where the convergence of
numerical approximation to the solution of the so-called Allen-Cahn equation (mod-
elling diffused interface evolution) is studied, see e.g. [27, 4].
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In this paper we prove consistency and stability of the semi-implicit fully discrete
complementary volume scheme. Our semi-implicit scheme leads to solution of linear
systems in every discrete time step (for other semi-implicit approaches to solving
nonlinear diffusion see e.g. [18, 22, 16, 17]), so it is much more efficient than a fully
implicit nonlinear scheme [33], and it is unconditionally stable without any restriction
to time step in spite of many other explicit schemes [30, 32, 29, 31]. Consistency and
stability are two properties, in the theory of Barles and Souganidis [3], which are used
to show convergence of a numerical scheme to solution of fully nonlinear second order
partial differential equations and we discuss them in this paper. A monotonicity is
the third one and it remains still an open question regarding our scheme.

The derivation of our numerical method for solving equation (1.1) is based on
the finite volume methodology (see e.g. [20, 22]). We construct the so-called comple-
mentary volumes (co-volumes) to a finite element triangulation [33, 16]. Integrating
equation (1.1) in the co-volume gives the weak (integral) formulation of the problem
from which the computational scheme naturally follows. One of our main motivations
to solve the curvature driven level set equation and its generalizations comes from
image processing applications [15, 16, 17, 23, 24, 8]. The co-volume scheme has been
applied to smoothing and segmentation of 2D and 3D medical images in [24, 8] and
is based on the original semi-implicit method studied in [16]. In [8] it has been shown
experimentally on non-trivial examples of exact solutions that the method converges
to true solution, in this paper we show theoretically its consistency and stability. In
the proofs we restrict ourselves to 2D situation and only to type of grids which we
use in image processing applications, cf. next section, mainly in order to avoid too
technical details.

In the next section we present in a detail our numerical scheme, and, in section
3 we prove its properties. For numerical experiments we refer to [16, 24, 23, 8] where
co-volume schemes have been applied to problems of interface motion and image
smoothing and segmentation.

2. Semi-implicit co-volume scheme. The unknown function u(t, x) in (1.1)
is defined in QT = I ×Ω, Ω ⊂ IRd is a bounded Lipschitz domain, I = [0, T ] is a time
interval, and the equation is usually accompanied with zero Dirichlet (e.g. in image
segmentation) or zero Neumann boundary conditions (e.g. in image smoothing) and
by an initial condition

u(0, x) = u0(x).(2.1)

To construct the numerical scheme we choose a uniform discrete time step τ = T
N

and replace the time derivative in (1.1) by the backward difference. The nonlinear
terms of the equation are treated from the previous time step while the linear ones
are considered on the current time level, this means semi-implicitness of the time
discretization.

Semi-implicit in time discretization: Let τ be given time step, and u0 be a given

initial level set function. Then, for n = 1, . . . , N , we look for a function un, solution

of the equation

1

|∇un−1|
un − un−1

τ
= ∇.

( ∇un

|∇un−1|

)

.(2.2)

Let us introduce now the fully discrete scheme. In the image processing applica-
tions, a digital image is given on a structure of pixels with rectangular shape in general
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Fig. 2.1. The co-volumes (pixels, red solid lines), the triangulation for the co-volume method
(black dashed lines), and the degree of freedom (DF) nodes (red round points).

(red rectangles in Figure 2.1). Since in every discrete time step of the method (2.2)
we have to evaluate gradient of the level set function at the previous step |∇un−1|,
we put a triangulation (dashed black lines in Figure 2.1) onto the computational do-
main and then take a piecewise linear approximation of the level set function on this
triangulation. Such approach will give a constant value of the gradient per triangle,
allowing simple, fast and clear construction of fully-discrete system of equations.

As can be seen in Figure 2.1, in our method the centers of pixels are connected by
a new rectangular mesh and every new rectangle is splitted into four triangles. The
centers of pixels will be called degree of freedom (DF) nodes. By this procedure we
also get further nodes (at crossing of red lines in Figure 2.1) which, however, will not
represent degrees of freedom. We will call them non-degree of freedom (NDF) nodes.
Let a function u be given by discrete values in DF nodes. Then in additional NDF
nodes we take the average value of the neighboring DF nodal values. By such defined
values in NDF nodes, a piecewise linear approximation uh of u on the triangulation
can be built. Let us note, that the computational domain Ω is given by the union of
all triangles contained in the triangulation Th given by the previous construction. It
means Ω is equal to union of all inner pixels and a half-strip of the boundary pixels,
cf. Fig. 2.1. For Th we construct a complementary (dual) mesh. We modify a basic
approach given in [33, 16] in such a way that our co-volume mesh will consist of cells
p associated only with DF nodes p of Th, say p = 1, . . . , M . Since there will be one-
to-one correspondence between co-volumes and DF nodes, without any confusion, we
use the same notation for them.

For each DF node p of Th, let N(p) denote the set of all DF nodes q connected to
the node p by an edge. We denote cardinality of this set by Np. The edge connecting
p and q will be denoted by σpq and its length by hpq. Then every co-volume p is
bounded by the lines (co-edges) epq that bisect and are perpendicular to the edges
σpq , q ∈ N(p). By this construction, the co-volume mesh corresponds exactly to the
pixel structure of the image inside the computational domain Ω. We denote by Epq

the set of triangles having σpq as an edge. In a situation depicted in Figure 2.1, every
Epq consists of two triangles. For each T ∈ Epq let cT

pq be the length of the portion

of epq that is in T , i.e., cT
pq = m(epq ∩ T ), where m is a measure in IRd−1. Let Np
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be the set of triangles that have DF node p as a vertex. Let uh be a piecewise linear
function on triangulation Th. We will denote a constant value of |∇uh| on T ∈ Th by
|∇uT | and define regularized gradients by

|∇uT |ε =
√

ε2 + |∇uT |2.(2.3)

We will use the notation up = uh(xp), where xp is the coordinate of a (DF or NDF)
node of triangulation Th, and also un

p = uh,τ (xp, tn) where uh,τ is our piecewise linear
in space and time approximation of the solution to the regularized level set equation.
Let u0

h be piecewise linear interpolation of the initial function u0 on triangulation Th.
With these notations we are ready to derive the co-volume spatial discretization.

As it is usual in finite volume methods [20], we integrate (2.2) over every co-volume
p, p = 1, . . . , M , and then using divergence theorem we get an integral formulation
of (2.2)

∫

p

1

|∇un−1|
un − un−1

τ
dx =

∑

q∈N(p)

∫

epq

1

|∇un−1|
∂un

∂ν
ds(2.4)

where ν is a unit outer normal to the boundary of p. Now the exact ”fluxes” on the
right hand side and ”capacity function” 1

|∇un−1| on the left-hand side will be approx-

imated numerically using piecewise linear reconstruction of un−1 on triangulation Th.
In such a way, for the approximation of the right-hand side of (2.4) we get

∑

q∈N(p)





∑

T∈Epq

cT
pq

1

|∇un−1
T |





un
q − un

p

hpq

.(2.5)

For the left-hand side of (2.4) we use

m(p)
∑

T∈Np

m(T ∩ p)

m(p)

1

|∇un−1
T |

un
p − un−1

p

τ
(2.6)

where m(p) is a measure in IRd of co-volume p. In general, we assume for every pair
p, q

h ≤ hpq ≤ h̄,
h̄

h
≤ h0

and we define

dpq :=
m(epq)

hpq

≤ d0.(2.7)

However, we restrict our considerations to uniform rectangular co-volumes with size
length h, as plotted in Figure 2.1. Then, e.g.,

m(p) = h2, m(epq) = hpq = h, dpq = 1, cT
pq =

1

2
m(epq).(2.8)

We denote four neighbouring DF nodes of xp by xq1
(east), xq2

(north), xq3
(west),

xq4
(south), and the corners of co-volume p by xr1

(top right), xr2
(top left), xr3
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(bottom left), xr4
(bottom right). The middle point of the edge epqi

is denoted by
xmi

, i = 1, . . . , 4.
Now we can define coefficients, where the ε-regularization (2.3) is taken into

account, namely,

an−1
pq =

1

|∇un−1
pq |ε

:=
1

2

(

1

|∇un−1
T 1

pq

|ε
+

1

|∇un−1
T 2

pq

|ε

)

,(2.9)

bn−1
p :=

1

|∇un−1
p |ε

=
1

Np

∑

q∈N(p)

1

|∇un−1
pq |ε

,(2.10)

where T 1
pq, T

2
pq ∈ Epq. For example for triangle with points xp, xq1

, xr1
we have

|∇un−1
T 1

pq1

|ε =

√

(uq1
− up)2

h2
+

(2(ur1
− um1

))2

h2
+ ε2.(2.11)

Now our computational method can be written as follows.

Fully-discrete semi-implicit co-volume scheme: Let u0
p, p = 1, . . . , M be given

discrete initial values of the segmentation function. Then, for n = 1, . . . , N we look

for un
p , p = 1, . . . , M , satisfying

bn−1
p m(p) un

p + τ
∑

q∈N(p)

an−1
pq dpq(u

n
p − un

q ) = bn−1
p m(p) un−1

p .(2.12)

Remark 2.1. Previously studied co-volume algorithms [33, 16] for the level-set-like
problems have used either ”left oriented” or ”right oriented” triangulations and no
NDF nodes (see Figure 2.2). But, then the level set curve or surface evolution is
influenced by the grid effect. Of course this effect is satisfactory weakened by refin-
ing the grid (e.g. in interface motion computations, cf. [16]). In image processing
we work with fixed given pixel/voxel structure, and we do not refine this structure,
so we want to remove such ”non-symmetry” of the method. This can be done by
averaging of two, ”left” and ”right” solutions, or it can be done implicitly by tak-
ing the combination of triangulations as plotted in Figure 2.1. Of course, usage of
such ”symmetric” triangulation can be accompanied also by the linear finite element
method of Deckelnick and Dziuk [10, 11], considering also NDF nodes as degrees of
freedom. But this would increase the number of unknowns in systems to be solved by
factor two, which can be critical in case of image processing applications, usually with
huge number of pixels/voxels given. Without any construction of a triangulation, we
could also use a bi-linear representation of the level set function on finite elements
corresponding to the rectangular grid formed by centers of pixels and build tensor-
product finite element method. But then we would face a problem of non-constant
gradients in evaluation of nonlinearities. The same problem would arise considering
complemetary volume method given by dual grid corresponding to pixels and by a
bi-linear representation of the function on the rectangular grid formed by centers of
pixels. Again, such technique would require the evaluation and integration of absolute
value of gradient of bi-linear functions on the co-volume sides. From the above points
of view, our method gives the smallest possible number of unknowns and the most
simple (piecewise constant) nonlinear coefficients evaluation.

Such ”symmetric” primal-dual grid can be built also in three dimensions. The
construction of co-volume mesh in 3D has to use 3D tetrahedral finite element grid
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Fig. 2.2. By dashed lines we plot the ”left oriented” triangulation (left) and the ”right oriented”
triangulation (right). The ”symmetric” triangulation corresponding to our method is plotted in Fig.

2.1.

Fig. 2.3. Neighbouring pyramids which are joined together (left); joining these pyramids and
then splitting into four parts give tetrahedron of 3D grid (middle); intersection of the tetrahedron
with the bottom face of co-volume (right).

to which it is complementary. For that goal we use the following approach similar to
the so called centered-cubic-lattice method known from computer graphics [5]. First,
every cubic voxel is splitted into 6 pyramids with vertex given by the voxel center
and base surfaces given by the voxel boundary faces. The neighbouring pyramids
of neighbouring voxels are joined together to form octahedron which is then splitted
into 4 tetrahedras using diagonals of the voxel boundary face - see Figure 2.3. In
such way we get 3D tetrahedral grid. Two nodes of every tetrahedron correspond to
centers of neighbouring voxels, and further two nodes correspond to voxel boundary
vertices; every tetrahedron intersects common face of neighbouring voxels. Now again
only the centers of voxels represent DF nodes, the additional nodes of tetrahedras
are NDF nodes which are used only in piecewise linear representation of the level
set function. Using such co-volumes one obtains the computational scheme with the
same structure as (2.12) but the averages in definitions (2.9)-(2.10) are taken over all
tetrahedras crossing the faces and entire co-volume, respectively.
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3. Consistency and stability of the numerical scheme. We first give some
necessary notations and definitions. Let us assume that ε > 0 is fixed. The Evans and
Spruck regularization of the curvature driven level set equation (1.1) can be written
in the following form

ut − trace((I − ∇u ⊗∇u

|∇u|2ε
)D

2
u) = 0 in I × Ω,(3.1)

where D
2
u denotes a symmetric matrix of second order spatial derivatives of u. If we

denote

G(X, p) = trace((I − p ⊗ p

|p|2ε
) · X),

where (X, p) ∈ Sd × IRd, Sd is the space of d × d symmetric matrices, then G is an
elliptic operator [9]. We denote by B(Q), Q = I ×Ω, the set of all uniformly bounded
functions in a domain Q. In [14], existence of the unique smooth solution is proved.
Let us consider the equation

F (D2u, Du, u) = 0 in Q(3.2)

where in spatially two dimensional case we define

Du =





ut

ux

uy



 , D2u =





utt utx uty

utx uxx uxy

uty uxy uyy



 , I =





0 0 0
0 1 0
0 0 1



 , I =





1
0
0





and F : Sd × IRd × IR → IR is given by

F (D2u, Du, u) =











I · Du − trace
((

I − (I·Du)⊗(I·Du)

|I·Du|2ε

)

D2u
)

in Q,

u(0, x) − u0(x) in Ω,
∂u
∂ν

or u on I × ∂Ω,

where ν is an outer unit normal to ∂Ω. It is now clear from the properties of G above
that F posses the elliptic property, that means for all (p, u) ∈ IRd × IR and for all
M,N ∈ Sd

F (M, p, u) ≤ F (N, p, u) provided M ≥ N.

Let us have an approximation scheme of the form

S(ρ, Y, uρ(Y ), uρ) = 0 in Q,(3.3)

where S : IR+ × Q × IR × B(Q) → IR is a locally uniformly bounded.

Definition 3.1. Approximation scheme S given by (3.3) has the monotonicity prop-
erty if for all ρ ≥ 0, Y ∈ Q, ζ ∈ IR and u, v ∈ B(Q) it holds that, if u ≥ v then

S(ρ, Y, ζ, u) ≤ S(ρ, Y, ζ, v).(3.4)

Definition 3.2. Approximation scheme S given by (3.3) has the stability property,
if for all ρ > 0 there exists a solution

uρ ∈ B(Q)(3.5)
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of (3.3) with a bound independent of ρ.

Definition 3.3. Approximation scheme S given by (3.3) has the consistency property
if for all Φ ∈ C∞(Q) and for all X ∈ Q it holds that

lim
ρ→0,Y →X,ξ→0

S(ρ, Y, Φ(Y ) + ξ, Φ + ξ)

ρ
= F (D2Φ(X), DΦ(X), Φ(X)).(3.6)

We recall the following important statement:

Theorem 3.1.[3] Let the approximation scheme S given by (3.3) have stability, mono-

tonicity and consistency properties. Then, as ρ → 0, the solution of the scheme con-

verges locally uniformly to the unique continuous solution of (3.2).

Our aim is to transform numerical scheme (2.12) to the form (3.3) and then prove the
stability and consistency properties. The numerical scheme (2.12) can be written in
the form (3.3) provided ρ = τ , Y = (tn, xp), uρ(Y ) = un

p , uρ = uh,τ , where uh,τ (x, y)
is a piecewise linear in space and time (i.e. on triangulation Th and among discrete
time steps) approximation of solution, and

S(ρ, (tn, xp), u
n
p , uh,τ ) = un

p − un−1
p +

τ

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (un

p − un
q )dpq = 0,(3.7)

where u0
p = u0(xp) for all p = 1, . . . , M . Let us note that the time step τ is usually

coupled with the spatial step h, e.g., by relation τ ≈ h2 which is natural in solving
parabolic PDEs.

The zero Neumann boundary conditions are realized using the mirror image ex-
tension of the solution values outside the image domain, i.e., adding one outer strip
of pixels (co-volumes) q along the boundary pixels p, cf. Fig 2.1, and prescribing
un

q = un
p for these additional pixel values. The result is that the boundary terms

an−1
pq (un

p − un
q )dpq are simply not present in the summation term of the scheme (2.12)

or in its equivalent form (3.7), that is also equivalent to prescribing an−1
pq = 0 if p is

a boundary co-volume and q is an additional one.
Since we consider that computational domain Ω is given by the union of all

triangles in Th, cf. Fig. 2.1, the DF nodes of boundary pixels lie on ∂Ω and we
prescribe 0 values to them in case of Dirichlet boundary condition. The only change
in the scheme is that the system contains less number of unknowns (only DF nodes
of inner pixels) and that an−1

pq (un
p −un

q )dpq in the summation term contain the known
value un

q = 0 if q is a boundary pixel.

Theorem 3.2. There exists unique solution un
h = (un

1 , . . . , un
M ) of the scheme (2.12)

for any value of the regularization parameter ε > 0 and for any time step n = 1, . . . , N .

Moreover, for the fully discrete numerical solution uh,τ the following estimate holds

‖uh,τ‖L∞(Q) ≤ ‖u0
h‖L∞(Ω),(3.8)

which gives the stability property of the scheme.

Proof. From definition (2.9) follows that off-diagonal elements −τan−1
pq , q ∈ N(p), of

the system (2.12) are symmetric and nonpositive. The positive term bn−1
p given by

(2.10) affects only diagonal which is equal to bn−1
p m(p) + τ

∑

q∈N(p)

an−1
pq dpq. Thus, the
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matrix of the system (2.12) is symmetric and diagonally dominant M-matrix which
imply that it always has unique solution. Let us write (2.12) in the form (3.7)

un
p +

τ

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (un

p − un
q )dpq = un−1

p(3.9)

and let maxun
h = max(un

1 , . . . , un
M ) be achieved in the point p.

In case of the zero Neumann boundary condition, no matter if p is inner or
boundary point, the whole second term on the left hand side of (3.9) is nonnegative
and thus value un

p ≤ un−1
p ≤ max(un−1

1 , . . . , un−1
M ). In the same way we can prove

similar relation for minima and together we have

min u0
p ≤ min un

p ≤ max un
p ≤ max u0

p, n ≤ N,(3.10)

which imply the estimate (3.8).
In case of the zero Dirichlet boundary condition, first let p be a boundary DF

node in which the maximum of discrete solution is attained at the nth time step (this
maximum is of course equal to 0). It is clear, that it is less or equal to a maximum at
the previous time step n−1, which can be either positive (if realized in an inner node)
or zero (if realized in a boundary node). Secondly, if p is an inner node, similarly to
considerations for the Neumann boundary condition above, we have that the whole
second term on the left hand side of (3.9) is nonnegative and thus value un

p ≤ un−1
p

which is less or equal to a maximum at the time step n − 1. Then recursively we get
again the estimate (3.8).

Theorem 3.3. For any fixed ε > 0 our numerical scheme posses the consistency

property.

Proof. Let X = (t, x) and Φ ∈ C∞(Q). There exists time step n ∈ {0, 1, . . .N}
such that t ∈ 〈tn−1, tn〉 and co-volume p ∈ {1, . . .M} such that x ∈ p. We denote
Y = (tn, xp), and Φn

p := Φ(tn, xp). In order to get consistency, in our case it is
sufficient to prove the existence of positive integers k1, k2 such that

|S(ρ, Y, Φ(Y ), Φ)

ρ
− F (D2Φ(X), DΦ(X), Φ(X))| ≤ C(||Φ||3)(τk1 + hk2),

where by ||Φ||k we denote the norm of the functional space Ck(Q) and C(||Φ||3) is a
constant which can depend on a C3(Q) norm of a smooth function Φ. For our scheme
it can be written in the following form

∣

∣

∣

∣

∣

∣

Φn
p − Φn−1

p

τ
− 1

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (Φn

q − Φn
p ) − Φt(X) + |∇Φ(X)|ε∇ · ∇Φ(X)

|∇Φ(X)|ε

∣

∣

∣

∣

∣

∣

≤ C(||Φ||3)(τk1 + hk2).(3.11)

We will prove inequality (3.11) subsequently estimating differences of particular terms
of the left hand side. Since Φ ∈ C∞(Q) it is clear that

Φn
p − Φn−1

p

τ
= Φt(ξ, xp),
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where ξ ∈< tn−1, tn >. Because |ξ − t| ≤ τ and |x − xp| ≤
√

2h we have

∣

∣

∣

∣

∣

Φn
p − Φn−1

p

τ
− Φt(X)

∣

∣

∣

∣

∣

≤ |Φt(ξ, xp) − Φt(t, x)| ≤ C(‖Φ‖2)(τ + h).

The second term in (3.11) we can rewrite into the form

II = − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

Φn
q − Φn

p

h
ds.

Let us omit, for a moment, the upper time index for Φ, and let us use on each
edge epq for the difference term

Φq−Φp

h
the Taylor expansion in a similar way as it

is used to derive usual central difference approximaton. Let xp = (x1p, x2p) and
xqi

= (x1qi
, x2qi

) for i = 1, . . . , 4. Let s = (s1, s2) be a point on the boundary of
co-volume p. Then

for a point s ∈ epq1
we have s = (x1p +

h

2
, x2p + t

h

2
), t ∈< −1, 1 >,(3.12)

for a point s ∈ epq2
we have s = (x1p + t

h

2
, x2p +

h

2
), t ∈< −1, 1 >,(3.13)

for a point s ∈ epq3
we have s = (x1p − h

2
, x2p + t

h

2
), t ∈< −1, 1 >,(3.14)

for a point s ∈ epq4
we have s = (x1p + t

h

2
, x2p − h

2
), t ∈< −1, 1 > .(3.15)

Then for epq1
and epq3

we have

Φq − Φp

h
=

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x1q − x1p)(x2q − s2) + O(h2)(3.16)

and for epq2
and epq4

similarly

Φq − Φp

h
=

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x2q − x2p)(x1q − s1) + O(h2).(3.17)

Involving these relations in term II and using

∑

q∈N(p)

an−1
pq (w)

bn−1
p (w)

= 4(3.18)

which holds for any function w ∈ B(Q) on a uniform rectangular grid due to (2.9)-
(2.10), we obtain

II = − 1

bn−1
p m(p)

∑

q=1,3

∫

epq

an−1
pq

(

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x1q − x1p)(x2q − s2)

)

ds−

1

bn−1
p m(p)

∑

q=2,4

∫

epq

an−1
pq

(

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x2q − x2p)(x1q − s1)

)

ds+
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C(||Φ||3)h = − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

∂Φ(s)

∂ν
ds

− 1

bn−1
p m(p)

∑

q=1,3

∫

epq

an−1
pq 2Φxy(s) · sgn(x1q − x1p)(x2q − s2)ds

− 1

bn−1
p m(p)

∑

q=2,4

∫

epq

an−1
pq 2Φxy(s) · sgn(x1q − x1p)(x2q − s2)ds + C(||Φ||3)h =

= II1 + II2 + II3 + C(||Φ||3)h.

Using parametrizations (3.12)-(3.15) we can rearrange term II2 (term II3 can be
estimated analogously) on the edge epq1

into the following form

− 2h

2bn−1
p m (p)

1
∫

−1

an−1
pq1

Φxy(x1p +
h

2
, x2p + t

h

2
)(−t

h

2
)dt

and on the edge epq3
similarly

− 2h

2bn−1
p m (p)

1
∫

−1

an−1
pq3

Φxy(x1p − h

2
, x2p + t

h

2
)(t

h

2
)dt.

We can collect these two terms together, and using the fact that Φ ∈ C∞(Q) we have

|II2| ≤

∣

∣

∣

∣

∣

∣

h2

2bn−1
p m (p)

1
∫

−1

t
(

an−1
pq1

− an−1
pq3

)

Φxy(x1p +
h

2
, x2p + t

h

2
)dt+

h2

2bn−1
p m (p)

1
∫

−1

tan−1
pq3

(

Φxy(x1p +
h

2
, x2p + t

h

2
) − Φxy(x1p − h

2
, x2p + t

h

2

)

dt

∣

∣

∣

∣

∣

∣

≤ ‖Φ‖2

|an−1
pq1

− an−1
pq3

|
2bn−1

p

+ C(‖Φ‖3)
an−1

pq3

2bn−1
p

h.

Putting all together we obtain

|II2| + |II3| ≤ C(||Φ||2)h
an−1

pq3
+ an−1

pq4

bn−1
p

+(3.19)

C(||Φ||3)
|an−1

pq1
− an−1

pq3
| + |an−1

pq2
− an−1

pq4
|

bn−1
p

.
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First term on the right hand side can be estimated using (3.18) and we obtain O(h)
term. In the second term we estimate the difference an−1

pq1
− an−1

pq3
(further part can be

treated anagously). We have

|an−1
pq1

− an−1
pq3

| =
1

2

∣

∣

∣

∣

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

− 1

|∇ΦT31
|ε

− 1

|∇ΦT32
|ε

∣

∣

∣

∣

(3.20)

where T11 = T 1
pq1

, T12 = T 2
pq1

are two triangles corresponding to points xp, xq1
and

T31 = T 1
pq3

, T32 = T 2
pq3

are two triangles corresponding to points xp, xq3
. We can put

together terms with T11 and T31 (analogously it can be done for terms with T12 and
T32) and then use our approximation of gradient, cf. (2.11), to get

1

|∇ΦT11
|ε

− 1

|∇ΦT31
|ε

=
|∇ΦT11

|2 − |∇ΦT31
|2

|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)
=

(Φ(xq1
) − Φ(xp))

2 − (Φ(xq3
) − Φ(xp))

2

h2|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)
+

(2(Φ(xr1
) − Φ(xm1

)))2 − (2(Φ(xr2
) − Φ(xm3

)))2

h2|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)
.

Because of the properties of Φ we have

Φ(xq1
) − Φ(xp)

h
= Φx(ξ),

Φ(xq3
) − Φ(xp)

h
= Φx(η),

2(Φ(xr1
) − Φ(xm1

))

h
= Φy(ζ),

2(Φ(xr2
) − Φ(xm3

))

h
= Φy(θ),(3.21)

where ξ lays on abscissa with end points xp, xq1
, η lays on abscissa with end points

xp, xq3
, ζ lays on abscissa with end points xm1

, xr1
and θ lays on abscissa with end

points xm3
, xr2

. Employing these facts and again the smoothness properties of Φ we
have

| 1

|∇ΦT11
|ε

− 1

|∇ΦT31
|ε
| ≤

|(Φx(ξ) − Φx(η))(Φx(ξ) + Φx(η))| + |(Φy(ζ) − Φy(θ))(Φy(ζ) + Φy(θ))|
|∇ΦT11

|ε|∇ΦT31
|ε(|∇ΦT11

|ε + |∇ΦT31
|ε)

≤

√
2||Φ||2h(|∇ΦT11

| + |∇ΦT31
|)

|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)
≤ C(||Φ||3)h

|∇ΦT11
|ε|∇ΦT31

|ε
.

If we estimate also the difference for terms with T12 and T32 in (3.20) and similarly
the term |an−1

pq2
− an−1

pq4
| in (3.19) finally we have

|II2| + |II3| ≤ C(||Φ||3)h +
C(||Φ||3)h

bn−1
p

(

1

|∇ΦT11
|ε|∇ΦT31

|ε
+

1

|∇ΦT12
|ε|∇ΦT32

|ε

+
1

|∇ΦT21
|ε|∇ΦT41

|ε
+

1

|∇ΦT22
|ε|∇ΦT42

|ε

)

≤ C(||Φ||3)h +
C(||Φ||3)h

ε
.
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Now, the term II1 can be written as follows

II1 = − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

∂Φ(tn, s)

∂ν
ds

= − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

1

|∇Φ(tn−1, s)|ε
∂Φ(tn, s)

∂ν
ds

− 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

(

an−1
pq − 1

|∇Φ(tn−1, s)|ε

)

∂Φ(tn, s)

∂ν
ds = III1 + III2.

Similar approach as above can also be used to estimate term III2. We again for
a moment omit the time variable in function Φ, and estimate the terms along the
oposite sides of the co-volume p boundary. Then for the edge epq1

we have

an−1
pq1

− 1

|∇Φ(s)|ε
=

1

2

(

1

|∇ΦT11
|ε

− 1

|∇Φ(s)|ε

)

+
1

2

(

1

|∇ΦT12
|ε

− 1

|∇Φ(s)|ε

)

,

and now we rearrange the first term containing T11 as follows

1

|∇Φ(s)|ε
− 1

|∇ΦT11
|ε

=
|∇ΦT11

|2 − |∇Φ(s)|2
|∇ΦT11

|ε|∇Φ(s)|ε(|∇ΦT11
|ε + |∇Φ(s)|ε)

=

(
Φq1

−Φp

h
)2 − (Φx(s))2 + (

2(Φr1
−Φm1

)

h
)2 − (Φy(s))2

|∇ΦT11
|ε|∇Φ(s)|ε(|∇ΦT11

|ε + |∇Φ(s)|ε)
=

(
Φq1

−Φp

h
) − Φx(s))(

Φq1
−Φp

h
+ Φx(s)) + (

2(Φr1
−Φm1

)

h
− Φy(s))(

2(Φr1
−Φm1

)

h
+ Φy(s))

|∇ΦT11
|ε|∇Φ(s)|ε(|∇ΦT11

|ε + |∇Φ(s)|ε)
.

We applay again the Taylor expansion using parametrization (3.12) and get

Φq1
− Φp

h
− Φx(s) = 2Φxy(s)t

h

2
+ O(h2),

2(Φr1
− Φm1

)

h
− Φy(s) = Φyy(s)

h

2
(1 − 2t) + O(h2),

and the same can be done also for the second term containing T12. Now we give
several notations to simplify integrals in term III2. For both triangles T1i, i = 1, 2
we define

n1i(s) =

(

2Φxy(s)t
h

2
+ O(h2)

)(

Φq1
− Φp

h
+ Φx(s)

)

,

m1i(s) =

(

Φyy(s)
h

2
(1 − 2t) + O(h2)

)(

2(Φr1
− Φm1

)

h
+ Φy(s)

)

,
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p1i(s) = |∇ΦT1i
|ε|∇Φ(s)|ε (|∇ΦT1i

|ε + |∇Φ(s)|ε) .

Using these notations, the parametrization (3.12) and the fact that ∂Φ(s)
∂ν

= Φx(s),
we get that the integral along epq1

in term III2 is equal to

h

2

∑

i=1,2

∫ 1

−1

Φx(s)
m1i(s) + n1i(s)

p1i(s)
dt.(3.22)

For the edge epq3
we similarly obtain (denoting variable on this edge by z)

an−1
pq3

− 1

|∇Φ(z)|ε
=

1

2

(

1

|∇ΦT31
|ε

− 1

|∇Φ(z)|ε

)

+
1

2

(

1

|∇ΦT32
|ε

− 1

|∇Φ(z)|ε

)

,

1

|∇Φ(z)|ε
− 1

|∇ΦT31
|ε

=

(
Φp−Φq3

h
− Φx(z))(

Φp−Φq3

h
+ Φx(z)) + (

2(Φr2
−Φm3

)

h
− Φy(z))(

2(Φr2
−Φm3

)

h
+ Φy(z))

|∇ΦT31
|ε|∇Φ(z)|ε(|∇ΦT31

|ε + |∇Φ(z)|ε)

and using again

Φp − Φq3

h
− Φx(z) = 2Φxy(z)t

h

2
+ O(h2),

2(Φr2
− Φm3

)

h
− Φy(z) = Φyy(z)

h

2
(1 − 2t) + O(h2),

we can define

n3i(z) = (2Φxy(z)t
h

2
+ O(h2))(

Φp − Φq3

h
) + Φx(z),

m3i(z) = (Φyy(z)
h

2
(1 − 2t) + O(h2))(

2(Φr2
− Φm3)

h
+ Φy(z)),

p3i(z) = |∇ΦT3i
|ε|∇Φ(z)|ε(|∇ΦT3i

|ε + |∇Φ(z)|ε).

Now we get (notice that ∂Φ(z)
∂ν

= −Φx(z)) that the integral along epq3
in term III2 is

equal to

−h

2

∑

i=1,2

∫ 1

−1

Φx(z)
n3i(z) + m3i(z)

p3i(z)
dt.(3.23)

We can put together terms in (3.22) and (3.23) to obtain

h

2

∑

i=1,2

∫ 1

−1

Φx(s)
m1i(s) + n1i(s)

p1i(s)
− Φx(z)

m3i(z) + n3i(z)

p3i(z)
dt
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=
h

2

∑

i=1,2

∫ 1

−1

((Φx(s) − Φx(z))
m1i(s) + n1i(s)

p1i(s)

+
h

2

∑

i=1,2

∫ 1

−1

Φx(z)
m1i(s) + n1i(s) − (m3i(z) + n3i(z))

p3i(z)
dt

+
h

2

∑

i=1,2

∫ 1

−1

Φx(z) ((m1i(s) + n1i(s))

(

1

p1i(s)
− 1

p3i(z)

)

dt = IV1 + IV2 + IV3.

In term IV1 we can see that

∣

∣

∣

∣

m1i(s) + n1i(s)

p1i(s)

∣

∣

∣

∣

≤ C(||Φ||3)h
|∇ΦT1i

|ε|∇Φ(s)|ε
≤ C(||Φ||3)h

ε|∇ΦT1i
|ε

.(3.24)

Since ε is fixed in our model and numerical scheme we get

|IV1| ≤ C(||Φ||3)h3

(

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

,

where C depedns on ε. This dependence will not be explicitely stated in further
estimates.
Term IV2 we can estimate similarly. First we have

|m1i(s) − m3i(z)| ≤

∣

∣

∣

∣

(

Φyy(s)
h

2
(1 − 2t) + O(h2)

)(

2(Φr1
− Φm1

)

h
+ Φy(s)

)

−

(

Φyy(z)
h

2
(1 − 2t) + O(h2)

)(

2(Φr2
− Φm3

)

h
+ Φy(z)

)∣

∣

∣

∣

≤

∣

∣

∣

∣

(Φyy(z) − Φyy(s))
h

2
(1 − 2t) + O(h2)

∣

∣

∣

∣

∣

∣

∣

∣

2(Φr2
− Φm3

)

h
+ Φy(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

Φyy(s)
h

2
(1 − 2t) + O(h2)

∣

∣

∣

∣

∣

∣

∣

∣

(

2(Φr2
− Φm3

)

h
+ Φy(z)

)

−
(

2(Φr1
− Φm1

)

h
+ Φy(s)

)∣

∣

∣

∣

and analogously we can do it for term |n1i − n3i|. Then we get

|IV2| ≤ C(||Φ||3)h3
∑

i=1,2

∫ 1

−1

|Φx(z)|
( |∇ΦT3i

|ε + |∇Φ(z)|ε
p3i(z)

)

+C(||Φ||2)h3
∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)
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≤ C(||Φ||3)h3

(

1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

+
C(||Φ||3)h3

ε

(

1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

≤ C(||Φ||3)h3

(

1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

.

For term IV3 we get due to (3.24)

|IV3| ≤
h

2

∑

i=1,2

∫ 1

−1

|Φx(z)| |(m1i(s) + n1i(s)| |p3i(z) − p1i(s)|
p1i(s)p3i(z)

dt

≤ C(||Φ||3)h2
∑

i=1,2

∫ 1

−1

|Φx(z)| |p3i(z) − p1i(s)|
p3i(z)|∇Φ(s)|ε|∇ΦT1i

|ε
dt.

Now we first estimate

|p3i(z) − p1i(s)| =
∣

∣|∇ΦT3i
|2ε|∇Φ(z)|ε + |∇ΦT3i

|ε|∇Φ(z)|2ε)

−
(

|∇ΦT1i
|2ε|∇Φ(s)|ε + |∇ΦT1i

|ε|∇Φ(s)|2ε
)∣

∣

≤
∣

∣|∇ΦT3i
|2ε − |∇ΦT1i

|2ε
∣

∣ |∇Φ(s)|ε + |∇ΦT1i
|ε
∣

∣|∇Φ(s)|2ε − |∇Φ(z)|2ε
∣

∣

+|∇ΦT3i
|2ε |∇Φ(z)|ε − |∇Φ(s)|ε| + |∇Φ(z)|2ε ||∇ΦT3i

|ε − |∇ΦT1i
|ε|

≤ C(||Φ||3)h ||∇Φ(s)|ε + |∇ΦT1i
|ε| + C(||Φ||3)h

(

|∇ΦT3i
|2ε + |∇Φ(z)|2ε

)

.

Using this estimate we have

|IV3| ≤ C(||Φ||3)h4
∑

i=1,2

∫ 1

−1

|Φx(z)| ||∇Φ(s)|ε + |∇ΦT1i
|ε|

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt

+C(||Φ||3)h3
∑

i=1,2

∫ 1

−1

|Φx(z)|
(

|∇ΦT3i
|2ε + |∇Φ(z)|2ε

)

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt

≤ C(||Φ||3)h4
∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)

(

1

|∇ΦT1i
|ε

+
1

|∇Φ(s)|ε

)

+

C(||Φ||3)h3
∑

i=1,2

∫ 1

−1

|Φx(z) − Φx(s)|(|∇ΦT3i
|ε + |∇Φ(z)|ε)2

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt+

C(||Φ||3)h3
∑

i=1,2

∫ 1

−1

|Φx(s)|(|∇ΦT3i
|ε + |∇Φ(z)|ε)2

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt
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≤ C(||Φ||3)h4

ε

∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)

+
C(||Φ||3)h4

ε

∑

i=1,2

∫ 1

−1

|∇ΦT3i
|ε + |∇Φ(z)|ε

|∇ΦT3i
|ε|∇Φ(z)|ε|∇ΦT1i

|ε
dt+

C(||Φ||3)h3
∑

i=1,2

∫ 1

−1

(|∇ΦT3i
|ε + |∇Φ(z)|ε)

|∇ΦT3i
|ε|∇Φ(z)|ε|∇ΦT1i

|ε
dt ≤

C(||Φ||3)h4

ε2

(

1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

+

C(||Φ||3)h4

ε2

(

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

+
C(||Φ||3)h3

ε

(

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

≤

C(||Φ||3)h4

(

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

+ C(||Φ||3)h3

(

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

.

If we use all these estimates for all edges in III2 and use the relation (3.18) between
bn−1
p and an−1

pq finally we obtain

|III2| ≤ C(||Φ||3)h + C(||Φ||3)h2

In term III1 we can use Green’s theorem to obtain

III1 = − 1

bn−1
p m(p)

∫

p

∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

= − 1

m(p)

∫

p

(

1

bn−1
p

− |∇Φ(tn−1, w)|ε
)

∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

− 1

m(p)

∫

p

|∇Φ(tn−1, w)|ε∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

= − 1

m(p)

∫

p

(

1

bn−1
p

− |∇Φ(tn−1, w)|ε
)

∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

−|∇Φ(tn−1, ξ)|ε∇ ·
( ∇Φ(tn, ξ)

|∇Φ(tn−1, ξ)|ε

)

= V1 + V2,

where ξ is some point in co-volume p from the mean value theorem. First we estimate
the difference (we omit again for a moment the variable tn−1)

∣

∣

∣

∣

1

bn−1
p

− |∇Φ(w)|ε
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
|∇Φ(w)|ε

− bn−1
p

bn−1
p

1
|∇Φ(w)|ε

∣

∣

∣

∣

∣

.(3.25)
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We can use (2.9) and (2.10) in the numerator of (3.25) and get

1

|∇Φ(w)|ε
− bn−1

p =

=
1

Np

∑

q∈N(p)

1

2

((

1

|∇Φ(w)|ε
− 1

|∇Φn−1
T 1

pq
|ε

)

+

(

1

|∇Φ(w)|ε
− 1

|∇Φn−1
T 2

pq
|ε

))

.

From all terms in the sum we present the estimation of only one (concerning the
triangle T11 = T 1

pq1
). Other terms can be treated in an analogous way. We use (2.11)

and (3.21) to obtain

∣

∣

∣

∣

1

|∇ΦT11
|ε

− 1

|∇Φ(w)|ε

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

|∇ΦT 1
pq1

|2 − |∇Φ(w)|2

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(
Φq1

−Φp

h
)2 − (Φx(w))2 + (

2(Φr1
−Φm1

)

h
)2 − (Φy(w))2

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(Φx(ξ) − Φx(w))(Φx(ξ) + Φx(w)) + (Φy(ζ) − Φy(w))(Φy(ζ) + Φy(w))

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

.

Now using the properties of Φ and the inequality a + b ≤
√

2
√

a2 + b2 + ε2 holding
for all a ≥ 0, b ≥ 0, we conclude

∣

∣

∣

∣

1

|∇ΦT11
|ε

− 1

|∇Φ(w)|ε

∣

∣

∣

∣

≤ C(||Φ||3)h
|∇ΦT11

|ε|∇Φ(w)|ε
.

Employing this type of estimates in (3.25) we have

∣

∣

∣

∣

1

bn−1
p

− |∇Φ(y)|ε
∣

∣

∣

∣

≤ C(||Φ||3)h.(3.26)

Now, the term V1 we can rearrange as follows

V1 = − 1

m(p)

∫

p

(

1

bn−1
p

− |∇Φ(tn−1, w|ε
)

∆Φ(tn, w)

|∇Φ(tn−1, w)|ε
dw

− 1

m(p)

∫

p

(

1

bn−1
p

− |∇Φ(tn−1, w|ε
)

∇Φ(tn, w) · ∇
(

1

|∇Φ(tn−1, w)|ε

)

dw = V12 + V13

Estimation of term V12 is straightforward, due to the properties of Φ and the inequality
(3.26) we get

|V12| ≤ C(||Φ||2)
h

ε
≤ C(||Φ||2)h.
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In term V13 we use

∇
(

1

|∇Φ(tn−1, w)|ε

)

= − 1

|∇Φ(tn−1, w)|3ε
Ψ(tn−1, w),

where for two dimensional problem if Z = (tn−1, w) it holds

Ψ(Z) =

(

Φx(Z)Φxx(Z) + Φy(Z)Φxy(Z)
Φx(Z)Φxy(Z) + Φy(Z)Φyy(Z)

)

with the property

|Ψ(Z)| ≤ C(‖Φ‖2)|∇Φ(Z)|.(3.27)

Now for V13 again taking into account the estimate (3.26) and the properties of Φ, we
have

|V13| ≤ C(||Φ||2)h
1

m(p)

∫

p

|∇Φ(tn, w)| 1

|∇Φ(tn−1, w)|2ε
dw

≤ C(||Φ||2)h
1

m(p)

∫

p

|∇Φ(tn, w) ± |∇Φ(tn−1, w)|| 1

|∇Φ(tn−1, w)|2ε
dw

≤ C(||Φ||2)h
(

τ

ε2
+

1

ε

)

≤ C(||Φ||2)h + C(||Φ||2, ||Φ||1)hτ.

Finally we couple together the term V2 and the last term of the left hand side of the
inequality (3.11) and define

V I = −|∇Φ(tn−1, ξ)|ε∇ ·
( ∇Φ(tn, ξ)

|∇Φ(tn−1, ξ)|ε

)

+ |∇Φ(X)|ε∇ ·
( ∇Φ(X)

|∇Φ(X)|ε

)

where X = (t, x) and the points x and ξ belong to co-volume p and t ∈< tn−1, tn >.
Since

|∇Φ(X)|ε∇ ·
( ∇Φ(X)

|∇Φ(X)|ε

)

= ∆Φ(X) − ∇Φ(X) · Ψ(X)

|∇Φ(X)|2ε
,

where the vector Ψ is defined as above, we obtain

|V I| ≤
∣

∣

∣

∣

−∆Φ(tn, ξ) +
∇Φ(tn, ξ) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
+ ∆Φ(X) − ∇Φ(X) ·Ψ(X)

|∇Φ(X)|2ε

∣

∣

∣

∣

.

Because |t − tn| ≤ τ and |x − ξ| ≤
√

2h, we immediately have

|∆Φ(X) − ∆Φ(tn, ξ)| ≤ C(‖Φ‖3)(τ + h)

The rest terms we rearrange as follows

∇Φ(tn, ξ) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
± ∇Φ(X) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
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±∇Φ(X) · Ψ(X)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) ·Ψ(X)

|∇Φ(X))|2ε
.

Using the properties of Φ, Ψ and (3.27) we have
∣

∣

∣

∣

∇Φ(tn, ξ) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε

∣

∣

∣

∣

≤

C(||Φ||3)(h + τ)|∇Φ(tn−1, ξ|
|∇Φ(tn−1, ξ)|2ε

≤ C(||Φ||3)(h + τ).

Now we denote by W = (tn−1, ξ) and we can use

|Ψ(W ) − Ψ(X)|

=

∣

∣

∣

∣

Φx(W )Φxx(W ) + Φy(W )Φxy(W ) − Φx(X)Φxx(X) − Φy(X)Φxy(X)
Φx(W )Φxy(W ) + Φy(W )Φyy(W ) − Φx(X)Φxy(X) − Φy(X)Φyy(X)

∣

∣

∣

∣

≤ C (Φx(W )Φxx(W ) + Φy(W )Φxy(W ) − Φx(X)Φxx(X) − Φy(X)Φxy(X)|+

+|Φx(W )Φxy(W ) + Φy(W )Φyy(W ) − Φx(X)Φxy(X) − Φy(X)Φyy(X)|)

≤ C (||Φ||3) (h + τ).

Then we have
∣

∣

∣

∣

∇Φ(X) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) ·Ψ(X)

|∇Φ(tn−1, ξ)|2ε

∣

∣

∣

∣

≤ C(||Φ||3)(h + τ)|∇Φ(X)|
|∇Φ(tn−1, ξ)|2ε

≤ C(||Φ||3)(h + τ)
|∇Φ(X) ± |∇Φ(tn−1, ξ)|

|∇Φ(tn−1, ξ)|2ε
≤ C(||Φ||3)

(

(h + τ)2

ε2
+

h + τ

ε

)

.

Finally using (3.27) we subsequently get
∣

∣

∣

∣

∇Φ(X) · Ψ(X)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) · Ψ(X)

|∇Φ(X))|2ε

∣

∣

∣

∣

≤ |∇Φ(X) ·Ψ(X)|
∣

∣

∣

∣

|∇Φ(X)|2 − |∇Φ(tn−1, ξ)|2
|∇Φ(X)|2ε|∇Φ(tn−1, ξ)|2ε

∣

∣

∣

∣

≤ C(||Φ||2)(h + τ)|∇Φ(X)|2
(

1

|∇Φ(X)|ε|∇Φ(tn−1, ξ)|2ε
+

1

|∇Φ(X)|2ε|∇Φ(tn−1, ξ)|ε

)

≤ C(||Φ||2)(h + τ)

( |∇Φ(X) ±∇Φ(tn−1, ξ)|
|∇Φ(tn−1, ξ)|2ε

+
1

|∇Φ(tn−1, ξ)|ε

)

≤ C(||Φ||3)
(

(h + τ)2

ε2
+

h + τ

ε

)

≤ C(||Φ||3)((h + τ)2 + (h + τ)),

what ends the proof.
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[25] K. Mikula, D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature
and anisotropy, SIAM J. Appl. Math., 61 (2001) pp. 1473–1501.
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