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In this paper a semi-implicit finite volume method is proposed to solve the applications 
with moving interfaces using the approach of level set methods. The level set advection 
equation with a given speed in normal direction is solved by this method. Moreover, 
the scheme is used for the numerical solution of eikonal equation to compute the 
signed distance function and for the linear advection equation to compute the so-called
extension speed [1]. In both equations an extrapolation near the interface is used in our 
method to treat Dirichlet boundary conditions on implicitly given interfaces. No restrictive 
CFL stability condition is required by the semi-implicit method that is very convenient 
especially when using the extrapolation approach. In summary, we can apply the method 
for the numerical solution of level set advection equation with the initial condition given 
by the signed distance function and with the advection velocity in normal direction given 
by the extension speed. Several advantages of the proposed approach can be shown for 
chosen examples and application. The advected numerical level set function approximates 
well the property of remaining the signed distance function during whole simulation time. 
Sufficiently accurate numerical results can be obtained even with the time steps violating 
the CFL stability condition.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The level set methods are a popular numerical tool to treat applications with moving interfaces [27,26]. The advantages 
of level set methods for these applications are known and well discussed in literature, see e.g. [28,30,27,1,6,26,20,25,15,7]. 
To track a (d − 1)-dimensional dynamic interface, one can use a d-dimensional (possibly fixed and rectangular) grid that is 
used to solve related PDEs. The moving interface is then described implicitly as the zero level set of the so-called level set 
function obtained by the solution of a specific advection equation. The advection velocity in this equation is usually given in 
the normal direction to the evolving interface. For the level set methods, the advection speed in normal direction must be 
defined everywhere in the d-dimensional computational domain, and it has to coincide with the prescribed normal velocity 
at the moving interface.

There exist various high quality numerical methods for solving advection level set equations, see e.g. [27,26,25,12,22]. 
However, there are several important points which must be solved when treating practical applications.
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First of all, the initial level set function must be given appropriately. A typical choice for such function is a signed distance 
to the interface which is usually obtained by solving the eikonal equation [27,26] with zero Dirichlet boundary condition at 
the interface. The position of the interface coincides only rarely with the nodes of the d-dimensional grid, therefore a special 
treatment in grid points near the interface is necessary. Usually a kind of “brute force” method for assigning the distances 
near the interface is applied [27,1]. To avoid such brute force method we propose to use an extrapolation approach for the 
grid nodes near the interface. Such extrapolation technique is used for boundary conditions on implicitly given interfaces in 
several numerical methods like immersed interface methods [17,20], ghost fluid methods [6,14] or Cartesian grid methods 
[18,5,25].

The next important point is the choice of advection velocity for the level set method. The so-called “natural velocity” 
[1], or its normal component, is usually given in the whole computational domain, see e.g. our application in Section 4.3. In 
many applications the natural velocity is given only partially like on one side of the interface [21,7] or even on the interface 
only. Therefore some procedure to extend the natural velocity away from the position of interface to the whole domain 
must be at disposal in general.

In any case, the usage of inappropriate velocity in the advection equation can yield solutions with very steep and/or 
flat gradient in subregions of the computational domain which may deteriorate the accuracy of numerical solutions [28,
1,16,15,10]. To avoid it, two main approaches are incorporated into the level set method. On the one hand, the so called 
reinitialization is used in order to describe the interface for whole simulation time with the signed distance function, see 
e.g. [28,16,10,15]. On the other hand, the so called “extension velocity” or “extension speed” [1] is constructed and used 
instead of the natural velocity to keep the evolving level set function (theoretically) equal to a signed distance during the 
whole interface evolution [30,1,7].

In our method we adopt the approach with the extension velocity. To compute it, an auxiliary linear advection equation 
with Dirichlet boundary condition (representing the natural speed) at the implicitly given interface is solved. Again, we 
prefer the extrapolation approach near the interface to treat such Dirichlet boundary conditions for the linear advection 
equation alternatively to some brute force method [30,1,2]. Consequently, both the (re-)initialization and the extension 
speed computation can be treated successfully by the extrapolation approach proposed in this paper.

The last but not least point which we discuss here is the precision and stability of the numerical solution obtained with 
the level set method. Clearly, high resolution methods without restrictive stability condition are desirable for practical ap-
plications. This is a general requirement when solving the advection equations, but even a must when treating the Dirichlet 
boundary conditions on implicitly given interface by an extrapolation technique.

When using the extrapolation with any explicit scheme having a natural CFL time step restriction (which is common for 
hyperbolic problems), one necessarily arrives to troubles, cf. the so called small cell problem in the Cartesian grid methods 
[18,5]. The reason is that the time step for the explicit scheme must be proportional to a shortest distance of the implicitly 
given interface to grid points which can be, in fact, arbitrary small. That makes standard explicit methods impractical for 
this type of problems and requires additional treatment inside the scheme [5,25,9,7]. On the other hand, the implicit (or 
semi-implicit) schemes can handle this phenomenon straightforwardly since they do not impose such restrictive conditions 
for coupling the temporal and spatial grid resolutions.

In this paper we use the second order semi-implicit finite volume method proposed in [22–24] and couple it with the 
extrapolation technique near the implicitly given interface. Moreover, we introduce to such scheme a different upwind type 
reconstruction of numerical solution on finite volume faces that is based on [12,13] which makes the method suitable for 
solving the stationary problems arising in the signed distance and extension speed computations. The proposed method is 
applied also to the advection level set equation for moving interface, therefore all three basic components of the level set 
method are treated in the same manner by using the proposed semi-implicit finite volume method.

The paper is organized as follows. In Section 2 we introduce partial differential equations (PDEs) used in the level set 
method and discretized by our semi-implicit finite volume scheme. In Section 3 we derive the proposed method for general 
advection equation and explain its usage in the case of moving interfaces. In Section 4 we present numerical experiments 
showing the properties of the proposed level set method.

2. PDEs for the level set method

Let Γ (t) ⊂ Rd be a closed interface that evolves in time t ∈ [0, T ] in d-dimensional space. The movement of evolving 
interface Γ (t) can be defined by describing the movement of all points located at the interface. More precisely, let Γ (0) be 
a given initial position, then one requires

Γ (t) = {
X(t); X(0) ∈ Γ (0)

}
, t ∈ [0, T ], (1)

where a trajectory X(t) describes the position of a particle at time t located initially at X(0) ∈ Γ (0). We consider here only 
closed interfaces Γ (t). By Ω(t) ⊂ Rd we denote a domain that is surrounded by the interface, i.e. ∂Ω(t) ≡ Γ (t).

We suppose that a velocity �V is given in advance at any time t ∈ [0, T ] for each particle γ ∈ Γ (0). Having such “natural” 
velocity �V [1], the trajectories X(t) can be determined by solving ordinary differential equations

Ẋ(t) = �V (
X(t), t

)
, t ∈ [0, T ], X(0) ∈ Γ (0). (2)
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Note that the choice of trajectories X(t) in (1) to define Γ (t) is not unique. There exist many vector functions �V in (2)
that determine an identical evolving interface Γ (t) in (1). Therefore, we consider a unique choice of �V in (2) by prescrib-
ing only the velocity in the direction normal to the interface. This is standard in level set methods, while in Lagrangian 
numerical approaches also a tangential movement of particles play an important role, cf. e.g. [3]. So, we restrict further 
considerations only to the velocities in normal direction and thus we assume that �V is given in the form

�V (γ , t) = S(γ , t) �N(γ ), t ∈ [0, T ], γ ∈ Γ (t). (3)

Here �N denotes a normal outward vector to ∂Ω(t) and the function S represents the natural speed in normal direction 
known in advance.

Next we describe the evolving interface Γ (t) using level set method [27,26]. To do so we suppose that Γ (t) ⊂ (−L, L)d ⊂
Rd for some fixed L > 0, t ∈ [0, T ], and we search for a level set function φ = φ(x, t), x ∈ (−L, L)d , t ∈ [0, T ], such that

x ∈ Γ (t) ⇔ φ(x, t) = 0. (4)

Moreover, we require the “sign property”

φ(x, t) < 0 ⇔ x ∈ Ω(t), (5)

and the gradient ∇φ(x, t) well-defined almost everywhere such that∣∣∇φ(x, t)
∣∣ 	= 0 almost everywhere in (−L, L)d × [0, T ]. (6)

The idea is to find the function φ by solving the level set advection equation for the motion of interface in normal 
direction [27,26,11]

∂tφ + s�n · ∇φ = 0, φ(x,0) = φ0(x), �n = ∇φ

|∇φ| (7)

for x ∈ (−L, L)d and t ∈ [0, T ]. Note that �n(γ , t) = �N(γ ) for γ ∈ Γ (t), and to be compatible with (3) one has to require 
s(γ , t) = S(γ , t) for γ ∈ Γ (t).

As already noticed in Introduction, the choice of the speed function s(x, t) and the initial function φ0(x) in (7) is impor-
tant. The appropriate choice will be explained in the sequel, similarly the boundary conditions will be commented later.

The function φ0(x) in (7) must be chosen such that (4)–(6) are valid for t = 0. There exist infinitely many functions φ0

that define implicitly an identical initial interface Γ (0). In practice the signed distance function is a typical choice. This 
function can be found as a viscosity solution of the following nonlinear boundary value problem for the eikonal equation 
[27,26],∣∣∇φ0

∣∣ = 1, x ∈ (−L, L)d, φ0(γ ) = 0, γ ∈ Γ (0). (8)

In our approach, we will look for the function φ0 in (8) as a stationary solution of the following nonlinear evolutionary 
problem

∂τΦ ± ∇Φ

|∇Φ| · ∇Φ = ±1, Φ(γ , τ ) = 0, γ ∈ Γ (0), Φ(x,0) = Φ0(x). (9)

Here τ ≥ 0 is an artificial time relaxation variable. The choice of plus respectively minus sign in (9) depends on which side 
of the interface we solve the equation. The initial function Φ0(x) for the eikonal equation with time relaxation can be set, 
e.g., to zero for all x ∈ (−L, L)d . If a stationary solution of (9) is obtained at some time τ = τ̃ , then one sets φ0(x) = Φ(x, τ̃ ).

Concerning the choice of function s in (7), there exist infinitely many speed functions that coincides with S at the 
interface. Following [30,1] we define the extension speed s at each fixed time t as a solution of the following boundary 
value problem

±�n · ∇s = 0, s(γ , t) = S(γ , t), γ ∈ Γ (t). (10)

Note that Eq. (10) must be solved simultaneously with (7). The choice of plus respectively minus sign in (10) depends on 
which side of the interface we solve the equation. The extension speed s can be seen as a constant extrapolation of the 
prescribed natural speed S along the vector field �n away from the interface, cf. [30,1,2,9].

The choice of s according to (10) is motivated by a property that solving the coupled problem (7) and (10) one can 
prove (at least for smooth cases [30,1]) that |∇φ(x, t)| = 1 if φ0 in (7) fulfills (8). Consequently, if the level set function φ is 
initially the signed distance function to Γ (0), then it remains the signed distance function to Γ (t) also for t > 0.

In our approach, at any fixed time t we look for the function s in (10) as a stationary solution of the following evolu-
tionary problem

∂τ w ± �n · ∇w = 0, w(γ , τ ) = S(γ , t), γ ∈ Γ (t), (11)
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where the choice of plus respectively minus sign is equivalent to a choice of the sign in (10). If a stationary solution of (11)
is obtained at some relaxation time τ̃ , then one sets s(x, t) = w(x, τ̃ ). As an initial condition for w(x, 0) in the advection 
equation (11) at some fixed physical time t2, one can use w(x, 0) = s(x, t1) for some t1 < t2.

Summarizing, our level set method for the advective motion of interfaces consists in solving numerically the evolutionary 
equations (7), (9), and (11). In the case of Eqs. (9) and (11) we look for stationary solutions, Eq. (7) describes the dynamically 
moving interface. It is clear that all of these equations can be included into a general nonlinear initial-boundary value 
problem of this form

∂t u + �v · ∇u = c, u(x,0) = u0(x), x ∈ D, t ≥ 0 (12)

for the unknown function u = u(x, t). The domain D will be explained in the sequel. The vector field �v in (12) may be 
given, as in (11), or it may depend on the solution u, as in (7) and (9). The right hand side c represents a real constant, 
which is equal to ±1 in case of (9) and zero in other two cases.

In the next section we will suggest a numerical discretization scheme of (12) that will be common for all the problems 
(7), (9), and (11).

Remark 1. Concerning the domain D , one has D = (−L, L)d when Eq. (7) is modeled by (12). Eqs. (9) and (11) shall be 
considered independently in two (sub)domains, D = Ω(t) and D = (−L, L)d \ Ω(t). The boundary Γ (t) = ∂Ω(t) is then 
given implicitly as the zero level set of φ(x, t) = 0 for both subdomains.

To define proper boundary conditions for (12), the boundary ∂ D must be split to two parts with respect to the flow 
regime characterized by �v at ∂ D . The outflow part requires no boundary conditions. The inflow part type requires some 
Dirichlet boundary conditions to be prescribed.

Concerning the implicitly given part Γ (t) of boundary ∂ D , the correct choice of plus respectively minus sign in (9)
and (11) gives always the inflow regime at Γ (t) ⊂ ∂ D . Therefore the Dirichlet boundary conditions φ0(γ ) = 0 for (8) and 
s(γ ) = S(γ , t) for (10) at Γ (t) are appropriate.

3. Numerical methods

In this section we begin with the derivation of a general finite volume numerical scheme for solving the advection 
equation (12). Afterwards, a brief overview of important particular forms of this scheme is given, and the new semi-implicit 
version is presented. Finally, the extrapolation technique near the interface is explained for Dirichlet boundary conditions 
on implicitly given boundary.

3.1. General numerical scheme

To derive the general numerical scheme, we follow [22,24] where much more details are given for finite volume dis-
cretization used here, see also references there. Later, when we present examples on structured Cartesian grids, we specify 
the finite volume mesh in details.

Let xp be a representative point of the finite volume p with measure mp . Let the index set N(p) contains all neighboring 
finite volumes q of p with a nonzero d − 1 measure of epq := p̄ ∩ q̄. We will use also some auxiliary finite volumes q′ ∈ N(p)

lying outside of D such that epq′ ⊂ ∂ D . Furthermore, let us consider a division of time interval [0, T ] to 0 = t0 < . . . < tn <

tn+1 < . . . < tN = T and, for simplicity, let us consider uniform time step size 	t = tn+1 − tn , n = 0, 1, . . . , N − 1. We search 
for the numerical solution of (12) in the form un+1

p ≈ u(xp, tn+1).
The first step in the derivation of general scheme is considering Eq. (12) as a balance law with a source term given by 

the divergence of �v ,

∂t u + ∇ · (u�v) − u∇ · �v = c. (13)

Then we define integrated fluxes

apq =
∫

epq

�v · �νpqds, (14)

where �νpq is the normal vector to epq pointing from p to q. Note that apq = −aqp . If �v depends on t we fix it at tn+1/2, or 
we fix it at tn in nonlinear cases, but we do not emphasize it in the notation for simplicity.

Using definition (14) one can define the following approximation of divergence by an averaging technique at the repre-
sentative point xp

∇ · �v(xp) ≈ 1

mp

∫
p

∇ · �vdx = 1

mp

∑
q∈N(p)

∫
epq

�v · �νpqds = 1

mp

∑
q∈N(p)

apq. (15)

Similarly one obtains
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∇ · (u�v)(xp) ≈ 1

mp

∑
q∈N(p)

∫
epq

u�v · �νpqds ≈ 1

mp

∑
q∈N(p)

upqapq, (16)

where upq represents an averaged value of the solution on the edge epq . Then using central finite difference approximation 
for the time derivative and considering the approximations (15) and (16) at (xp, tn+1/2) we obtain the following general 
numerical scheme for solving (12), cf. also [12,13,22–24],

un+1
p + 	t

mp

∑
q∈N(p)

apq
(
un+1/2

pq − un+1/2
p

) = un
p + c 	t, (17)

where u0
p = u0(xp). Note that the scheme (17) is called “flux-based” level set method in [11–13] due to the flux-based 

approximation of (15).
To obtain a particular form of the general scheme (17), one has to propose the approximative values un+1/2

pq and un+1/2
p .

3.2. Particular discretization schemes

The first order accurate (explicit in time) upwind method can be obtained from (17) by setting

un+1/2
pq =

{
un

p apq > 0

un
q apq < 0,

un+1/2
p = un

p, (18)

see [11] for details. Note that one obtains

un+1/2
pq − un+1/2

p =
{

0 apq > 0
un

q − un
p apq < 0.

(19)

The method (18) has the CFL type stability restriction on the choice of 	t , namely

	t

mp

∑
q∈N(p)

max{−apq,0} ≤ 1. (20)

Let us consider the one-dimensional case of (12) for a constant velocity v > 0 and let c = 0, D = (−L, L) and xi ≡ xp . For 
variable space discretization step hi one obtains with (18) that

un+1
i = un

i − 	tv
un

i − un
i−1

hi
. (21)

The restriction (20) then takes the form 	tv ≤ mini hi . As explained in Remark 1, if D is split according to a position of 
the interface Γ (t) ∈ (−L, L) one has to add a new grid point at the position of the interface Γ (t) which can be situated 
in any distance hi from xi . Because hi can be arbitrary small, the scheme (18), without any modification, can hardly be 
used in practice when considering problems with an implicitly given moving interface. In fact, it is true for any explicit in 
time method unless some modification is used in order to weaken the CFL time step restriction, cf. the so-called “small cell 
problem” [18,4].

The second order accurate (explicit in time) schemes for the numerical solution of level set advection equation were 
considered in [12,13]. A piecewise linear reconstruction in space and the first order Taylor expansion in time is used to 
define the values un+1/2

pq and un+1/2
p . These methods have again the CFL stability restriction on the choice of time step 	t

analogous to (20). As it is not trivial to extend them to a form without such restriction [9,7], they are again not practical 
when considering problems with an implicitly given moving interface.

The first order accurate (fully implicit in time) upwind method for solving (12) can be written in the form (17) by 
defining un+1/2

pq = un+1
p if apq > 0, un+1/2

pq = un+1
q if apq < 0 and un+1/2

p = un+1
p . Such method has no stability restriction on 

the choice of 	t and it can produce numerical solutions with no unphysical oscillations. The scheme leads to an algebraic 
system of equations that must be solved to obtain un+1

p . Nevertheless, the resulting system matrix is an M-matrix with a 
special structure, so it can be solved efficiently. The main disadvantage of the first order accurate (fully implicit in time) 
upwind method is a significant artificial diffusion effect on numerical solutions that decreases the accuracy of results [19,8].

A new approach to derive the second order accurate (semi-implicit in time) methods is developed in [22–24]. The 
methods are called inflow-implicit/outflow-explicit schemes in [23,24]. They can be written in the form of (17) by setting

un+1/2
pq − un+1/2

p =
{

un
pq − un

p apq > 0

un+1
pq − un+1

p apq < 0.
(22)

The method developed in this paper is based on the inflow-implicit/outflow-explicit approach (22), too.
Several choices how to define the values u∗

pq in (22) for t∗ = tn and t∗ = tn+1 are discussed in [22–24] with the simplest 
one being a linear interpolation of values u∗

p and u∗
q . This choice leads to
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u∗
pq = 1

2

(
u∗

p + u∗
q

)
. (23)

Note that the value u∗
pq in (23) is defined independently of the sign of apq . The one-dimensional case of this scheme for 

v > 0 and hi ≡ h is given by

un+1
i + 1

2
	tv

un+1
i − un+1

i−1

h
= un

i − 1

2
	tv

un
i+1 − un

i

h
, (24)

that turns in the stationary case to the central finite difference form

v
ui+1 − ui−1

2h
= 0.

The method (23) has an advantage of producing the algebraic system of equations with an M-matrix. To obtain numerical 
solution with no unphysical oscillations some stabilization on the right hand side and corresponding adjustment of the left 
hand side must be used in general. To that goal, other reconstruction techniques respecting the upwind principle different 
from (23) are considered e.g. in [24].

In this paper we use another type of upwind type reconstructions, both in explicit and implicit part of the scheme (22). 
For all numerical examples presented in this paper, which are sufficiently general, such new approach does not require any 
stabilization in the explicit part of the scheme.

The suggested method uses the upwind type piecewise linear reconstruction of numerical solution in space and time in 
order to define the values u∗

pq in (22). Such approach is inspired by the second order explicit level set methods [12,13]. To 
apply it here, some approximation of gradients ∇u∗

p must be constructed using standard techniques, see e.g. [19,12,13,22]. 
It allows us to define

u∗
pq =

{
u∗

p + ∇u∗
p · (xpq − xp) apq > 0

u∗
q + ∇u∗

q · (xpq − xq) apq < 0
(25)

where the point xpq is a barycenter of the finite volume face epq . One can consider (22) and (25) as our newly suggested 
semi-implicit finite volume level set method of the form (17).

In numerical experiments presented in this paper we use structured Cartesian grids. Thus we discuss here in more details 
a particular form of (22) and (25) when used on Cartesian grids where it is sufficient to define it only for one-dimensional 
case.

The grid can be denoted in 1D as −L = x1/2 < x1 < . . . < xi−1/2 < xi < xi+1/2 < . . . < xI < xI+1/2 = L and h ≡ xi+1 − xi ≡
xi+1/2 − xi−1/2 for simplicity. Furthermore, one has xp ≡ xi and u∗

pq = u∗
i−1/2 or u∗

pq = u∗
i+1/2. Analogously apq = −vi−1/2 or 

apq = vi+1/2. In order to define (25) in 1D case we set

u∗
i−1/2 =

⎧⎨
⎩ u∗

i−1 + u∗
i −u∗

i−2
2h

h
2 = 1

4 (u∗
i + 4u∗

i−1 − u∗
i−2) vi−1/2 > 0

u∗
i + u∗

i+1−u∗
i−1

2h
−h
2 = 1

4 (u∗
i−1 + 4u∗

i − u∗
i+1) vi−1/2 < 0.

(26)

For one-dimensional advection equation with positive constant velocity v the method (22) and (26) takes the form

un+1
i + 1

2
	tv

3un+1
i − 4un+1

i−1 + un+1
i−2

2h
= un

i − 1

2
	tv

un
i+1 − un

i−1

2h
. (27)

For a stationary situation, the scheme (27) takes the form

v
ui+1 + 3ui − 5ui−1 + ui−2

4h
= 0, (28)

that is clearly of upwind type for v > 0.
The upwind scheme (26) with (22) does not give an M-matrix in general, because of the positive sign of the coefficient 

before un+1
i−2 , see (27). Nevertheless, for all examples presented here, representing the level set motion in normal direction, 

no stabilization or other modifications of the scheme is used.

Remark 2. We comment briefly two issues that must be added to the description of our numerical method. Firstly, we 
note that the velocity �v in (12) depends on ∇φ when the motion in normal direction is considered. In such cases we take 
�v pq = �v(∇φn

pq), where the approximation of ∇φn
pq shall be proposed. We use the so called diamond cell strategy that can 

be written in two-dimensional case of Cartesian grids for e.g. φn
pq ≡ φn

i+1/2 j using the standard notation

∇φn
i+1/2 j ≈

(
φn

i+1 − φn
i

h
,
φn

i j+1 + φn
i+1 j+1 − φn

i j−1 − φn
i+1 j−1

4h

)
, (29)

see [22] and the references there for more details.
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Finally we note that for the applications and examples considered here we have the outflow type of boundary conditions 
on fixed parts of ∂ D ⊂ ∂(−L, L)d . To treat them easily we create auxiliary layer of finite volumes outside of D and next to 
the fixed part of D as described in Section 3.1. Afterwards we associate with auxiliary finite volumes q′ some explicit in 
time values un

q′ obtained by linear extrapolation. To that goal, e.g. in the one-dimensional case, one needs in general only 
the values un

0 = 2un
1 − un

2 and un
I+1 = 2un

I − un
I−1.

3.3. Extrapolation near the interface

A special treatment is necessary for our scheme (17) when solving Eq. (12) for t ∈ (tn, tn+1) on the subdomain D = Ω(tn)

or D = (−L, L)d \Ω(tn). In both cases we have Dirichlet boundary conditions on the boundary segment ∂Ω(tn) ⊂ ∂ D that is 
given only implicitly. We extend (17) with the so called extrapolation near the interface similarly to the idea of immersed 
interface method [17,20,9] and analogous approaches [18,5,25,6,14].

We explain the extrapolation near the interface for fixed structured Cartesian grid of (−L, L)d . To solve Eq. (12) using 
such grid but restricted only to e.g. D = Ω(tn) ⊂ (−L, L)d , we construct algebraic system of equations corresponding to the 
scheme (22) and (26) only for un+1

p such that φn
p < 0. Analogously, when considering the problem in D = (−L, L)d \ Ω(tn), 

we search for a numerical solution only in grid nodes xp such that φn
p > 0. Of course, if φn

p = 0 one can use directly the 
Dirichlet boundary conditions to define un+1

p and incorporate them into the algebraic system.
For grid nodes xp near the interface one can have that the value φn

q for some q ∈ N(p) has different sign then the 
value φn

p . Consequently, the unknown un+1
q is not included in the algebraic system, but it may be presented in (17). Anal-

ogously, the value un
q needs not to be available in (17). To treat such situations for the scheme (26) we use the following 

approach.
To evaluate u∗

i−1/2 in the i-th discrete equation, the values from u∗
i−2 up to u∗

i+1 at time level n or n + 1 are required. 
The idea of extrapolation near the interface is to obtain any value u∗

i−2 up to u∗
i+1, that is not available but required in (26), 

using a linear extrapolation. This is necessary if any grid node from xi−2 up to xi+1 lies outside of D .
Any point that lies in a subinterval (xi−1, xi) can be defined by

xi−α = αxi−1 + (1 − α)xi, α ∈ [0,1]. (30)

Similarly, any linear interpolation of two values given at xi−1 and xi , e.g. u∗
i−1 and u∗

i , can be defined analogously to obtain 
u∗

i−α . Consequently, if one quantity in (30) is unknown and the rest is given, one can use (30) as an equation to determine 
the unknown quantity.

The most important usage of (30) is to determine α ∈ (0, 1) such that φn
i−α = 0. This can happen only when the approx-

imation of φ(x, tn) changes its sign between two grid nodes xi−1 and xi . Clearly,

α = φn
i

φn
i − φn

i−1
, if φn

i φn
i−1 < 0. (31)

Now if the value u∗
i−1 is unavailable in (26) and the value u∗

i−α is given by some Dirichlet boundary conditions, one can use

u∗
i−1 = α − 1

α
u∗

i + 1

α
u∗

i−α = φn
i−1

φn
i

u∗
i + φn

i − φn
i−1

φn
i

u∗
i−α, if φn

i φn
i−1 < 0. (32)

For t∗ = tn the relation (32) can be used directly to define un
i−1, because the values un

i and un
i−α are available. At the time 

level t∗ = tn+1 the value un+1
i is unknown, so the definition (32) determines the contributions to the diagonal of matrix and 

the right hand side of the i-th algebraic discrete equation.
We remark that (32) is used also for the (i + 1)-th discrete equation, when φn

i+1φ
n
i > 0 and φn

i φn
i−1 < 0. Moreover, if 

φn
i φn

i−1 < 0 and the value u∗
i−2 is required by (26) then

u∗
i−2 = 2u∗

i−1 − u∗
i , (33)

where u∗
i−1 is determined from (32).

Using analogous approach to (32) when defining the value u∗
i+1/2 one has all values available to use (26) for the grid 

nodes near the interface.
We note that the extrapolation near the interface is used also in the computations of ∇φn

pq , see Remark 2. In that case 
the linear extrapolation is used also in diagonal directions, compare with (29).

Remark 3. Before presenting numerical experiments we describe the final form of our inflow-implicit/outflow-explicit up-
wind scheme with the extrapolation near the interface in the case of two-dimensional structured Cartesian grid. We use 
notations as mentioned in Remark 2 and in the text before it.

In what follows we use k, l = −1, 0, 1 such that |k| +|l| = 1. We rewrite (17) using un
ij ≡ un

p , un
i+k, j+l ≡ un

pq and so on. Let 
�v = (v, w), then we define the coefficients
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ain
i+k/2, j = min{0,kvi+k/2, j}, aout

i+k/2, j = max{0,kvi+k/2, j}, k = −1,1

ain
i, j+l/2 = min{0, lwi, j+l/2}, aout

i, j+l/2 = max{0, lwi, j+l/2}, l = −1,1.

The numerical scheme can be now written in the form

un+1
i j + 	t

4h

∑
k,l

ain
i+k/2, j+l/2

(−3un+1
i j + 4ūn+1

i+k, j+l − ūn+1
i+2k, j+2l

)

= un
ij − 	t

4h

∑
k,l

aout
i+k/2, j+l/2

(
un

i+k, j+l − ūn
i−k, j−l

) + c	t, (34)

where the “bars” may indicate extrapolated values. If we solve the level set advection equation (7), the values with bar are 
simply the values without it, i.e. ū∗

i+k, j+l = u∗
i+k, j+l for ∗ = n or ∗ = n + 1 and so on.

If we solve the signed distance function using (9) or the extension velocity using (11), i.e. the extrapolation near the 
interface is required, then for φi j 	= 0 analogously to (32) we define

ū∗
i+k, j+l =

⎧⎨
⎩

u∗
i+k, j+l φn

i jφ
n
i+k, j+l > 0

φn
i+k, j+l

φn
i j

u∗
i j + φn

i j−φn
i+k, j+l

φn
i j

u∗
i+αk, j+αl otherwise.

(35)

Concerning the value ūn+1
i+2k, j+2l in (34), one has to use (35) with ū∗

i+2k, j+2l = ū∗
(i+k)+k,( j+l)+l if φn

i φn
i+k, j+l > 0, otherwise

ūn+1
i+2k, j+2l = 2ūn+1

i+k, j+l − un+1
i j .

Finally we note that we do not allow Dirichlet boundary conditions on outflow type of boundary, therefore aout
i+k/2, j+l/2 = 0

if φn
i φn

i+k, j+l < 0.

4. Numerical experiments

The following numerical experiments were computed using the semi-implicit finite volume scheme (34). Firstly, the most 
difficult particular equation of the abstract form (12) is computed, the eikonal equation (8). Secondly, the example taken 
from [1] is studied to illustrate the advantages of using the extension velocity computed by (10) instead of the natural 
velocity. Finally, an example of the form (7) with discontinuous natural velocity is computed that is inspired by numerical 
simulation of forest fire front propagation. Again, the results computed by our scheme with the extension and the natural 
velocity are presented and compared.

In what follows, the domain D is always a square. For each particular example the coordinates of the left bottom corner 
of D and the length L of the side are specified. We consider always a uniform grid with h = L/I where I is chosen.

The algebraic system of equation is always solved with fast sweeping Gauss–Seidel iterations [29] using the maximum 
of 4 iterations (each one with 4 sweeps) or the reduction of the residuum below 10−20.

When computing the signed distance function or the extension speed, we consider the time dependent form of Eq. (12)
and search its stationary solution, see (9) and (11). The number of (artificial time) relaxation steps is always commented in 
each example.

4.1. Distance functions

In this section we compute signed distance functions to three different interfaces using the scheme (34) with the ex-
trapolation near the interface. For two examples the exact solution is available and compared with the obtained numerical 
solution using the L1 discrete error E1 at t = tN by

E1(I) = h2
∑

p

∣∣u(
xp, tN) − uN

p

∣∣. (36)

For the last example the computed numerical solution is compared with the one obtained by a “brute force” method.
The domain D is the unit square with the left bottom corner having coordinates (0, 0). We consider uniform grids with 

h = 1/I where I = 20, 40, 80, 160 and 320. The time step is chosen 	t = 4h and the number of relaxation steps is chosen 
N = I .

In the first example we search for the distance function to a circle that can be seen as a simple representative smooth 
solution. The middle point of circle is chosen (0.51, 0.52) and the radius equals 0.26. The initial function (or the “initial 
guess”) Φ0 is simply the exact distance function multiplied by 0.5. The initial function and the obtained numerical solutions 
on the coarsest grid with n = 1, n = 6 and n = N = 20 can be viewed in Fig. 1. The experimental order of convergence (EOC) 
using (36) can be viewed in Table 1. One can observe a clear second order accuracy for this example.



222 P. Frolkovič et al. / Applied Numerical Mathematics 95 (2015) 214–228
Fig. 1. The initial condition (the 1st row) and the results after n relaxation steps (the 2nd, 3rd and 4th row). The first and second column is obtained with 
the coarse grid I = 20 and n = 1, 6, and 20, the third column with the fine grid I = 320 and n = 8, 20, and 80. The last row contains practically stationary 
solutions, i.e. the approximated signed distance functions with E1 errors given in Table 1.

Table 1
The discrete E1 errors (36) and the EOCs for the distance function to the circle (2nd and 3rd column), 
the square (4th and 5th column) and the quatrefoil (6th and 7th column).

I, N E1(I) EOC E1(I) EOC E1(I) EOC
20 9.31E–4 – 2.54e–2 – 6.15e–3 –
40 2.31E–4 2.01 8.22e–3 1.63 1.72e–3 1.83
80 5.72E–5 2.01 2.98e–3 1.46 6.19e–4 1.48

160 1.43E–5 2.00 1.22e–4 1.28 2.20e–4 1.49
320 3.56E–6 2.01 5.31e–4 1.20 7.89e–5 1.48

The second example is the distance function to a (rotated) square with analogous data to the previous example, see 
Fig. 1. The exact distance function contains “knicks” and can be viewed as a simple representative non-smooth solution. The 
EOC for this example is converging to 1 from above, see Table 1. Note that for I = 320 the signed distance function for the 
circle and the square with the presented E1 errors in Table 1 can be obtained after less than 100 relaxation steps.
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Table 2
The localized discrete errors El(I) from (37) and the corresponding EOCs for the advection of circle (3rd 
and 4th column) and the square (5th and 6th column).

I N El(I) EOC El(I) EOC
20 2 3.06E–4 – 7.88e–3 –
40 4 3.59E–5 3.09 3.74e–3 1.08
80 8 8.62E–6 2.06 1.87e–3 1.00

160 16 2.36E–6 1.87 9.52e–4 0.94
320 32 5.75E–7 2.04 4.60e–4 1.05

In the third example we choose an interface in the form of rotated “quatrefoil”, where no analytical solution for the 
signed distance function is available. The initial guess Φ0(x) in (9) is taken as

Φ0(x) = −0.049 + 0.1
√

(x − 0.5)2 + (y − 0.5)2

rL
,

rL = 0.6 + 0.4 sin

(
4 arctg

(
0.5 − y

0.5 − x

))
.

The initial function and the computed signed distance function after 8, 20 and 320 relaxation steps for the finest grid 
I = 320 can be seen in Fig. 1.

To estimate the EOC for this example, we compute the distance function using a simplified “brute force” method. This 
method computes an approximative distance for each grid node to the polygonal line. The polygonal line is given as the zero 
level set of the linear interpolation of nodal values Φ0(xp) on this grid. The brute force method is simplified (approximative) 
in the sense that the distance of a point xp to the polygonal interface is computed only from the distances of xp to the 
points that defines the polygon. In Table 1 this estimate suggests that such EOC is around 1.5. Note that for I = 320 the 
signed distance function with the presented E1 error in Table 1 can be obtained after less than 80 relaxation steps.

Finally we illustrate the qualitative behavior of our numerical scheme (34) concerning the approximation of advected 
interface when solving the level set advection equation (7). To do so, we take the signed distance function to the circle and 
the square as in previous experiments and let it evolve in normal direction with the speed 1 up to T = 0.1. Afterwards we 
find all intersection points of approximated interface with the edges of finite volumes and compute the absolute difference 
of their distance, say dk , and the exact distance 0.1 to the initial interface. Finally, we define the localized discrete error El
by

El(I) = 1

K (I)

K (I)∑
k=1

|dk − 0.1|, (37)

where K (I) is the number of intersection points corresponding to the grid with h = 1/I . The values El(I) for consecutively 
refined grids can be found in Table 2 together with the corresponding EOCs. One can observe second order accuracy for the 
advected circle and the first order accurate results for the advected square.

4.2. Comparison of natural and extension velocity

In the following example [1] we compute the level set advection equation (7) for the motion of an interface in normal 
direction by semi-implicit finite volume scheme (34). Firstly, we use an explicitly given natural speed from [1], then the 
extension speed computed from (11) by (34) with the extrapolation near the interface is used.

The domain is D = (−7.5, 7.5)2. The natural speed S = S(x, y) in normal direction is given by

S = ((√
x2 + y2 − 3

)2 + 1
) (

2 + sin(4θ)
)
. (38)

The angle θ = θ(x, y) is made between the vector (x, y) and the positive x axis. Note that S attains its maximum at corners 
of D being approximately 118, and the minimum is 1, see also Fig. 2.

The initial level set function φ0(x, y) is the distance function to the circle with radius 3 and the center at (0, 0). Note 
that S(x, y) varies between 1 and 3 for (x, y) such that φ0(x, y) = 0.

Firstly, we compute the advection equation (7) with s ≡ S being the natural speed in normal direction. We start with 
I = 50, so h = 15/I , and 	t = 0.9/N where N , the number of time steps, is chosen.

To test the computations with very large grid Courant number, we start with N = 1, see Fig. 2 for the numerical solution 
at t = 0.9. Although the numerical solution is obtained with only one time step, no unphysical oscillations can be observed.

Of course, using N = 1 leads to a large time discretization error. Doing several experiments it occurs that N = 256 gives 
a satisfactory numerical approximation of the zero level set at t = 0.9. It means choosing N = 512 does not bring visible 
changes to its position. The numerical solution for N = 256 at t = 0.9 is presented in Fig. 2.

To study also the space discretization error, we compare the position of zero level set for the numerical solutions ob-
tained with I = 50, 100, 200, and 400, see Fig. 3. Note that the position of approximative interface for I = 50 is relatively far
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Fig. 2. The function S from (38) (the left picture). The advected numerical level set function at t = 0.9 for I = 50 obtained with only one time step (the 
middle picture) and the one obtained with N = 256 time steps.

Fig. 3. The advected numerical level set function at t = 0.9 using the natural speed for I = 100 (the left picture) and 200 (the middle picture), compare 
also with the right picture in Fig. 2 for I = 50. In the right picture one can see the grid convergence of the zero level set for the numerical solutions of (7)
for I = 50 (the shortest curve), 100, 200 and 400 (the longest curve).

Fig. 4. The numerical extension speed s(x, y, 0) (the left picture), the advected numerical level set at t = 0.9 using the extension speed with only one time 
step (the middle picture) and the analogous numerical solution using N = 256 time steps. In the last two pictures the advected level set function is plotted 
with black color and the signed distance function with red color (for color pictures see the online version of this article). The grid resolution is I = 50.

away from the positions for finer grids. Interestingly, the numerical solutions for all grids can be computed with N = 256, 
because there is no visible difference when obtaining them with N = 512.

Next, we compute the advection equation (7) using the extension speed. The extension speed s is computed from (11)
by using the scheme (34) with the extrapolation near the interface and a given number of relaxation steps. Enough many 
relaxation steps are used to obtain a good approximation of the stationary solution w(x, y, τ̃ ) of (11) at t = 0, see Fig. 4 for 
the result where s(x, y, 0) = w(x, y, τ̃ ). Afterwards, to compute an approximation of the extension speed s(x, y, t) for t > 0
only 8 relaxation steps are used to solve (11) with 	τ = h.

To illustrate the behavior of numerical advected level set function for very large time step, we use N = 1 to obtain 
the numerical solution of (7) at t = 0.9, see Fig. 4. Moreover, we compare it with the computed signed distance function 
using the method as presented in the previous Section 4.1. Although the time discretization error is large, no unphysical 
oscillations can be observed, and the advected level set function retains well the property of staying the distance function, 
see Fig. 4.

To reduce the time discretization error, we compute the example with N = 256. To estimate the space discretization 
error we compute the example for I = 100 (8 relaxation steps) and 200 (16 relaxation steps) and 400 (32 relaxation steps). 
The comparison of the zero level set for advected numerical level set function can be found in Fig. 5. Much better precision 
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Fig. 5. The numerical advected level set function (the black contour lines) at t = 0.9 using the extension speed computed from (11) for I = 100 (the left 
picture) and for I = 200 (the middle picture). Moreover, the result in these pictures is compared with related numerical signed distance function (the red 
contour lines in online version of this paper). In the right picture one can see the zero level set of numerical solutions for I = 50 (the shortest curve), 100, 
200 and 400 (the longest curve).

Fig. 6. The numerical advected level set function at t = 0.9 computed for I = 200 with only 2 relaxation time steps to compute the extension speed (the 
left picture, compare with Fig. 5). The related numerical extension speed used in the last advection step (the middle picture, the position of interface is 
plotted, too). In the right picture one can see the analogous numerical extension speed when using 16 relaxation time steps.

is obtained for the position of zero level set at t = 0.9, especially for I = 50, when using the extension speed than for the 
computations with the natural speed, compare the right picture in Fig. 5 with the right picture in Fig. 3.

Finally, we compute the example for I = 200 when the number of relaxation time steps to compute (11) is only 2. As it 
can be seen in Fig. 6, the advected numerical level set function does not preserve the property being the distance function 
so well, but the approximation is still very good. For an illustration we plot in Fig. 6 also the obtained extension speed that 
is used in the last advection time step for two different number of relaxation time steps.

4.3. Forest fire propagation

The final example is motivated by some real application when a propagation of fire in forest is considered [3]. Our aim is 
to test the presented numerical method in such settings to understand better its properties and not to compete with other 
numerical approaches like the one used in [3].

The input data for such application are forestry typological maps that can be transfered to grayscale pictures. The gray 
level of each pixel characterizes how fast can burn the underlying forest. Particularly, the black color means a nonburnable 
material that we quantify with S = 0, the white color denotes the most burnable material that we quantify with S = 1. In 
such way we obtain the function S that characterizes the natural speed of fire propagation. Note that S has a piecewise 
constant form. The picture of a typological map with the resolution of 1602 pixels that we use in our computations can be 
seen in Fig. 7. The data are obtained from Slovak state forest company Vojenské lesy a majetky SR, Malacky [3].

To model the fire propagation we suppose that at each time a sharp interface (the front) can be recognized. Any front 
separates locally a completely burnt area from the one that is not yet burnt. The interface (the fire fronts) can be made of 
several closed curves. The number of curves can change in time, it means the fire fronts can split or merge. For the speed of 
moving interface (the fire fronts) we consider here the simplest variant that the fronts expand only in the normal direction 
with the speed S at the current position of fire.

Typical results of related simulations are presented in Fig. 7 where two approaches are compared. The left picture shows 
the results obtained with the extension speed s obtained from (11), the right one using the natural speed S . The behavior 
of both methods, when considered only for the evolving zero level set, is similar, but some differences can be recognized 
by a closer look. We comment first the evolution of the fire in this experiment.

The initial position of the interface is defined by two small circles that can be viewed formally as two separate origins 
of the fire, see Fig. 7. The blue color (see the online version of paper) represents the interface at a consecutive time point 
when these two fire fronts are going to merge. At the same time, one small nonburnable area is almost enclosed by the 
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Fig. 7. The fire fronts plotted at the initial position (two small circles) and at three different consecutive times. The left picture uses the extension speed, 
the right pictures uses the natural speed. A close look shows that using the extension speed a sharper resolution of nonburnable areas is obtained.

fire. Finally, the yellow curves represent the position of interface at the last time point when it is split into two separate 
fire fronts where one front is enclosing small nonburnable area.

Concerning the parameters of this numerical experiment, the finite volume mesh coincides with pixels and the time step 
equals the size of pixel. The actual position of interface is plotted after 0, 25, 50 and 70 time steps. When computing the 
extension speed, eight relaxation time steps for the numerical solution of (11) are used.

Next we comment some differences in the approximation of evolving interface when using the extension or natural 
speed. Analogously to [1] we can confirm the so called subgrid accuracy effect when using the extension speed. The subgrid 
accuracy is an issue for instance when the input data (like the function S) have piecewise constant form, so large jumps 
of values can occur. When using the extension speed, the natural speed S is evaluated exactly at some positions of zero 
level set to treat Dirichlet boundary conditions, see the values xi−α in (30) with (31). Consequently, the correct values of 
the speed S at the interface are extended to grid points surrounding xi−α to define the extension speed s.

On the other hand, when using the natural speed S with any discretization methods for the numerical solution of 
advection equation (12), the speed S is evaluated only in integration points (e.g. the grid points) independently on the fire 
position. Consequently, one can confirm more accurate resolution when using the extension speed. This can be observed 
also in Fig. 7, where, for instance, the position of fire fronts enter less into the nonburnable areas with the extension speed 
than with the natural speed.

Finally, we compare in Fig. 8 the advected numerical level set function at the last time step when using the two different 
approaches. As expected, using the extension speed the numerical advected level set function is close to the distance 
function. One has to stress that this approximation is good only in the unburnt area (the positive distance) and not away 
from the interface into the burnt area (the negative distance). This is due to the fact that the initial interface attains only 
small negative values (the minus initial radius). The numerical method shall not produce the values outside of the range 
given by the initial values (and boundary values) that is also observed in this numerical experiment. If for any reason also 
the approximation of (larger) negative distances is important, one can replace at some time point the advected numerical 
level set function with the signed distance function obtained by the approach of Section 4.1.

In numerical experiment with the natural speed one cannot expect that the advected level set function resembles the 
signed distance function with the property |∇φ| = 1. By contrast, the steep gradients of advected numerical level set func-
tion can be observed at boundaries of nonburnable areas and the flat ones at the fast burning areas. As more sophisticated 
mathematical models of forest fire propagation can include a dependence on the curvature of interface [3], such distortion 
can decrease significantly the accuracy of results.

5. Conclusions

In this paper the semi-implicit finite volume level set is proposed. It combines the idea of flux-based level set method 
[12,13] with the inflow/implicit and outflow/explicit time discretization in [22,24]. The method is successfully applied to 
numerical solutions of advection level set equation for the motion in normal direction. For the presented examples the time 
step is restricted only by accuracy issues, and no CFL stability restriction is required.

Following the idea of [30,1,9], the method is applied also to two auxiliary problems, the computation of signed distance 
function and the construction of extension speed. The signed distance function is used in the initial conditions for the 
advection level set equation, and the extension speed is used as the speed in normal direction in the same advection level 
set equation.
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Fig. 8. The contour lines of numerical advected level set function for the last time point when using the extension speed (the left picture) or the natural 
speed (the right picture). In the left picture the distance function is well preserved (at least for positive values), in the right picture a large distortion of 
level set function occurs with steep gradients between nonburnable and burnable areas.

To use the method for these two auxiliary problems when some Dirichlet boundary conditions are defined on a boundary 
given only implicitly, we use the extrapolation near the interface similarly to the immersed interface method [17,9]. In this 
approach one can again clearly profit from the fact that no CFL restriction is required in our semi-implicit method.

Using the semi-implicit finite volume level set method we expect a positive contribution to the accuracy and stability of 
computations even when some nontrivial applications like two-phase flows [10], moving groundwater table [7], or the forest 
fire propagation [3] are treated. Such applications can require the computations of curvature [10,3] and/or the computation 
of some additional PDEs to compute the natural speed [10,7].
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[11] P. Frolkovič, K. Mikula, Flux-based level set method: a finite volume method for evolving interfaces, Appl. Numer. Math. 57 (2007) 436–454.
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