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HIGH-RESOLUTION FLUX-BASED LEVEL SET METHOD∗

PETER FROLKOVIČ† AND KAROL MIKULA‡

Abstract. A new high-resolution flux-based finite volume method for general advection equa-
tions in nondivergent form including a level set equation for moving interfaces is introduced. The
method is applicable to the case of nondivergence free velocity and to general unstructured grids in
higher dimensions. We show that the method is consistent and that the numerical solution fulfills the
discrete minimum/maximum principle. Numerical experiments show its second order accuracy for
smooth solutions as well as for solutions with discontinuous derivatives and on general unstructured
meshes. Numerical examples for passive transport and shrinking of dynamic interfaces, including
examples with topological changes, are presented using locally adapted two-dimensional and three-
dimensional grids.
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1. Introduction. The basic task of level set methods is to describe the evolution
of dynamic interfaces. Particular forms of the level set equations and corresponding
computational simulations have a tremendous number of different applications; see
[31, 32, 38, 39] for details and references.

The level set equation for the moving interface advected by a velocity field �V can
be written in the form

∂tφ + �V · ∇φ = 0 , φ(t0, x) = φ0(x) ,(1.1)

where the level set function φ = φ(t, x) describes the evolving interface implicitly by
its zero level set (contour line in two dimensions and isosurface in three dimensions).

Depending on the type of application, the velocity �V in (1.1) can be given in
several ways. For instance, in tracking of dynamic interfaces between two immiscible
fluids, the velocity field �V = �V (x) describes some external fluid movement; see [44,

45, 16, 17, 24] for some examples. Typically, �V is obtained as a numerical solution of

some PDE describing a conservation law for fluid flow, e.g., ∇ · �V = 0.
Further applications result from problems of geometric evolution equations, ap-

pearing among others in crystal growth, combustion, or image segmentation, where
�V = δ �N with �N being the unit normal vector to the interface given by �N = ∇φ/|∇φ|,
and δ = δ(x) describes the speed of motion in normal direction �N . In this case, (1.1)
is usually written in the form

∂tφ + δ|∇φ| = 0 ,(1.2)
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and even higher order terms such as (mean) curvature or intrinsic Laplacian of cur-
vature can be included in the definition of δ; cf. [39].

Finally, if there is a nonzero right-hand side f in (1.2) and one is searching for its
stationary solutions, the so-called Eikonal equation

δ|∇φ| = f,(1.3)

with some appropriate boundary conditions, has to be solved.
These important applications of (1.1) with �V = �V (x,∇φ) are solved using differ-

ent numerical techniques. The main objective of this paper is to derive a consistent
high-resolution flux-based finite volume method that can be used for such applications
(including nondivergence free velocities) on general unstructured computational grids
in any space dimension.

Nowadays, the finite volume techniques are very popular discretization meth-
ods for conservation laws. They preserve many useful properties of numerical solu-
tions known from the analytical case, such as the mass conservation and the mini-
mum/maximum principle.

The level set equations that model the movement of interface in normal direction
are very often solved by the finite difference methods. Such numerical techniques can
be described as solutions to the so-called Hamilton–Jacobi equation,

∂tφ + H(∇φ) = 0,(1.4)

with H(∇φ) = δ|∇φ| for (1.2). Numerical discretizations of (1.4) can be then formally
written in the form

φn+1
i = φn

i − Δtn Hi(∇n
i φ) ,(1.5)

where Hi is numerical Hamiltonian and numerical gradients ∇n
i φ are determined

typically by some special finite difference approximations of ∇φ in the time-space
grid point (tn, xi). Popularity of such finite difference level set methods for structured
grids dates from [33], and these methods have reached high level quality using the
Hamilton–Jacobi essentially nonoscillatory (ENO) [34], weighted ENO (WENO) [19],
or high-resolution central schemes [23].

Later, several discretization techniques were developed for two-dimensional un-
structured triangular meshes that are described in the form (1.5). In [1, 2] the so-called
monotonic Lax–Friedrichs Hamiltonian Hi was proposed, and similar ideas were used
to derive WENO schemes [47] or central WENO schemes [22] for triangular meshes.
In [20] the approximative gradients ∇n

i φ in (1.5) are found by an averaging over fi-
nite volumes that are dual to finite element mesh, and in [4] by an averaging over
finite elements surrounding the nodes. In all these papers, only triangular meshes are
considered.

A different approach to solve level set problems is taken by semi-Lagrangian
[11, 10, 41] or particle tracking methods [9]. The main idea of such methods is to
work directly with the formulation (1.1) by approximating the related characteristic
curves. Note that these methods can still be viewed as pointwise (particle) based
numerical techniques.

One drawback of all mentioned finite difference based level set methods is that
they are not conservative if applied with passive transport having divergence free ve-
locity �V . For such applications, some combinations of level set methods with other
methods to improve the mass preservation were proposed, such as reinitialization
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techniques to recover numerical signed distance function [42], the coupled level set
and volume-of-fluid method [43], or the hybrid particle level set method [8]; see also
a comprehensive review in [24]. Recently, a few papers have proposed using stan-
dard numerical conservative methods for level set equation (1.1) with divergence free
velocity such as finite volume methods [30] or discontinuous Galerkin discretizations
[35, 48, 25].

Finite volume or finite element methods, which are very useful for conservation
laws on unstructured grids, cannot be used directly for (1.1) or (1.4), because the
Hamilton–Jacobi equation “cannot be written in a conservation form, suitable for
integration by parts, which is the backbone of finite volume and finite element meth-
ods” [47]. A new approach was proposed in [14, 15] to overcome this difficulty, where
the level set problem (1.1) was reformulated to a conservation form with a source
term. At the same time, a flux-based finite volume scheme using integration by parts
was described, and the standard CFL restriction on time step was relaxed using a
recursive algorithm.

The flux-based level set method proposed in [15] is based on the first order ac-
curate approximation. In this paper, we extend it to a high-resolution method based
on second order approximations using the concept of “high-resolution finite volume
methods” as discussed in detail in, e.g., [21]. Our high-resolution scheme involves in
a natural way also the first order scheme given in [15] and, in such a way, is able to
approximate well not only problems with smooth solutions but also problems that ex-
hibit solutions with discontinuous derivatives. We can prove that the high-resolution
flux-based level set method is consistent on general grids and that the discrete min-
imum/maximum principle is valid under natural assumptions. To make valid such
assumptions in general, well-known limiting procedures can be applied.

Several numerical experiments will be given that illustrate the robustness and or-
der of convergence of our new method, including examples with smooth solutions, so-
lutions with discontinuous derivatives, and solutions with topological changes. Among
others, unstructured grids made of rectangles and triangles in two dimensions, and
hexahedra, pyramids, and tetrahedra in three dimensions are used. No reinitialization
techniques are applied to recover a numerical signed distance function. A comparison
with an ENO scheme (second order in space and time) using [26] for an example of a
rotating solid body shows better performance of our method. Finally, more complex
examples of Zalesak’s disk rotation and vortex-in-a-box are presented.

The paper is organized as follows. In section 2 we derive a general consistent flux-
based finite volume discretization scheme for solving (1.1). In section 3 we present
particular (first and second order accurate) discretization schemes. In section 4, ex-
perimental order of convergence of the method and various numerical experiments are
discussed.

2. General consistent discretization scheme. In this section we derive a
finite volume discretization method for the model problem of the advection equation
in nondivergent form,

∂tφ + �V · ∇φ = 0 , φ(t0, x) = φ0(x) ,(2.1)

where the function φ = φ(t, x) has to be determined for t > t0 ∈ R and for x ∈ Ω ⊂ Rd

with d = 2 or d = 3. The domain Ω is supposed to be polygonal with boundary ∂Ω.
For the moment, we skip a description of boundary conditions.

The advection equation (2.1) is solved on subintervals (tn, tn+1) of the time in-

terval of interest and is related to (1.1) by considering �V (x) = �V (x,∇φ(tn, x)).
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If one introduces characteristic curves X = Xn
x (t) defined in a backward manner,

Xn
x (t) = x−

∫ t

tn

�V (Xn
x (s)) ds ,

one can express the solution of (2.1) using the simple formula

φ(t, x) = φ(tn, Xn
x (t)) .(2.2)

Several numerical methods, such as the modified method of characteristics [7] or semi-
Lagrangian methods [10], treat (2.1) by solving (or approximating) the relation (2.2)
in each grid point x = xi of a discrete mesh.

To apply a finite volume method to approximate (2.1), we suppose that Ω is
covered by a mesh of nonempty, nonoverlapping, polygonal computational cells (finite
volumes) Ωi ⊂ Ω, i = 1, 2, . . . , I. Furthermore, Δtn = tn+1 − tn, n = 0, 1, . . . .

There are several types of finite volume schemes for solving advective equations;
cf. [21, 3]. The cell-based finite volume method can be obtained by integrating (2.2)
over Ωi in t = tn+1; see [21, 37, 27, 36] for some reviews and references. In order to
derive the flux-based finite volume discretization, we rewrite (2.1) to the divergent
form with nonzero right-hand side,

∂tφ + ∇ ·
(
�V φ

)
= φ∇ · �V .(2.3)

If one integrates (2.3) over Ωi and time interval (tn, tn+1), the following integral
equation can be derived:∫

Ωi

φ(tn+1, x) =

∫
Ωi

φ(tn, x) −
∫ tn+1

tn

∫
∂Ωi

�ni · �V φ(t, γ) +

∫ tn+1

tn

∫
Ωi

φ(t, x)∇ · �V ,(2.4)

where �ni = �ni(γ), γ ∈ ∂Ωi is the normal outward unit vector. The integral form (2.4)
can be viewed formally as a conservation law with a source term. In what follows
we will derive a general discretization scheme for solving (2.1) by applying numerical
quadrature rules for integrals in (2.4). To do so, let us suppose that the numerical
solution at t = tn is given as a function φn(x) ≈ φ(tn, x), x ∈ Ω.

The first integral on the right-hand side of (2.4) is approximated by∫
Ωi

φ(tn, x) dx ≈ |Ωi|φn
i ,(2.5)

where φn
i = φn(xi) for some point xi ∈ Ωi that will be specified later. An analogous

approximation is used for the integral on the left-hand side of (2.4).
Before describing an approximation of the second integral in the right-hand side

of (2.4), we introduce some notation. The common boundary (of nonzero measure)
of two neighboring finite volumes Ωi and Ωj will be denoted by Γij := ∂Ωi ∩ ∂Ωj ,
|Γij | > 0, and Γi0 := ∂Ωi ∩ ∂Ω, |Γi0| > 0. Moreover, we suppose that Γij consists of
(possibly several) Γe

ij ⊂ Γij such that Γe
ij is a straight line if d = 2, or a flat polygon

if d = 3. Consequently, one has

∂Ωi =
⋃

(e,j)∈Λi

Γe
ij , Λi :=

{
(e, j) : |Γe

ij | > 0
}
.

The integral over ∂Ωi can now be expressed as the sum of boundary integrals over
Γe
ij . Let γe

ij ∈ Γe
ij be the barycenter of Γe

ij , i.e., the integration point of a quadrature
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formula for integrals over Γe
ij that is exact for linear polynomials. In what follows, we

will use the approximation∫
Ωi

∇ · �V (x) dx =

∫
∂Ωi

�ni(γ) · �V (γ) dγ ≈
∑

(e,j)∈Λi

|Γe
ij |�ne

ij · �V e
ij ,(2.6)

where �ne
ij := �ni(γ

e
ij) = −�nj(γ

e
ij) = −�ne

ji and �V e
ji ≡ �V e

ij := �V (γe
ij).

Similarly to (2.6), for the second integral in the right-hand side of (2.4), we get
the following approximation:

∫ tn+1

tn

∫
∂Ωi

�ni · �V φ(t, γ)dγdt ≈ Δtn
∑

(e,j)∈Λi

|Γe
ij |�ne

ij · �V e
ij φ

e
ij(t

n+1/2),(2.7)

where

φe
ij(t

n+1/2) ≈ φn(Xn
γe
ij

(tn+1/2)) , tn+1/2 := tn + Δtn/2 .(2.8)

Finally, the third integral in the right-hand side of (2.4) is approximated by

∫ tn+1

tn

∫
Ωi

φ(t, x)∇ · �V (x) ≈ Δtn φ
n+1/2
i

∑
(e,j)∈Λi

|Γe
ij |�ne

ij · �V e
ij ,(2.9)

where φ
n+1/2
i approximates the averaged value of φ(tn+1/2, x), x ∈ Ωi. The simplest

choice is φ
n+1/2
i = φn

i , which can be seen as the first order accurate approximation of
the integral in (2.9). Other choices will be introduced later.

Combining approximations (2.5), (2.7), and (2.9), we end up with the following
general discretization scheme for solving (2.1):

φn+1
i = φn

i − Δtn

|Ωi|
∑

(e,j)∈Λi

|Γe
ij |�ne

ij · �V e
ij

(
φe
ij(t

n+1/2) − φ
n+1/2
i

)
.(2.10)

Note that the scheme (2.10) represents a fully explicit discretization method.
Similarly to [6, 4], we define the notion of consistency for a numerical scheme

approximating (2.1).
Definition 2.1. A discretization scheme of the form (2.10) approximating (2.1)

is called consistent if for any constant velocity vector �V and any linear polynomial
φn(x), x ∈ Ω, it takes the form

φn+1
i = φn

i − Δtn �V · ∇φn .(2.11)

To derive a specific form of general scheme (2.10) that has the consistency prop-
erty, we use piecewise linear approximating functions φn(x) of the form

φn(x) = φn
i + ∇φn

i · (x− xi) , x ∈ Ωi ,(2.12)

where ∇φn
i ≈ ∇φn(xi). Then we introduce a particular form of (2.8) by defining the

function φe
ij(t) for t ∈ [tn, tn+1) as follows:

φe
ij(t) :=

{
φn
i + ∇φn

i · (γe
ij − xi − (t− tn)�Vi), �ne

ij · �V e
ij > 0,

φn
j + ∇φn

j · (γe
ij − xj − (t− tn)�Vj), �ne

ij · �V e
ij < 0,

(2.13)
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and �Vi := �V (xi) = �V (xi,∇φn
i ). Note that the approximation (2.13) follows the

conservation law principle as φe
ij(t) = φe

ji(t). For the case γe
i0 ∈ ∂Ω, one can extend

the definition (2.13) by choosing

φe
i0(t) := φn

i + ∇φn
i ·

(
γe
i0 − xi − (t− tn)�Vi

)
, �ne

i0 · �V e
i0 < 0 .(2.14)

Lemma 2.2. If (2.13)–(2.14) are valid, then the general discretization scheme of
the form (2.10) for solving (2.1) is consistent.

Proof. After substituting constant vectors �V and ∇φn in (2.10) and using (2.13)
to obtain φe

ij(t
n) = φn

i + ∇φn · (γe
ij − xi) = φn(γe

ij), one has

φn+1
i = φn

i − Δtn

|Ωi|
�V ·

∑
(e,j)∈Λi

|Γe
ij |�ne

ijφ
n(γe

ij)

+
Δtn

|Ωi|

(
Δtn

2
�V · ∇φn + φ

n+1/2
i

) ∑
(e,j)∈Λi

|Γe
ij |�ne

ij · �V = φn
i − Δtn�V · ∇φn,

because of (2.6) and

∑
(e,j)∈Λi

|Γe
ij |�ne

ijφ
n(γe

ij) =

∫
∂Ωi

�ni(γ)φn(γ)dγ =

∫
Ωi

∇φndx = |Ωi|∇φn .

3. Particular forms of general discretization scheme (2.10).

3.1. First order discretization scheme. Formally, the general discretization
scheme (2.10) also covers the case of piecewise constant numerical solution φn(x),
when (2.12) takes the simple form

φn(x) = φn
i , x ∈ Ωi ⇒ ∇φn ≡ �0 , x ∈ Ωi .

Consequently, one obtains from (2.13) that for t ∈ [tn, tn+1)

φe
ij(t) =

{
φn
i , �ne

ij · �V e
ij > 0,

φn
j , �ne

ij · �V e
ij < 0,

(3.1)

which is nothing else but the standard first order upwind approximation. If one also

chooses φ
n+1/2
i = φn

i , the scheme (2.10) takes the form

φn+1
i = φn

i − Δtn

|Ωi|
∑

(e,j)∈Λin
i

|Γe
ij |�ne

ij · �V e
ij

(
φn
j − φn

i

)
,(3.2)

where

Λin
i := {(e, j) ∈ Λi , �n

e
ij · �V e

ij < 0} , Λout
i := Λi \ Λin

i .(3.3)

Of course, one cannot expect in general that the discretization scheme (3.2) is con-
sistent in the sense of Definition 2.1. The lack of consistency can be illustrated by a
simple one-dimensional example with Ωi = (xi−0.5hi, xi+0.5hi), �V = V = const < 0,
when it can be written as

hiφ
n+1
i = hiφ

n
i − ΔtnV (φn

i+1 − φn
i ) ,(3.4)
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Fig. 3.1. Illustration of 2D vertex-centered finite volume mesh.

i = 1, . . . , I. It is easy to see that the method (3.4) is consistent only if hi ≡ h.
Similarly, the scheme (3.2) in higher dimensional cases is consistent only for uniform
grids with Ωi = (xi − h/2, xi + h/2)d, i.e., when |Ωi| ≡ hd and |Γij | ≡ hd−1.

Due to stability reasons, the CFL restriction on Δtn in (3.2) must be fulfilled. It
can be formulated by requiring that

Δtn ≤ min
i

τi ,(3.5)

where τi represents the local residence time for Ωi (or critical time step; cf. [15]) given
by

τi := −|Ωi|
V in
i

, V in
i :=

∑
(e,j)∈Λin

i

|Γe
ij |�ne

ij · �V e
ij , i = 1, 2, . . . , I .(3.6)

If (3.5) is fulfilled, then the local discrete minimum/maximum principle is valid:

min{φn
i , φn

j , j ∈ Λin
i } ≤ φn+1

i ≤ max{φn
i , φn

j , j ∈ Λin
i } .(3.7)

The method (3.2) was developed by the authors in [15] and applied on uniform
grids to nontrivial examples of curve and surface evolution. The method was re-
alized with the vertex-centered finite volume method that is described in the next
section. Moreover, a recursive procedure removing the CFL restriction (3.5) has been
introduced to the method in [15].

3.2. High-resolution discretization scheme. First, we reconstruct the piece-
wise linear approximating function φn(x) in (2.12) by following, e.g., [40]. To do so,
we suppose that the finite volume mesh Ωi, i = 1, . . . , I, is complementary to some
conforming finite element mesh T e ⊂ Ω with e = 1, . . . , E and vertices xi, i = 1, . . . , I.
We use the barycentered form of such vertex-centered control volumes Ωi, where the
polygonal boundary ∂Ωi is obtained by connecting the barycenters of elements with
middle points of element edges; see, e.g., [12, 3] for some details and Figure 3.1 for an
illustration.

The standard finite element interpolation of nodal values φn
i is used to define

φ̂n(x) :=

I∑
i=1

φn
i Ni(x) ,(3.8)

where Ni(x) denote finite element basis functions with Ni(xj) = δij .



586 PETER FROLKOVIČ AND KAROL MIKULA

To reconstruct the piecewise constant gradient of φn(x) in (2.12), we apply

∇φn
i :=

∑
e

βn
i,e

|Ωi ∩ T e|

∫
Ωi∩T e

∇φ̂n(x) dx .(3.9)

The preferable choice for βn
i,e ∈ [0, 1] (such that

∑
e β

n
i,e ≤ 1) is

βn
i,e = |Ωi ∩ T e|/|Ωi| ,(3.10)

but other choices can be used in a limiting procedure (see Remark 1).

The velocity �V is approximated at integration points γe
ij by �V e

ij := �V (γe
ij ,∇φ̂n(γe

ij)).

To define φ
n+1/2
i in the general scheme (2.10), we introduce the total outflow and

inflow fluxes (see also (3.3)),

V out
i :=

∑
(e,j)∈Λout

i

|Γe
ij |�ne

ij · �V e
ij , V in

i :=
∑

(e,j)∈Λin
i

|Γe
ij |�ne

ij · �V e
ij .(3.11)

Furthermore, if V out
i > 0, we define time-dependent averaged outflow value,

φout
i (t) :=

1

V out
i

∑
(e,j)∈Λout

i

|Γe
ij |�ne

ij · �V e
ij φ

e
ij(t),(3.12)

and analogously for averaged inflow value (if V in
i < 0),

φin
i (t) :=

1

V in
i

∑
(e,j)∈Λin

i

|Γe
ij |�ne

ij · �V e
ij φ

e
ij(t).(3.13)

Finally, let us define φ
n+1/2
i = αiφ

out
i (tn+1/2) + (1 − αi)φ

in
i (tn+1/2), αi ∈ [0.5, 1],

and

Vi := (1 − αi)V
out
i − αiV

in
i ,(3.14)

and the scheme (2.10) can be written as

φn+1
i = φn

i − ΔtnVi

|Ωi|

(
φout
i (tn+1/2) − φin

i (tn+1/2)
)
.(3.15)

The preferable choice of αi in (3.14) is αi = 0.5. Note that the parameters αi in (3.14)
and βi in (3.9) can be chosen independently of each other.

Denoting the residence time τi := |Ωi|/Vi, the scheme (3.15) also can be written
in the form

φn+1
i = φn

i − Δtn
φout
i (tn+1/2) − φin

i (tn+1/2)

τi
.

Note that the first order accurate method (3.2) can be obtained from (3.15) by
setting βn

i,e = 0 in (3.9) and αi = 1 in (3.14), i = 1, . . . , I. Such a form of (3.15) can
be used only locally, when it takes the form

φn+1
i = φn

i − ΔtnV in
i

|Ωi|

(
φn
i − φin

i (tn+1/2)
)
.(3.16)
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We choose (3.16) instead of (3.15) for special cases V out
i = 0 or V in

i = 0, when (3.15)
is not well defined. Note that for V in

i = 0, (3.16) turns to φn+1
i = φn

i .
The following local discrete minimum/maximum principle can be proved for φn+1

i

by showing that (3.15) and (3.16) can be viewed as positive coefficient schemes [3, 4].
Theorem 3.1. Let us denote

φn
i,min := min{φn

i , {φn
j , (j, e) ∈ Λi such that ∃(k, e) ∈ Λin

i }},

φn
i,max := max{φn

i , {φn
j , (j, e) ∈ Λi such that ∃(k, e) ∈ Λin

i }} .

If

φn
i,min < φin

i (tn) < φn
i,max(3.17)

and

φn
i,min < φn

i < φn
i,max ,(3.18)

then φn+1
i given by (3.15) fulfills the local minimum/maximum principle

φn
i,min ≤ φn+1

i ≤ φn
i,max(3.19)

for sufficiently small time step Δtn > 0.
If only (3.17) is fulfilled, then φn+1

i given by (3.16) fulfills (3.19).
Proof. First, we prove (3.19) for the solution given by (3.15). To do so, let us

denote

ω(t) :=
φn
i − φn

i,min

φout
i (t) − φn

i,min

.(3.20)

If φout
i (tn) > φn

i or φout
i (t) ≥ φn

i for t ≥ tn, one obtains that ω(tn+1/2) ∈ (0, 1] for
sufficiently small Δtn > 0. From (3.20) one has

φout
i (t) =

1

ω(t)
φn
i − 1 − ω(t)

ω(t)
φn
i,min ,(3.21)

and (3.15) can be written in the form of positive coefficient scheme

φn+1
i =

(
1 − Δtn

ω(tn+1/2)τi

)
φn
i

+
(1 − ω(tn+1/2))Δtn

ω(tn+1/2)τi
φn
i,min +

Δtn

τi
φin
i (tn+1/2)(3.22)

if Δtn ≤ min{ω(tn), ω(tn+1/2)}τi. Consequently, the property (3.19) is valid.
For the case that φout

i (tn) < φn
i or φout

i (t) ≤ φn
i for t ≥ tn, one can proceed

analogously by defining

ω(t) :=
φn
i − φn

i,max

φout
i (t) − φn

i,max

.(3.23)

For φn+1
i obtained from (3.16) the proof is straightforward.

Remark 1. The results of Theorem 3.1 can be used to control any standard limiter
procedure; see, e.g., [21, 3, 13] for flux or slope limiter procedures. For instance, the
assumption (3.17) can be made valid by setting (in an extreme case) βn

j,e = 0, j ∈ Λin
i ,

in (3.10).
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Table 4.1

Errors in L2((0, T ), L2(S2))-norm and EOC for the example of a shrinking sphere using the
first order scheme (3.2) (third and fourth columns) and using the high-resolution scheme (3.15) (fifth
and sixth columns). Analogously, the errors in L1((0, T ), L1(S2))-norm and EOC for the example
of a shrinking cube are presented (seventh and eighth columns). In both cases, the high-resolution
scheme gives the second order accuracy.

E N Error EOC Error EOC Error EOC

10 10 3.871E-2 6.289E-3 2.412E-3
20 20 1.867E-2 1.05 1.470E-3 2.09 7.800E-4 1.63
40 40 9.181E-3 1.02 3.546E-4 2.05 2.128E-4 1.87
80 80 4.528E-3 1.02 8.763E-5 2.01 5.395E-5 1.98
160 160 2.243E-3 1.01 2.167E-5 2.01 1.380E-5 1.97

4. Numerical experiments. In the following subsections, we present various
numerical experiments to illustrate the behavior of the high-resolution flux-based level
set method. Note that in all examples no limiting procedures and no reinitializations
of the level set function were used.

4.1. Comparison with exact solutions on a three-dimensional uniform
grid. In this subsection we give a comparison with simple exact solutions of the
surface evolution problem.

First we show experimental order of convergence (EOC) for an evolving sphere
computed on a subsequently refined uniform rectangular grid in three dimensions.
For δ = −1 in (1.2), the exact radius of a shrinking sphere is given by r(t) = r(0)− t,
t ∈ [0, T ], where r(0) is an initial radius and the solution is well defined for T ≤ r(0).
We use the spatial domain Ω = [−1.25, 1.25]3, which is split into E3 cubic elements
T e with the side length h = 2.5/E. The time step is given by τ = T/N .

To compare numerical and exact solutions, we find all zero crossing points xn
k , k =

1, . . . ,K, of a piecewise linear representation of the numerical solution with finite
element grid lines in every discrete time step n = 0, . . . , N . Then, in the case of a
shrinking sphere, we compute Euclidean distances rnk = |xn

k | from the origin of all
xn
k , k = 1, . . . ,K, and compare them with the exact radius of the shrinking sphere.

Summing for all discrete time steps, we get the formula

Error =

(
N∑

n=0

τ
1

K

K∑
k=1

(rnk − r(nτ))2

) 1
2

(4.1)

which is used as the L2((0, T ), L2(S
2))-norm of the difference of exact and numerical

surfaces, where S2 is a unit sphere. In the experiment presented in Table 4.1 we use
r(0) = 1 and T = 0.4.

In the case of a shrinking cube centered at origin, we compute mn
k = max(|xn

1 |,
|xn

2 |, |xn
3 |) for all zero crossing points xn

k = (xn
1 , x

n
2 , x

n
3 )k, k = 1, . . . ,K. The value

mn
k is compared with the corresponding exact quantity, a distance m(t) of the faces

of the exactly shrinking cube from the origin. Note that m(t) = m(0) − t. Points
on the exactly and numerically evolved surfaces correspond to points on the unit
sphere (using the radial coordinate). Therefore, analogously to (4.1), we can define
the formula

Error =

N∑
n=0

τ
1

K

K∑
i=1

|mn
i −m(nτ)|(4.2)
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which is used as the L1((0, T ), L1(S
2))-norm of the error in surface motion. This norm

is used for nonsmooth solutions due to the corners in the evolving isosurface. In the
experiment presented in Table 4.1 we use m(0) = 1, T = 0.4, and further parameters
are the same as in the case of the shrinking sphere.

Table 4.1 shows that the method (3.15) is O(h2) for both examples, compared to
the method from (3.2), which is only first order accurate.

4.2. Comparison with exact solutions on two-dimensional unstructured
grids. We present two-dimensional examples with known analytical solutions to
demonstrate the high-resolution accuracy of our method on unstructured grids. Im-
plementations were realized with software toolbox UG [5]. The domain is a square
Ω := (−0.5, 0.5)2. The velocity is given as a sum of the divergence free part (the rota-
tion) and the part causing shrinking or expanding of the interface in normal direction,

�V =

(
−y
x

)
+ δ

∇φ

|∇φ| ,(4.3)

where δ is a constant to be specified later. The initial condition and the Dirichlet
boundary conditions will be prescribed using the exact solution Φ of a particular
problem.

First, an example of a circle that rotates and shrinks is considered:

Φ(t, x1, x2) =
√

x̃2
1 + x̃2

2 − r0 + δt(4.4)

and

x̃1 := x1 cos(t) + x2 sin(t) + 0.25, x̃2 := x2 cos(t) − x1 sin(t).(4.5)

The initial radius is chosen as r0 = 0.2. The parameter δ is chosen such that after
half rotation, i.e., t = π, the radius of circle is halved; i.e., δ = −0.1/π.

Figure 4.1 shows an initial finite element mesh of 28 triangles representing the grid
level 0. The grid is subsequently refined by dividing each triangle into 4 subtriangles.
The finest grid is obtained after 6 uniform refinements (i.e., the grid level equals 6)
and contains 114688 triangles. The picture in the middle of Figure 4.1 presents the
numerical solution at t = 0 and t = π for the grid level 6.

Fig. 4.1. Initial coarse grid (left) and three contour lines (φ = −0.01, 0.0 and 0.01) of numerical
solutions at t = 0 and t = π for the circle example (middle) and the square example (right). In this
resolution, almost no difference between exact and numerical zero isolines would be visible.

Table 4.2 shows an L1-norm of numerical error at t = tN = T ,

Error =

∫
Ω

|Φ(T, x1, x2) −
I∑

i=1

φN
i Ni(x1, x2)| dx1dx2,(4.6)
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Table 4.2

Numerical errors and EOC for the shrinking and rotating circle example.

Level N Error (4.6) EOC Error (4.7) EOC Area error EOC
3 80 3.5268E-4 5.8035E-4 3.5455E-4
4 160 0.9099E-4 1.95 1.2370E-4 2.23 0.1953E-4 4.18
5 320 0.2330E-4 1.97 0.3203E-4 1.95 0.0629E-4 1.63
6 640 0.0598E-4 1.96 0.0830E-4 1.95 0.0211E-4 1.58

Table 4.3

Numerical errors and EOC for the shrinking and rotating square example.

Level N Error (4.6) EOC Error (4.7) EOC Area error EOC
3 80 1.7461E-3 3.8785E-3 3.3658E-3
4 160 0.5986E-3 1.54 1.3725E-3 1.50 1.0503E-4 1.64
5 320 0.1678E-3 1.83 0.3698E-3 1.89 0.2677E-4 1.97
6 640 0.0443E-3 1.92 0.0982E-3 1.91 0.0669E-4 2.00

for each grid level; see also (3.8). Note that the error (4.6) is computed on the whole
domain and not only on the interface. The L1 error of the interface position at t = T
is computed using

Error =
K∑

k=1

|Γk|
∣∣rk − rexact

∣∣ ,(4.7)

where the numerical interface is reconstructed as a polygon made of K segments Γk,
and the Euclidean distance rk is computed between the middle point (xk

1 , x
k
2) of Γk and

the center (xc
1, x

c
2). For this example, one has rexact = 0.1 and (xc

1, x
c
2) = (0.25, 0.0).

Moreover, the error between the exact area 0.01π of the circle at t = π and the area
given by the numerical solution is presented in Table 4.2.

An analogous numerical experiment is realized using a level set function (not a
distance function) describing a square that is transported by the same velocity (4.3),
the results of which are presented in Figure 4.1 (right) and Table 4.3. The exact
solution is given by

Φ(t, x1, x2) :=

⎧⎪⎪⎨
⎪⎪⎩

x̃2 − r0 − δt, x̃2 ≥ 0 and x̃2 ≥ |x̃1|,
−x̃2 − r0 − δt, x̃2 ≤ 0 and −x̃2 ≥ |x̃1|,
x̃1 − r0 − δt, x̃1 ≥ 0 and x̃1 ≥ |x̃2|,

−x̃1 − r0 − δt, x̃1 ≤ 0 and −x̃1 ≥ |x̃2|,

(4.8)

where r0 = 0.2 (see also (4.5)) and the corners of the square remain sharp, producing
discontinuous derivatives of the solution. The error (4.7) on the interface (rexact = 0.1
and (xc

1, x
c
2) = (0.25, 0.0)), where rk = max(|xk

1−xc
1|, |xk

2−xc
2|), and the error between

the exact area 0.04 and the area determined by the numerical solution are included
in Table 4.3.

Next, analogous numerical experiments with expanding characteristics are pre-
sented. First, an example of the expanding and rotating circle is chosen where the
exact solution Φ(π, x1, x2) is given by (4.4) with r0 = 0.1, δ = 0.1/π for (x1, x2) �∈
S ((0.25, 0.0), 0.1), and Φ(π, x1, x2) ≡ −0.1 otherwise, where S ((0.25, 0.0), 0.1) is a
circle centered at (0.25, 0.0) with the radius 0.1.

Note that for this example the high-resolution method gives EOC in the error (4.6)
that is less than 2. One of the reasons is a constant region that is developed in the
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Table 4.4

Numerical errors and EOC for the expanding and rotating circle example.

Level N Error (4.6) EOC Error (4.7) EOC Area error EOC
3 80 1.5615E-3 1.8584E-3 7.338E-4
4 160 0.5413E-3 1.53 0.4784E-3 1.96 1.434E-4 2.36
5 320 0.1989E-3 1.44 0.1100E-3 2.12 0.906E-4 0.66
6 640 0.0678E-3 1.55 0.0262E-3 2.07 0.080E-4 3.5

Fig. 4.2. The left picture shows three contour lines (φ = −0.01, 0.0, and 0.01) of numerical
solutions at t = 0 and t = π for the expanding and rotating circle example (in this resolution no
difference between the exact and the numerical zero isolines could be visible). The middle picture
presents analogous results for the expanding and rotating square, where additionally the exact zero
level line (black) is presented. The right picture shows the level lines of the numerical solution
distributed uniformly between −0.075 and 0.55.

Table 4.5

Numerical errors and EOC for the expanding and rotating square example.

Level N Error (4.6) EOC Error (4.7) EOC Area error EOC
3 80 3.9579E-3 9.9274E-3 6.3885E-3
4 160 1.8124E-3 1.13 5.1273E-3 0.95 3.9632E-3 0.69
5 320 0.8203E-3 1.14 2.2505E-3 1.19 1.8900E-3 1.07
6 640 0.3733E-3 1.14 1.0654E-3 1.08 0.9554E-3 0.98

exact solution. Nevertheless, the error (4.7) on the interface diminishes quadratically;
see Table 4.4, where the difference between the exact area 0.04π and the numerical
one is also presented. The initial and final circular interface is presented in the picture
at the left of Figure 4.2.

Finally, an example of the expanding and rotating square is computed. The initial
function Φ(0, x1, x2) is given by (4.8) with r0 = 0.1 and δ = 0.1π. The exact solution
can be simply constructed using the Huygens principle; see also the picture at the
right of Figure 4.2. The global numerical error (4.6), the local one (4.7), and the
difference between the exact area 0.12+0.01π and the numerical one are presented in
Table 4.5. The numerical solution at t = π is plotted in the middle picture of Figure
4.2 (three isolines where the interface is located) and in the right picture (isocontours
plot of the final level set function). For this example, the high-resolution method
seems to be slightly better than first order accurate.

4.3. Numerical experiments using locally adapted grids. The example
with the rotating and shrinking square was repeated with a locally adapted grid by
refining (and coarsening) in each time step only elements in the neighborhood of
the zero contour line; see Figure 4.3. Note that mixed grids consisting of squares
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Fig. 4.3. Locally adapted grid at t = π/4 (left) and t = 5π/8 (middle) and numerical solutions
at t = π/4, t = 5π/8, and t = π (right).

Fig. 4.4. A cross section of numerical solution (left) and locally adapted grid used in the first
(middle) and last (right) time step for the example of a shrinking sphere.

and triangles were used. The simulation used 3290 finite elements at the beginning
and 1547 at the end of computations and took considerably less time to realize than
computations with corresponding uniformly refined grids.

To illustrate the capability of UG [5] for three-dimensional grids, Figure 4.4 shows
the numerical solution (a shrinking sphere) and the grids before the first and last time
step. Note that mixed grids consisting of hexahedra, pyramids, and tetrahedra were
used.

Finally, in a nontrivial experiment we evolve an initial curve in the form of a
shrinking quatrefoil [15]. The quatrefoil is the zero level set of the initial level set
function (not a signed distance function) constructed by the formula

φ0(x1, x2) = −0.5 +
√

x2
1 + x2

2 /rL, rL = 0.6 + 0.4 sin

(
4 arctg

(
x2

x1

))
.

In this experiment, topological changes of the evolving curve occur; see Figure 4.5.

4.4. Benchmarks with divergence free velocity. In this section, we present
numerical results for two standard benchmark examples with divergence free velocity
field to illustrate the behavior of our method for such types of problems. The main
application of level set equation (1.1) with externally given velocity �V such that

∇·�V = 0 are problems of two-phase flow where the evolving level set function describes
a moving interface between two incompressible fluids. Note that for this type of
problem, the level set equation can be written in a conservative form (2.3) with
zero right-hand side. For such a classical scalar linear hyperbolic equation describing
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Fig. 4.5. Shrinking of a quatrefoil with topological changes; the zero contour line of the numer-
ical solution and the used grid are plotted for three different time steps.

conservation law there exist an enormous number of sophisticated numerical methods
and recently some of them were devoted directly to level set applications [30, 35, 25].

Before presenting our numerical results, we illustrate a better performance of
the finite volume based scheme (3.15) as compared to the finite difference based ENO
scheme [31] for a test example of a rotating circle. The high-resolution flux-based level
set method (3.15) was implemented in the MATLAB toolbox of level set methods [26]
and compared with the existing implementation of the ENO scheme of second order
in time and space.

The example is defined on a square (−1, 1)2, and the rotation is given in the
clockwise direction. Dirichlet boundary conditions given by the exact values of a
signed distance function were used in both methods.

Figure 4.6 shows numerical solutions on a coarse grid with (I+1)2 nodes, I = 20,
where the differences between two methods can be clearly recognized. Table 4.6 shows
the simple discrete L1-norm

Error =
4

I2

(I+1)2∑
i=1

|φ0
i − φN

i |,

which is computed from the differences of numerical solutions in grid points at t = 0
and the time after one rotation.

In what follows, we present results of our scheme in solving two complex ex-
amples known from the literature, namely for the Zalesak’s disk rotation and the
vortex-in-a-box examples. In the literature, to improve a finite difference level set
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Fig. 4.6. Initial condition (left), numerical solution obtained by the second order ENO scheme
(middle) and by the high-resolution scheme FB-LSM (3.15) (right) for 4 different times on a coarse
mesh of 21 × 21 grid points. The rotation occurs in the clockwise direction.
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Table 4.6

Numerical error of flux-based level set method (FB-LSM) and ENO scheme for a rotating circle.

I N Error FB-LSM Error ENO
20 140 104.046E-4 708.131E-4
40 280 28.726E-4 235.063E-4
80 560 7.899E-4 71.060E-4

approximation of the interface, additional numerical techniques, such as redistancing
algorithms [44, 42, 48], particle tracking techniques [8, 9, 18], volume-of-fluid methods
[46], or discontinuous Galerkin methods [48, 25], were introduced; see also a review
in [24].

In our opinion, the results obtained by the flux-based level set method (2.10),
presented in this section, are qualitatively comparable to those of published stud-
ies, especially if one takes into the account that no additional numerical techniques,
mentioned before, were applied in our computations to improve the level set approx-
imation of the interface. In this way, the flux-based level set method can produce
satisfactory results for reasonable meshes by preserving its simple form. Nevertheless,
in contradiction to quoted papers, the primal field of applications of our flux-based
level set method are problems that involve geometric evolution equations and that
might also include the evolution described by external flow; see, e.g., the boat-sail
distance problem [28, 29].

First, the example of the solid body rotation of the so-called Zalesak’s disk is
presented; see, e.g., [42, 8, 9, 18, 25, 46]. The initial interface is a circle with radius
0.15 centered at (0.5, 0.75) with a vertical rectangular cut of the width and length
equal to 0.05 and 0.25, respectively. The slotted disk rotates in the counterclockwise
direction with a constant angular velocity and returns to the origin position after one
rotation.

The example is simulated on a unit square. The initial level set function is
given by a signed distance function to Zalesak’s disk, and exact Dirichlet boundary
conditions are used during simulations. The initial coarse grid (referred to later as
the grid level 0) consists of 4 right triangles that are obtained by connecting the
corners of the square with the middle point of the square. Afterwards, the grid is
refined uniformly by dividing each triangle into 4 subtriangles, creating subsequent
grid levels. Numerical results are presented for the grid levels 7 (consisting of 65536
triangles with 33025 vertices, 720 uniform time steps) and 8 (consisting of 262144
triangles with 131585 vertices, 1440 uniform time steps).

In Figure 4.7 a comparison of the numerically and exactly computed interface
after one rotation can be found for grid levels 7 and 8. The corresponding L1 errors
(4.6) are presented in Table 4.7.

As expected, one can observe a smoothing of initially sharp corners in the numer-
ical solution of Zalesak’s disk problem. The area of the disk surrounded by the zero
isoline of the numerical level set function at grid level 8 is 5.8216E-2 for t = 0 and
5.7893E-2 for t = T , which corresponds to the loss of 0.55%.

Finally, an example of a single vortex in a box is presented; see, e.g., [9, 18, 25, 46].
The time-dependent velocity with nonzero vorticity is given by

�V = 2 cos

(
πt

8

)(
− sin2(πx) sin(πy) cos(πy) , sin2(πy) sin(πx) cos(πx)

)
.(4.9)

The time dependency of �V in (4.9) was resolved by evaluating it at t = tn +0.5Δt for
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Fig. 4.7. The left picture shows a detail of three level lines (φ = −0.01, 0.0, and 0.01) of the
numerical solution and the exact zero line (black) after one rotation at grid level 7 for Zalesak’s
example. The middle picture presents analogous results for grid level 8. The right picture shows
level lines of the numerical solution in the whole domain (distributed uniformly from −0.05 to 0.75)
after one rotation for grid level 8.

Table 4.7

Numerical errors and EOC for the Zalesak example and the single vortex example.

Level N Error (4.6) EOC N Error (4.6) EOC
Zalesak ex. Single vortex ex.

6 360 6.3206E-4 800 1.2309E-2
7 720 2.2406E-4 1.50 1600 0.4461E-2 1.46
8 1440 0.9224E-4 1.28 3200 0.1246E-2 1.84

Fig. 4.8. The left picture shows the exact circular interface (green) and the computed interface
(black) at t = 8 of the single vortex example for grid level 8. The middle picture presents the zero
level line of the numerical solution at t = 4, and the right picture shows level lines in the whole
domain distributed uniformly between −0.1 and 0.75.

each time step to obtain �V in (1.1).
The initial interface is a circle with radius 0.15 and centered at (0.5, 0.75) in a

unit square (0, 1)2. The interface stretched during simulations by wrapping around
the center of the box, reaching a maximal deformation at t = 4 and returning to the
initial circular form at t = 8.

The computations were realized using a signed distance function as an initial level
set function and exact Dirichlet boundary conditions during simulations. The coarse
grid and subsequent grid levels were chosen analogously to Zalesak’s disk example. A
uniform time step was chosen by setting Δtn = Δt = 8/N .

Numerical results for the single vortex example are plotted in Figure 4.8, and the
numerical L1 error (4.6) is presented in Table 4.7. The area of the circle at t = 8
equals 7.2302E-2, which corresponds to a gain of 2.3% with respect to the exact area
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7.0686E-2. Note that again no extension to our level set method was used. For
instance, no redistancing was applied in simulations; see the picture at the right of
Figure 4.7 where the numerical level set function at t = 4 is presented.

Acknowledgment. The authors would like to thank Christian Wehner, a stu-
dent at the University of Heidelberg, for providing numerical results comparing the
flux-based level set method and the ENO scheme.
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