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Summary. We introduce a linear semi-implicit complementary volume numerical
scheme for solving level-set-like nonlinear diffusion equation arising in plane curve
evolution driven by curvature and anisotropy. The scheme is Lo, and W' stable
and the efficiency is given by its linearity. Incomplete Cholesky preconditioners
are used for computing arising linear systems in a fast way. Computational results
related to anisotropic mean curvature motion in a plane are presented.
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1 Introduction

The aim of this paper is to present a linear semi-implicit complementary volume
numerical scheme for solving anisotropic curvature driven evolution of plane curves.
We deal with discretization of the following nonlinear partial differential equation

us = 7(9)|VU|V.(|§—Z|), (1)

where u(t, z) is an unknown function defined in Qr =1 x 2, I = [0,T] is a time
interval, 2 C IR? is a bounded domain with a Lipschitz continuous boundary, and

L
0= Z(%,xl) is the angle of the tangent to a level line of u and coordinate
axis z1 at point x = (x1,2) and time t. The equation is accompanied with zero

Neumann boundary condition and initial conditions

Ou=0 onlx0f?2, (2)
u(0,z) = u’(z) in 0. (3)
We assume that
0<c<y<C< oo, (4)
i.e., 7(0) is a bounded strictly positive function representing anisotropy. Since ‘g—:

gives the unit normal vector N to a level line of a smooth function « with nonzero
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gradient and V.N gives the curvature of this level line, equation (1) represents the
so-called level set formulation ([22, 26]) of the anisotropic curve shortening flow
problem (see e.g. [2, 19, 12, 20])

v =(0)k, (5)

where normal velocity v of the evolving curve I' (e.g., a closed level line of u con-
sidered above) at any point € I' is proportial to its curvature k at the point x
multiplied by y(#) with 6 given at z. The equations of the form (5) appear within
a large variety of applied problems. They can be often found in the material sci-
ence, anisotropic dynamics of phase boundaries in thermomechanics, in modeling
of flame front propagation, in combustion, in computational geometry, robotics,
semiconductors industry, etc. They also have a special importance in the image
processing and computer vision. They are capable to model the so-called morpho-
logical image and shape multiscale analysis studied by Alvarez, Guichard, Lions and
Morel [1]. An image isophote corresponding to a level line of the image intensity u
is driven by (5) in the level set formulation (1) and the image is correspondingly
smoothed in a morphologically invariant way [1, 15]. Examples of anisotropic-like
models can be found in the image segmentation (see e.g. [6]); anisotropy can help
to preserve corners of the segmented objects. For an overview of various aspects
and applications of the equation (5) we refer to recent books by Sethian and Sapiro
[27, 24].
Another formulation of anisotropic curvature driven motion is also used (see
e.g. [3, 25, 12])
v = Ka, (6)

with k. the so-called anisotropic curvature, where a : S = IR, a > 0, is an
anisotropic surface energy weight function depending on the normal vector N to
the curve. In the case of curves, one can take a(IN) = @(0), then (6) corresponds to
v=(a&+a")k and the relation v = @+ a" is seen ([25]). By the method presented
in this paper, we can thus compute evolution for anisotropic weight function o with
strictly convex Frank diagrams (polar graph of 1/a).

Provided v = 1, (1) is called the level set equation proposed by Osher and
Sethian ([22], [26]) for computation of moving fronts. The existence of its solution
in a viscosity sense was given in [7, 14]. For the numerical solution Osher and
Sethian proposed an explicit time stepping algorithm based on up-wind schemes
for Hamilton-Jacobi equations. However, since (1) is a second order (degenerate)
parabolic equation and nonlinearities depend on Vu (and thus they are piecewise
constant on triangles in case of piecewise linear functions given on a triangulation),
the linear finite element ([8, 9, 10, 11, 25]) or complementary volume methods ([28,
16]) are also well suited for numerical solution. Taking time discretization in a semi-
implicit way, such methods are unconditionally stable, simply implemented and,
using state-of-the-art of the preconditioned linear algebra solvers one can achieve
fast CPU times. Besides the level set formulation (1) of the geometrical equation
(5), the phase-field approximations (see e.g. [21, 3, 13, 5, 4] and references there) and
direct methods [19, 12, 20] have been developed to model and compute anisotropic
curve evolution.

In this paper we extend the linear semi-implicit co-volume scheme given in
[16] (for selective image smoothing) to new class of applications, namely to solve
anisotropic curve shortening in the level set formulation (1). In Section 2 we present
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the scheme and give some of their properties. In Section 3 we discuss computational
results.

2 Linear semi-implicit co-volume scheme

In this section we present semi-implicit complementary volume discretization of the
problem given by (1). We discretize the time interval [0, T]. Choosing N € IN we
have given the length of a uniform discrete time step 7 = . We replace the time
derivative in (1) by backward difference and the nonlinear terms of equations are
treated from the previous time step while the linear ones are considered on the
current time level - this means semi-implicitness of the method. Equation (1) is not
written in divergence form. For partial derivatives of second order, as it is usual in
variational methods, we would like to use integration by parts or divergence theorem
to get integral formulation. Thus, first we move the terms in front of divergence to
time derivative and then write semi-implicit discretization of (1) in time.

Semi-discrete linear scheme for solving equation (1): Let N € IN, 7 = % be
fized numbers and u® be given by (3). For everyn = 1,... N, we look for a function
u”, solution of the equation

n__ ,n—1 n
1 u U —V.( Vu ):0, 7)

,Yn—llvun—ll T |V,un—1|

n—1yL1
where 4" 1 = 4(67 1), 71 = 4(%, x1). Walkington in [28] first studied a
co-volume sceme for curvature driven motion (with y = 1). He used an interesting

approximation of degenerate diffusion term

1 u” — ! vVu™
-2Vl =————— ] =0 8
[Vur—1] T v (|Vu"| + |Vu"—1|> (8)

taking average of gradients from previous and current time step in denominator of
divergence term in order to get important W'! estimate, i.e. estimate on decay of
total variation of semi-discrete solutions. It is a basic property of the flow by mean
curvature and of a solution of level set equation as well so a numerical approximation
should respect this fact. Following [28] one can multiply (8) by ™ — "' and
integrate it over §2. Then using integration by parts and zero Neumann boundary
conditions one gets

(u™ —u™"")? Vu™.(Vu" — Vu" )
——*d 2 dxr = 0.
|, St | e e ©
Using the relation
2a(a —b) =a® —b> + (a — b)® (10)

where a,b are arbitrary real numbers, and by a simple manipulations related to the
sum in denominator one gets
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(un _ un—l)2 |vun|2 _ |Vun—1|2
—e——d d
/9 T|Vur—1| T o [Vur=t +|Vur| T

|vu \vZe 1|2 (un _ un71)2
e dr= | ~————"d 11
+ o Va1 + [Vur] o TIVur | T+ (11)

_ n—12
+/ %dm+ (/ |Vun|dx—/ |Vun1|da:> =0
o IVur=t + |Vur| o o

which means that

IVa™ |2y ) < IVa" "y o) (12)

and by recursion
IVa"|lzy ) < IVE°|lzy 2y, L<n <N, (13)

which is W! stability property of Walkington’s nonlinear co-volume scheme. One
could adjust the previous scheme (8) to the anisotropic situation. But, the “implicit”
time discretization used in (8) leads (after any spatial discretization) to solving of
nonlinear system of equations in each discrete time step which is rather non-efficient
approach. In order to have convergence, which is however very slow, one has to use
fixed point-like nonlinear iterations; faster possibilities like Newton’s method has no
guarantee to converge ([28]) and are also rather complicated from implementation
point of view. In spite of that, we can get decay of total variation of solutions on
subsequent time steps also for scheme (7) which is much more simple and efficient
since it is linear. As linear, it allows to use fast preconditioned iterative solvers at
every time level with fast CPU times. In order to get (13) for our scheme let us

multiply (7) by ™ — ™! and integrate it over £2. Using (10) we get
n n—1\2 n|2 _ 'n,—l 2 n n—1(2
Since
1,2 12 Vu™ vur1 )\’ 1
[V =Vu™ " = (|Vu"|=[Vu" ) +(W - W) |V’ [V (15)
we get

( n u 1)2 () + |Vun|2 n71|2 (lvun|_|vun 1|)2
T,yn 1|Vun 1| |Vun 1|

2
(IVu™| - |Vu“_1|) Vu™ Vur~? nig.
+/g VurT| dzx —|— |Vu”| |Vu"—1| |Vu™|dz = 0.

Due to positivity of other terms we get for the second one

n n—1| _ n—12
|Vu™| |[Vu"™ | = [Vu™ | dz <0 (16)
o |Vun—1|

which gives desired stability property

Ve ||z, 2y < IVU™ g (o) (7)
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In order to derive a fully discrete scheme, let us assume that we have given a tri-
angulation 7 (which has no interior angle larger than 7/2) of the domain 2. We
construct a dual mesh which consist of cells V; (called also complementary volumes,
control volumes or co-volumes) associated with the ith node of triangulation 7p,
t =1,...,M. The co-volume V; is bounded by the lines that bisect and are per-
pendicular to the edges emanating from the node. We will denote the edge of Ty
connecting the ith node to the jth by o;; and its length by h;;. We denote by &;;
the set of simplices having o;; as an edge, i.e., &; = {T" € Tplos; C T}. Let e
denote the co-edge that is the perpendicular bisec’cor of oi; and z;; be a point of
intersection of e;; and 0ij. For each T € &;; let cm be the length of the portion of e;;
that isin T, i.e., ¢; = |es;; NT|. Let N; be the set of simplices that have the ith node
as a vertex, and for each node of T let C; denote the set of nodes connected to the
ith node by an edge. Given a triangulation 73, we define the set V5, C V of piecewise
linear finite elements, i.e., V4 = Vi(Tz) := {v € C°(2)|vr € Prfor all T € Tp}.
For any v, € V3 we will use the notation v; := v (z;) where z; is ith node of
triangulation. Let u9 = Iy, (u®) € V4 (T#) be the nodal interpolant of u°, the initial
function for the complementary volume method.

In order to derive complementary volume spatial discretization we integrate (7)
over a co-volume V;

w® — "t Vu™
_— = . rp—— . ]-
/WA/"IIVU"IIde /Viv (|Vun1| dx (18)

For the right hand side using divergence theorem we get

Vau™ 1 ou™ 1 ou™
Y = — - T s= — - % s (19
/,V (|Vu”—1|>dx / TR DY / Vo] a0 % (19
Vi ov; jec; Y eii

If u? € V4(Tr) is continuous piecewise linear function on triangulation 75 and we
have denoted u; = up(z;) its nodal values then

2/ ];L 1|88L1jhds_ Z Z | n 1| jh_ijUi (20)

JjEC; JEC; TEE;;

where Vu%_l denotes the constant gradient vector of uz_l in the simplex T and
|Vu§71| is its absolute value. In the complementary volume method we approximate
the left hand side of (18) by
n n—1
o e o)
T Ve
where we have taken weighted averages of the constant quantities on triangles
intersecting co-volume V;, namely

_ TNV 1
Vul T OVl - , (22)
T; Vil T
n— nv;
v tm 3 B, (23)

TeEN;
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0; lzl(maml)v YT =007, (24)
If we denote by
n— Vi
byt = W’ (25)
n—1 1 CZ;
a;; =1— =T (26)
J hij Tezy; |Vl b

we can write linear fully discrete complementary volume scheme for solv-
ing equation (1): Forn=1,..., N we look for ui,i =1,..., M satisfying

BTN — T Y el (U] - uf) =0. (27)
JEC;

By the above construction, it is not difficult to see that system (27) gives a sym-
metric positive definite M-matrix with diagonal dominance.

Using nonnegativeness of b7, aZ._l we can get Loo-stability estimate for fully
discrete scheme (27) in the form

min %) < min ¥ < max u? <max u), 1<n<N (28)
which means
luhlliw @ < llunllia@), 1<n<N. (29)
To see (28), let us rewrite (27) in the form
T -1 -1
ui + T Z ay; (ui —wuj) =u (30)
vt jEC
and let maxwup = max(ul,...,u};) be achieved in the ith node. Then the whole
second term on the left hand side is nonnegative and thus value u? < u?~' <
max(u}™',...,u%"). In the same way we can prove the relations for minima.

Until now, we have not solved the problem of possible zero gradients in denomi-
nators of the scheme (7) or (27). To prevent such situation we can use Evans-Spruck
type regularization and consider

[Vule = /e + |Vul? (31)

instead of |Vu| everywhere in the schemes (7) and (27) or just when |Vu| is van-
ishing. The stability results which we derived so far formally, i.e. Lo, and W es-
timates (28) and (17), are valid for such regularization of the fully discrete scheme
(27). Since «y fullfils (4), to that goal one can use the results from [16]. Moreover
they do not depend on regularization parameter £ thus we can pass to the limit
and understand solution of (27) in a generalized sense as in [16].

3 Numerical experiments

This section is devoted to discussion on numerically computed examples and in-
cludes also discussion on computational efficiency of iterative solvers used in our
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semi-implicit scheme (27). In all presented examples we have used ¢ = 107¢,
7 = 0.001, and we use simple uniform grid with spatial step size h = 0.01 where
every square is divided into two triangles in order to have triangulation 7. The
dual mesh then consists of shifted squares. We take signed distance (see [27]) to
initial curve as initial condition u°(x). We visualize evolving zero level line of u
corresponding to evolving curve at discrete time moments.

In Figures 1 and 2 we present computations with four-fold anisotropy given by
v(f) = 1 — 0.8 cos(48). First, the evolution of unit circle is computed and visual-
ized (every 100th time step) in Figure 1 left. The evolution precisely coincides with
solution given by conceptually different methods based on a porous-media-like for-
mulation for which convergence to weak solution is known [19] and with a method
based on discretization of the intrinsic heat equation [20]. We plot by solid lines
numerical solution given by co-volume scheme (27) and by points the solution given
by direct methods (both give undistinguished discrete curve representations). In the
figure, one can see minor error in extinction of the curve; computed extinction time
is 0.503, while the exact one is 0.5. Next we use the method (27) for evolution of
initial nonconvex curve (five-petal). In Figure 1 right we visualize every 20th time
step untill T = 0.2. The comparison with direct method [20] is of similar precision
to those presented in the left.

In the computations given in Figure 2 we accompany the curve shortening (5)
with an external constant driving force F. Such model represents the Angenent-
Gurtin approach to solid-liquid planar interface motion for perfect conductors [2].
We consider geometrical equation of the form

v =(0)k + F. (32)

We present computations with negative F' (driving a curve to expand) and we
plot both solutions every 20th time step untill 77 = 0.2. In this case, the only
modification of the scheme (27) consists in nonzero right hand side given now by
%. In Figure 3 we plot evolutions of two nonconvex curves (four-petals) using
ariisotropies v(0) =1 — 0.98 cos(30) (left) and () = 1 — 0.95 cos(66) (right) and
we visualize every 20th time step untill 7' = 0.2 (left), 7" = 0.3 (right), respectively.

An efficient implementation of semi-implict scheme (27) requires fast solution of
the large linear systems. We have focused on the preconditioned conjugate gradient
(PCG) method because the coefficient matrices are symmetric positive definite M-
matrix with diagonal dominance. Incomplete Cholesky factorization (ICF) has been
a general way for obtaining a preconditioner and a good experience have been done
in the PDE-image processing environment in [16]. A key issue in ICF is to choose
the sparsity pattern S. Many methods have been proposed for finding a good S. The
first ICF proposed by Meijerink and van der Vorst [18] kept the sparsity pattern of
the original matrix. Another popular ICF method is based on the drop tolerance
approach in which nonzeros are included in the incomplete factor when they are
larger than some threshold parameter. Therefore, the memory requirements are
unpredictable. Many variants and detailed descriptions of the algorithms can found
in Saad’s book [23] . We have implemented Lin and Moré’s idea that allows memory
saving. The incomplete factor is calculated column by column. After a column is
obtained, only the p largest (in magnitude) elements are stored back to the factor.

In Table 1 we report CPU times and the number of matrix-vector multiplications
used to obtain convergence in the solution of the linear system in one time step of
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-1 -0.5 0 0.5 1 : -1 -0.5 0 0.5 1

Fig. 1. Anisotropic curvature driven evolution of the unit circle (left) and initial
nonconvex curve (right) under the same anisotropy.

2

-1 -0.5 0 0.5 1 -2 -1 0 1 2

Fig. 2. Anisotropic curvature driven evolution of the initial nonconvex curve with
a constant driving force F = —1 (left), F' = —5 (right).

the semi-implicit scheme according to the level of fill-in p. As stopping criterion we
have used ||r*||2 <= tol ||r°||2 with tolerance tol = 107, where ||.||> means discrete
Ly norm and r* is residual in kth iteration. In dependence on p we report CPU time
for construction of ICF preconditioner, CPU time for solving the system by PCG
method, number of PCG iterations and total CPU time for one time step which
includes also construction of coefficients for the system (27). The computations
were done on Pentium II (800 MHz) with Linux operating system.
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