
C

Computational Methods for High-Resolution
Gravity Field Modeling

Róbert Čunderlík, Karol Mikula, Zuzana Minarechová and
Marek Macák
Department of Mathematics and Descriptive Geometry,
Faculty of Civil Engineering, Slovak University of
Technology, Bratislava, Slovakia

Definition

Computational methods, like the boundary element, finite
element, or finite volume methods, are numerical
discretization methods that can be used for high-resolution
gravity field modeling. They are efficient to solve the geodetic
boundary value problems in a space domain. To obtain high-
resolution numerical solutions usually lead to large-scale
parallel computations that can be performed using high-
performance computing (HPC) facilities.

Introduction

A determination of the Earth’s gravity field is usually formu-
lated in terms of the geodetic boundary value problems
(BVPs). There exist various numerical approaches to solve
such potential problems. In geodesy, the spherical harmonics
(SH) based methods are usually used for global gravity field
modeling. They solve the problem in a frequency domain, and
nowadays, they have become a very efficient and sophisti-
cated tool. A recent development of high-performance com-
puting (HPC) facilities has brought new opportunities for
numerical solutions of the geodetic BVPs. Efficient numerical
methods, such as the boundary element method (BEM), finite
element method (FEM), or finite volume method (FVM), can
be also applied for global or local gravity field modeling.
These discretization methods solve geodetic BVPs (GBVPs)

in a space domain. In order to obtain precise numerical
solutions, they usually require very refined discretizations
leading to large-scale computations. On the other hand, par-
allel implementations of algorithms and high-performance
computations on clusters with distributed memory provide
strong opportunities for high-resolution gravity field model-
ing. In this chapter, there are mentioned recent efficient par-
allel computational approaches for solving GBVPs.

Fixed Gravimetric Boundary Value Problem

To present the computational methods, we outline numerical
solutions to the linearized fixed gravimetric boundary value
problem (FGBVP) (Koch and Pope 1972; Holota 1997;
Čunderlík et al. 2008; Fašková et al. 2010; Minarechová
et al. 2015):

DT xð Þ ¼ 0, x�R3 � S, (1)

< ∇T xð Þ, s
!
xð Þ > ¼ �dg xð Þ, x� @S, (2)

T xð Þ ! 0, as j x j! 1, (3)

where D is the Laplace operator, T(x) is the disturbing potential
defined as the difference between the realW (x) and the normal
U(x) gravity potential at any point x, S denotes the Earth body,
<, > represents the inner product of vectors, ∇ is the gradient
operator, s

!
xð Þ ¼ �U xð Þ= j U xð Þ j is the unit vector normal to

the equipotential surface of the normal potentialU at point x, and
dg(x) is the so-called gravity disturbance.

Equations (1)–(3) represent an exterior BVP for the
Laplace equation, i.e., the computational domain (outside
the Earth) is infinite. From the aforementioned numerical
methods, it is natural to apply BEM that is suitable for exterior
BVPs since it reduces the problem from the 3D infinite
domain onto its “2D” boundary. On the contrary, FEM and
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FVM require a discretization of the whole computational
domain into finite 3D elements or volumes. Although there
exists a possibility to use infinite elements (Šprlák et al. 2011),
in standard approaches one has to consider a bounded com-
putational domain. To that goal we construct a domain O in
the external space above the Earth (see Fašková et al. 2010).
The domain O is bounded by the bottom surface G � @O
representing the Earth’s surface and the upper surface at the
level of chosen satellite mission, where the Dirichlet-type
boundary conditions (BC) for disturbing potential are gener-
ated from some satellite-only geopotential model.

In the bounded domain O, we consider the FGBVP in the
following form:

DT xð Þ ¼ 0, x�O, (4)

< ∇T xð Þ, s
!
xð Þ > ¼ �dg xð Þ, x�G, (5)

T xð Þ ¼ TSAT xð Þ, x� @O� G (6)

where TSAT represents the disturbing potential generated from
the satellite-only geopotential model. Since in this case we
deal with the solution in the bounded domain O, we do not
prescribe any regularity condition at infinity.

The boundary condition given by Eq. (2) or (5) represents the
oblique derivative BC since the vector s

!
does not coincide with

the normal to the Earth’s surface. For simplicity, in the following
sections we will consider them as the Neumann BC. It is due to
the fact that in all presented numerical experiments we use
ellipsoidal approximation of the Earth’s surface. Hence, the
problem of oblique derivatives vanishes because s

!¼ n
!
G ,

where n
!

G is the normal to the computational domain O.

Boundary Element Method

An objective of the boundary element method is to replace a
partial differential equation (PDE) solved in a 3D domain by an
equivalent equation that gives a solution on the domain bound-
ary only (c.f. Brebbia et al. 1984; Hartmann 1989; Schatz et al.
1990; Lucquin and Pironneau 1998). There are two fundamental
approaches to derive an integral formulation of the Laplace
equation on the domain boundary. The first one is often called
the direct method and the integral equations can be derived
through an application of the Green’s third identity. The second
technique is called the indirect method, which is based on the
assumption that harmonic functions can be expressed in terms of
a single-layer or double-layer potential generated by continuous
source density functions defined on the boundary.

A main advantage of BEM arises from the fact that only
the boundary of the solution domain requires a subdivision
into its elements. Thus the dimension of the problem is
effectively reduced by one. The direct BEM formulation

applied to the linearized FGBVP in Eqs. (1)–(3) results in
the boundary integral equation (BIE)

1

2
T xð Þ þ

ð
G
T yð Þ @G x, yð Þ

@nG yð Þ dy ¼
ð
G

@T

@nG
yð ÞG x, yð Þdy, (7)

x � G, where nG is the normal to the boundary G (the Earth’s
surface) and the kernel functionG represents the fundamental
solution of the Laplace equation,

G x, yð Þ ¼ 1

4p j x� y j , x, y�R3: (8)

Neglecting the problem of the oblique derivative, input grav-
ity disturbances in Eq. (2) directly represent @ T

@ nG
in BIE (7). The

collocation method with linear basis functions (denoting by C1

collocation) can be used to derive the linear system of equations
from BIE (7). The Earth’s surface (or its ellipsoidal approxima-
tion) is approximated by a triangulation of the topography
expressed as a set of panels DTj (Fig. 1). The vertices xi of the
triangles represent the collocation points. The C1 collocation
involves approximation of the boundary functions by a linear
function on each triangle (Brebbia et al. 1984),

T xð Þ �
X3
k¼1

TkCk xð Þ, x�DGj, (9)

dg xð Þ �
X3
k¼1

dgkCk xð Þ, x�DGj, (10)

Computational Methods for High-Resolution Gravity Field
Modeling, Fig. 1 Discretization of the Earth’s surface by the global
triangulation
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where Tk and dgk for k = 1, 2, 3 represent values of the
boundary functions at the vertices of the triangle DGj. The
linear basis functions C1, C2,. . ., CN are given by

Cj xið Þ ¼ 1, xi ¼ xj, (11)

Cj xið Þ ¼ 0, xi 6¼ xj, (12)

where i = 1,. . ., N; j = 1,. . ., N and N is the number of the
collocation points. These approximations allow to reduce BIE
(7) to a discrete form (Čunderlík et al. 2008)

ciTiCi þ
XN
j¼1

ð
suppCj

@Gij

@nG
TjCjdGj ¼

¼
XN
j¼1

ð
suppCj

GijdgjCjdGj, i ¼ 1, . . . ,N,

(13)

where suppCj is the support of the jth basis function. The
coefficient ci represents a “spatial segment” bounded by the
triangles joined at the ith collocation point. In the case of
the linear basis functions, it can be evaluated by the expres-
sion (Mantič 1993)

ci ¼ 1

4p
2pþ

XS
s¼1

sgn ri� < ns, nsþ1 >
� �

arccos ns � nsþ2
� �" #

,

(14)

where ri is the distance vector at the ith collocation point, ns is
the normal unit vector to the sth triangle of the suppCi, and
S represents the number of triangles in the suppCi. In fact,
Eq. (13) represent the system of linear equations that can be
rewritten into the matrix-vector form

Mt ¼ Ldg, (15)

where t= (T1,. . ., TN)
T and dg= (dg1, . . ., dgN)

T. Coefficients
of the matrices M and L represent integrals that need to be
computed using an appropriate discretization of the integral
operators in (13). The discretization of the integral operators
is affected by the weak singularity of the kernel functions.
The integrals with regular integrands, which represent
nondiagonal coefficients, are approximated by the Gaussian
quadrature rules defined on a triangle (Laursen and Gellert
1978). Their discrete form is given by

Lij ¼ 1

4p

XS
s¼1

Ajs

XK
k¼1

1

riks
Ckwk, i 6¼ j (16)

Mij ¼ 1

4p

XS
s¼1

Ajskijs

XK
k¼1

1

r3iks
Ckwk, i 6¼ j (17)

where Ajs is the area of the sth triangular element of the
suppCj, kijs is the distance from the ith collocation point to
the plane represented by this triangular element, K is the
number of points used for the Gaussian quadrature with
their corresponding weights wk and linear basis functions
Ck, and riks is the distance from the ith collocation point to
the kth quadrature point of the sth triangular element. The jth
component of the vector dg in (15) corresponds to the input
value of the measured surface gravity disturbance dg at the jth
collocation point. The nonregular integrals (singular ele-
ments) arise only for the diagonal components of the linear
system. They require special evaluation techniques in order to
handle the singularity of the kernel function. Thanks to the
diagonal component ci and the orthogonality of the normal to
its planar triangular element, the singular element is
represented by the spatial segment (Baláš et al. 1989)

Mii ¼ ci: (18)

The kernel function G (Eq. (8)) in integrals on the right-
hand side of Eq. (13) is weakly singular. Hence, the diagonal
coefficients Lii can be evaluated analytically

Lii ¼ 1

2p

XS
s¼1

Ais

rs
ln
tg bs þ asð Þ=2½ �

tg bs=2ð Þ : (19)

where Ais is the area of the sth triangle of the suppCi

determined by the line of length rs and angles as, bs (Fig. 2).
The diagonal component in Eq. (18) can be evaluated

geometrically using (14) or through the physical consider-
ation. The second approach is based on the fact that a constant
potential applied over a closed body produces no flux.
Accordingly, in case of the exterior Neumann problems, the
sum of all components in each row should be equal to
1 (Brebbia et al. 1984). Then one can easily calculate the
coefficientMii after evaluating of all nondiagonal coefficients
of the matrix M using the Gaussian quadrature in Eq. (17)

Mii ¼ 1�
XN

j¼1, i6¼j

Mij: (20)

The matrix M in Eq. (15) is a nonsymmetric dense N �
N matrix. However, the decay of the kernel function @G/@nG
makes the stiffness matrix generally well conditioned.
Consequently, nonstationary iterative methods can be applied
to solve this large-scale linear system of equations. The
Bi-Conjugate Gradient Stabilized (BiCGSTAB) method
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(Barrett et al. 1994), which is suitable for dense and non-
symetric matrices, can be used efficiently.

Finite Element Method

In the contrary to BEM, where the domain dimension is
reduced by one, in the finite element method we discretize
the original computational domain. To obtain a discrete form
of the Laplace equation in the domainO, the Green theorem is
applied. First, we multiply the differential equation (4) by a
function v � V, where V is the so-called Sobolev space
(Rektorys 1974; Brenner and Scott 2002; Fašková et al.
2010) and we use the Green theorem to obtain an identity

ð
O

∇T � ∇vdx�
ð
@O

∇T � n@O vds ¼ 0, 8v�V: (21)

If the extension of the Dirichlet BC given by TSAT into the

domain O be in W
1ð Þ
2 Oð Þ and dg � L2(G), we can define the

so-called weak formulation of the FGBVP (4)–(6) as follows:
we look for a function T , such that T � TSAT � V and the
identity

ð
O

∇T � ∇vdxþ
ð
G

dgvds ¼ 0, (22)

holds for 8v � V. According to Rektorys (1974) and Brenner
and Scott (2002), the solution of this weak formulation
always exists and is unique. Moreover, the finite element
approximation converges to the weak solution T refining the
finite element grid.

The FEM assumes a discretization of the domain O into
finite elements. Let Vh be a finite dimensional subspace of V,
corresponding to the finite element grid with a basis given by
(11) and (12), where xi are now nodes of 3D tetrahedral
elements.

If we write Tn xð Þ ¼ Pn
j¼1 tjCj xð Þ , namely we take an

approximation of T as Tn, i.e., a linear combination of basis
functions with coefficients ti, i = 1,. . ., n, where n is the
number of grid nodes, plug it into Eq. (22) and consider
v = Ci, we obtain

Xn
j¼1

tjf Ci,Cj

� � ¼ qi i ¼ 1, . . . , n, (23)

where f Ci,Cj

� � ¼ ð
O

Ci �Cjdx, qi ¼ �
ð
G

dgCids.

Let the column vectors (t1,. . ., tn), (q1,. . ., qn) be denoted
by t and q, and let K = [Kij]n�n be the matrix with entries
Kij = f(Ci, Cj). Then Eq. (23) can be written as

Kt ¼ q, (24)

which represents the linear system of equations for unknown
nodal solution values t. The matrix K is a sparse, symmetric,
and positive definite matrix, and the system can by solved by
a suitable standard solver. The more details about FEM
approach can be found in Fašková et al. (2010).

Finite Volume Method

Similarly to FEM, also in the finite volume method, the
computational domain is divided into a number of finite
volumes denoted by p. We multiply the Laplace equation
(4) by minus one and integrate it over a finite volume p.
Using the divergence theorem

�
ð
p

DT dx ¼ �
ð
@p

< ∇T, n
!
> dx, (25)

we obtain for every finite volume p the equation
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Computational Methods for High-Resolution Gravity Field
Modeling, Fig. 2 Evaluating of the singular element (the C1

collocation)
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�
ð
@p

@T

@n
dx ¼ 0: (26)

Let q � Np be a neighbor of finite volume p, where we
have denoted by Np all neighbors which have common side
with p. Then let Tp and Tq be the approximate values of T in
p and q, epq is a boundary of the finite volume p common with
q, n

!
pq is its unit normal vector oriented from p to q, andm(epq)

is the area of epq. Let xp and xq be representative points of
p and q (e.g., centers of gravity) and dpq their Euclidean
distance. Let us approximate the normal derivative along the
boundary of the volume p by

@T

@npq
� Tq � Tp

dpq
: (27)

Then from (26) and (27) we obtain for every finite volume
p an equation

�
X
q�Np

Tq � Tp

dpq
m epq
� � ¼ 0: (28)

Finally, after rearrangement we have

X
q�Np

m epq
� �
dpq

Tp � Tq

� � ¼ 0, (29)

which represents the linear system of algebraic equations for
the FVM approximation of the Laplace equation (4). The term
m epqð Þ
dpq

defined for the finite volume p and its neighbor q is

referred to as the transmissivity coefficient (see, e.g., Eymard
et al. 2001). The system of coefficients and the right-hand side
vector are modified for finite volumes along the boundary of
the computational domain. For the finite volumes along side
and upper boundaries (case of the Dirichlet BCs), we pre-

scribe the disturbing potential TSAT for Tq in (29), and move

the term � m epqð Þ
dpq

Tq to the right-hand side. For the Neumann-

type BCs applied on the bottom boundary, we prescribe for dg

the value Tq�Tp

dpq
in (29), see also (27), and movem(epq)dg to the

right-hand side and update the diagonal coefficient. Using

these approaches, we get the right-hand side vector with
nonzero entries and modified diagonal coefficients for finite
volumes along the boundary. The matrix of the system is
nonsymmetric and diagonal dominant, so the iterative solvers
as BiCGSTAB can be used efficiently. The more details about
FVM approach can be found in Minarechová et al. (2015)).

Numerical Experiments

To demonstrate properties of the presented numerical
approaches, a reconstruction of a known harmonic function
using BEM, FEM, or FVM is presented. The harmonic func-
tion has been generated by the SH approach, namely the
disturbing potential has been evaluated from the EGM2008
geopotential model up to degree and order 2160 (Pavlis et al.
2012). In all experiments of global modeling, an ellipsoidal
approximation of the Earth’s surface has been considered.
The Neumann BC evaluated from the EGM2008 coefficients
have been prescribed in the form of the first derivatives of the
disturbing potential in the direction of the normal to the
ellipsoid.

In case of BEM, the ellipsoidal surface has been approxi-
mated by the global triangulation (Fig. 1). Table 1 summa-
rizes statistical characteristics of the residuals between the
BEM solutions and EGM2008 for different levels of the
discretization. Figure 4a depicts the residuals for the finest
discretization, i.e., the size of triangles is about 3 arc min
and 12960002 nodes (collocation points) are uniformly
distributed over the ellipsoid. To achieve such a high-
resolution modeling, a parallelization of algorithms using
the MPI (Message Passing Interface) subroutines has been
implemented. Moreover, an elimination of far zones’ contri-
butions was practically inevitable and the iterative procedure
introduced in (Čunderlík and Mikula 2010) has been used.

In case of FEM or FVM, the 3D computational domain
(Fig. 3) between the ellipsoid and upper boundary located at
the constant altitude 240 km above the ellipsoid has to be
discretized. Consequently, the number of nodes is much
higher than in case of BEM. On the other hand, the system
matrices in Eq. (24) or (29) are sparse, therefore they lead to
smaller memory requirements. However, to achieve high-
resolution modeling, parallel implementations are necessary
as well. In case of FEM, the parallel version of the ANSYS

Computational Methods for High-Resolution Gravity Field Modeling, Table 1 Statistical characteristics of the residuals between the BEM
solutions and EGM2008 [units: m2s�2]

Nodes Resolution Max. Min. Average STD

518402 0.250 deg 43.423 �75.67 �0.8570 2.632

1440002 0.150 deg 23.798 �28.587 �0.1027 0.945

5760002 0.075 deg 7.632 �10.983 �0.0200 0.221

12960002 0.050 deg 2.378 �2.640 0.0002 0.065

Computational Methods for High-Resolution Gravity Field Modeling 5



software has been used. In case of FVM, a parallelization of
algorithms using the MPI subroutines has been implemented.
Table 2 shows statistical characteristics of the residuals
between the FVM solutions and EGM2008 for different
levels of the discretization (Fig. 5). Fig. 4b depicts the resid-
uals for the finest discretization, i.e., the regular grid 5� 5 arc
min on the ellipsoid and 400 m in radial direction (4320 �
2160 � 600 finite volumes). In case of FEM, due to a limited
access of the parallel version of the ANSYS software on the
parallel cluster, only two solutions on coarser grids are pre-
sented (Table 3).

Graphs in Fig. 5 summarize all obtained statistical charac-
teristics. They indicate convergence properties of all three
methods in reconstructing the harmonic function given by
EGM2008. The most detailed solutions by BEM and FVM
show a very good agreement with EGM2008. The standard
deviations are 0.065 and 0.071 m2s�2 (�7 mm), the mean

values are practically zero and the maximal and minimal
residuals do not exceed 	2.7 m2s�2 (�	27 cm). Their plots
in Fig. 4 show that the FVM solution includes some low-
frequency error signal (Fig. 4b) whose amplitude is smaller
than 0.2 m2s�2 (�2 cm). The BEM solution shows a worse
agreement in areas of high mountains, especially in
Himalayas and Andes; however, it fits very well over oceans
(Fig. 4a).

All three numerical methods can be also used for local
gravity field modeling. The BEM approach has a drawback
that it requires an integration over the whole boundary. In
this case, local refinements of the triangulation can be done in
order to reach detailed modeling in areas of interests. Figure 6
depicts such a local refinement in the area of New Zealand
as well as the obtained local BEM solution (Čunderlík
et al. 2010).

In case of FEM or FVM, the 3D computational domain can
be restricted to the chosen region (Fig. 7). On the additional
side boundaries, the Dirichlet BC can be prescribed similarly
as they are prescribed on the upper boundary. Their values can
be generated, e.g., from EGM2008. Figure 8 shows local
modeling in the area of Slovakia using terrestrial gravimetric
measurements and the FEM approach (Fašková et al. 2010).
Figure 9 depicts local modeling in extremely mountainous
regions of Himalayas and Tibet using the FVM approach
(Macák et al. 2014).

Summary

Computational methods like BEM, FEM, or FVM can be
applied for high-resolution gravity field modeling. They are
suitable to solve the geodetic BVPs in a space domain. In
order to obtain precise numerical solutions, they require a
detailed domain disretization. It naturally leads to large mem-
ory requirements and therefore large-scale computations need
to be performed. Parallel implementations and high-
performance computing on clusters with the distributed

b
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a

Computational Methods for High-Resolution Gravity Field
Modeling, Fig. 3 3D computational domain for global gravity field
modeling by FEM or FVM

Computational Methods for High-Resolution Gravity Field Modeling, Table 2 Statistical characteristics of the residuals between the FVM
solutions and EGM2008 [units: m2s�2]

Nodes on ell. Resolution Max. Min. Average STD

1036800 0.25000 deg 44.746 �68.946 �0.0262 1.552

2332800 0.16667 deg 6.684 �6.512 0.0000 0.178

9331200 0.08333 deg 2.648 �2.203 0.0000 0.071

Computational Methods for High-Resolution Gravity Field Modeling, Table 3 Statistical characteristics of the residuals between the FEM
solutions and EGM2008 [units: m2s�2]

Nodes on ell. Resolution Max. Min. Average STD

518402 0.25 deg 87.088 �92.609 �0.0247 6.688

1440002 0.15 deg 6.602 �6.634 �0.0002 0.434
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Computational Methods for High-Resolution Gravity Field Modeling, Fig. 4 Residuals between (a) the BEM solution and EGM2008, and
(b) the FVM solution and EGM2008 [units: m2s�2]
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Computational Methods for
High-Resolution Gravity Field
Modeling, Fig. 5 Statistical
characteristics of the residuals
between the BEM, FEM, or FVM
solutions and EGM2008
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Computational Methods for
High-Resolution Gravity Field
Modeling, Fig. 6 (a) Local
refinement of the triangulation in
New Zealand, and (b) the local
BEM solution (source: Čunderlík
et al. 2010)
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Computational Methods for
High-Resolution Gravity Field
Modeling, Fig. 8 Local gravity
field modeling in Slovakia using
the FEM approach
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Computational Methods for High-Resolution Gravity Field Modeling, Fig. 7 3D computational domain for local gravity field modeling by
FEM or FVM
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memory can overcome this problem. Then such computa-
tional methods can be efficiently used for global or local
gravity field modeling representing alternative methods to
classical approaches usually used in geodesy.

Cross-References

▶ (Exact and Numerical Solutions of Geodetic Nonlinear
Algebraic Equations)?

▶ (Oblique Derivative Problem and Multipole Methods)?
▶Boundary Value Problems in Physical Geodesy
▶Geodetic Boundary Value Problem
▶Global Models
▶Regional Gravity Field Determination
▶ Spherical Harmonic Models
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