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Abstract. We present a method for reconstruction of surfaces in R3

from point clouds. Given a set of points, we construct a triangular mesh
approximation of a surface that they represent. The triangulation is
obtained by a Lagrangian surface evolution model consisting of an advec-
tion and a curvature term. To construct them, we compute the distance
function d to the given point cloud. Then the advection evolution is
driven by ∇d and the curvature term depends on d and the mean curva-
ture of the evolving surface. In order to control the quality of the mesh
during the evolution, we perform tangential redistribution of mesh points
as the surface evolves.

Keywords: Point cloud · Surface evolution · Lagrangian methods ·
Tangential redistribution

1 Introduction

One of the main tasks of modern computer graphics and computer vision is to
obtain digital representation of real world objects. A common way of obtaining a
representation of a 3D object is scanning a set of points lying on the object’s sur-
face. However, such a basic representation is not sufficient for most applications.
Therefore, a lot of effort has been put in designing algorithms for obtaining a
surface representation of an object given a representative point cloud [1].

We present a method that constructs a triangular mesh representation of
an object’s surface. As an input, we need the corresponding point cloud and a
triangulated surface – an approximation of the desired surface. After, we apply
an appropriately designed Lagrangian surface evolution model to obtain the rep-
resentation we are looking for. The driving force of the evolution is the distance
function d to the point cloud – the model consists of an advection term with
the velocity proportional to ∇d and a curvature term with the evolution speed
proportional do d. Moreover, the model is enriched with a specifically designed
tangential movement term that moves the points around the evolving surface.
This term is added to overcome one of the main difficulties arising in Lagrangian
manifold evolution – the possible deterioration of the mesh quality during the
evolution process.
c© Springer International Publishing Switzerland 2015
J.-F. Aujol et al. (Eds.): SSVM 2015, LNCS 9087, pp. 589–600, 2015.
DOI: 10.1007/978-3-319-18461-6 47



590 P. Daniel et al.

The method that we propose is that it provides a straightforward way to
obtain a good quality triangular representation of an object’s surface. The initial
condition for the evolution process is usually a simple surface (e.g. a sphere or an
ellipsoid) that can be easily triangulated. Assuming that the initial condition is
topologically equivalent to the desired surface, the topology of the triangulation
remains intact during the evolution. The orientation of normals is also preserved;
having oriented normals is important for determining the interior and exterior
of the surface, resolving visibility, shading etc. However, a practically applicable
method should also be robust enough to manage difficulties caused by various
data imperfections. The scanned point clouds often suffer from defects such as
non-uniform point distribution, noise, outlying points or missing parts (Figure
1). As we demonstrate in the last section, our method is well able to deal with
such problematic situations due to the properties of the model that we use.

Fig. 1. A surface and its various point cloud representations – an ideal uniform point
cloud, a non-uniform point cloud, a point cloud with 5% noise, a point cloud with
several outlying points and a point cloud with a missing part.

The reason why we use a Lagrangian method is that obtaining a triangular
representation of an object is more simple than in the case of, e.g., level set
methods. Also, though not shown here, Lagrangian methods can be more easily
applied to surfaces with boundaries. To our knowledge, Lagrangian evolution
methods were so far only rarely applied to the point cloud problem and the
existing works do not consider any mesh adjustment [7]. The strategy that we use
in this paper is based on some of our previous works concerning surface evolution
problems [5,6]. This paper extends the ideas to the point cloud problem that has
not appeared in the cited works. Also, we suggest a new tangential redistribution
technique based on the curvature of the evolving surface.

2 Mathematical Model

Let Ω ⊆ R
3 and let C ⊂ Ω be a set of np points with elements denoted by Pi,

i = 1 . . . np. Our goal is to find a closed surface approximating C.
Let d0 : Ω → R represent the distance function to C. Starting at any point

of Ω, we can approach C following the direction of ∇d0. The basic idea of our
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mathematical model is to take a smooth closed surface surrounding C and let it
evolve based on ∇d0. Since d0 is not everywhere differentiable, instead we will
consider d = Gσ ∗ d0, where Gσ is a Gauss kernel.

Now, let X be a two-dimensional Riemannian manifold equipped with the
metric gX . Let F : X×〈0, ts〉 → Ω denote a time-dependent embedding of X in Ω
and let gF represent the corresponding induced metric. The image of F t = F (·, t)
will be denoted by St. The embedding F is the solution of the evolution equation

∂tF = wa (∇d · N) N + wcdΔgF
F + vT , (1)

where N is a unit normal to S. The symbol ΔgF
F is the Laplace-Beltrami

operator with respect to gF that is equal to the mean curvature vector h of F .
The parameters wa and wc are non-negative reals. The last term vT represents
the velocity of the tangential movement. This model, besides the tangential
movement, is a Lagrangian analogue of the level set model used by Zhao [9].

To understand the mechanism of action of this model, let us take a closer
look at the three terms on the right hand side. As written above, the first term
represents the driving force that makes St approach C. The projection to the
surface normal eliminates tangential movement that does not affect St and it
also makes the movement of a point dependent on its neighborhood – the surface
is moving as a whole rather than a set of independent points. If ∇d points in
a tangential direction, the advective evolution stops and thus a surface patch is
formed in the empty space between the points of C. The second term represents
evolution by mean curvature that speeds up the evolution in the regions distant
to C and it regularizes the surface during the evolution. It also causes forming
of straight patches between the points of the point cloud. Moreover, as we will
see later, it helps to deal with artifacts like noise or outlying points. The third
term is used to control the induced metric gF ; in the discrete setting it means
we can distribute mesh points around the surface according to our needs.

In our previous work [6], we suggest a method for constructing the tangential
velocity based on the evolution of the induced metric, particularly the area
density G : X × 〈0, ts〉 → R defined as G = ∂μF

∂μX
, where μF and μX are the

measures induced on X by gF and gX . This quantity expresses how much the
embedding F locally shrinks or expands areas. It is easy to see this considering
G constant over a domain U ⊂ X; then μF (U) = GμX(U). From the discrete
point of view it means that push-forwarding a discretization of X along F , the
increase of the density of discretization points will be higher in regions with
lower values of G. The evolution of G is given by [3]

∂tG = (−vN · h + divgF
wT ) G, (2)

where h is the mean curvature vector, vN = wa (∇d · N) N + wcdΔgF
F and wT

is a vector field on X constructed as the pull-back of vT along F . The area of X
measured by μF (the area of S) evolves as

∂tG =
∫

X

(−vN · h) GdμF . (3)
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An embedding F with constant G can be called area-uniform with respect to
gX . Let us use the notation AX = μX(X), A = μF (X). Since

∫
X

GdμX = A, (4)

then for a constant G we must have G = A
AX

.
An embedding with this property provides a straightforward way to con-

struct a discretization mesh with uniformly sized 2D mesh elements. This type
of mesh has several practical advantages – it prevents mesh degeneration, it pro-
vides a reasonable discrete representation of a surface and it is likely to capture
important information coming from the external vector field that drives the evo-
lution. Thus, it has sense to require G → A

AX
as t → ∞. The corresponding

dimensionless condition is
G

A
−→
t→∞

1
AX

.

This can be guaranteed, if

∂t

(
G

A

)
= ω

(
1

AX
− G

A

)
, (5)

where ω : 〈0, ts〉×R+. This equality combined with (2) and (3) yields a condition
for the divergence of wT ,

divgF
wT = vN · h − 1

A

∫
X

vN · h dμF + ω

(
A

AXG
− 1

)
. (6)

To obtain a unique wT , we can suppose, for example, that wT = ∇gF
ψ, ψ :

X × 〈0, ts〉 → R. Then we have

ΔgF
ψ = vN · h − 1

A

∫
X

vN · h dμF + ω

(
A

AXG
− 1

)
. (7)

If we prescribe the value of ψ in one point of X, (7) has a unique solution.
An area-uniform mesh might not always be the best representation of a sur-

face. In some applications, it makes sense, for example, to concentrate the mesh
points in the regions of higher curvature. If we consider, for example, the mean
curvature H, this can be achieved if we require a constant value of Gf(H), where
f is a positive increasing function. Similarly as in the previous case, (4) must
hold and thus we get the condition

G

A
−→
t→∞

1
f(H)∫

X
1

f(H) dμX

.

This leads to the condition for ψ,

ΔgF
ψ = vN · h − 1

A

∫
X

vN · h dμF + ω

(
A

G

1
f(H)∫

X
1

f(H) dμX

− 1

)
. (8)
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3 Discretization of the Mathematical Model

Since the problem of point cloud reconstruction is in principle analogous to the
3D image segmentation problem, we refer to our previous works concerning this
topic [5,6] and we only provide a brief explanation of the numerical method.

Before we can apply our model, we need to compute the distance function d.
For this purpose, we consider Ω to be a box and we discretize it by constructing
a voxel mesh where each voxel is a cube of side length h. Then we approximate
the value of d in each voxel. This approach is necessary since a brute-force
computation of the distance function is practically inapplicable in most cases.
Having an approximation of d, we approximate ∇d simply by central differences.
To identify the voxel corresponding to a point F (P, t), P ∈ X, we round its
coordinates divided by h.

We consider a uniform discretization of the time interval and we use the
notation Fn = F tn and Sn = Stn . The time discretization of (1) is semi-implicit,

Fn − Fn−1

τ
= wa

(
∇d · Nn−1

)
Nn−1 + wcdΔgFn−1 Fn + vn−1

T . (9)

Now, we consider a triangular structure on X consisting of vertices Xi,
i = 1 . . . nv, edges ej , j = 1 . . . ne, and triangles Tk, k = 1 . . . nt. We construct
a piecewise linear approximation of Fn denoted by F̄n – we set F̄n(Xi) =
Fn(Xi) and then, for any triangle Tp with vertices Xi, Xip , Xip+1 , we set
F̄n(λ1Xi + λ2Xip + λ3Xip+1) = λ1F

n(Xi) + λ2F
n(Xip) + λ3F

n(Xip+1). The
embedding F̄n induces a metric gn on X which induces a measure μn on X.
The approximation of the unit normal to Sn = F̄n(X) at Fn

i is denoted by Nn
i .

The numerical scheme that we apply uses the angles of Tp adjacent to Xip and
Xip+1 measured in the metric gn. We denote them by θn

p,1 and θn
p,2.

The space discretization of (9) is done by the finite volume approach. The
control volume mesh is constructed by barycentric subdivision of the triangles Tk

(Figure 2). We will denote by νn
p,1, νn

p,2 the outward unit normals to the control
volume edges F̄n(σp,1) and F̄n(σp,2) in the plane of T̄ n

p . The principle of the
method is to integrate (9) over a control volume Vi,

∫
Vi

Fn − Fn−1

τ
dμFn−1 =

∫
Vi

wa

(
∇d · Nn−1

)
Nn−1 dμFn−1

+
∫

Vi

wcdΔgFn−1 Fn dμFn−1 +
∫

Vi

vn−1
T dμFn−1 ,(10)

and then to approximate the integrals that we obtain.
For the first term of the right hand side, we need to approximate the surface

normal at Fn
i . We take the arithmetic mean of the normals to all triangles

containing Fn
i . For the second term, we use the cotangent scheme [4],

∫
Vi

wcdΔgFn−1 Fn dμFn−1 ≈ wcdi
1
2

m∑
p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Fn

i − Fn
ip),

(11)
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Fig. 2. The surface discretization mesh. Left, the triangulation of the abstract surface
X. Right, the corresponding approximation of the embedded surface Fn(X).

where m is the number of vertices connected to Xi by an edge and di is the value
of d in the voxel corresponding to Fn

i . Dividing the right hand side by μn−1(Vi),
we obtain an approximation of hn−1.

To discretize the integral of the tangential velocity, we recall that wn
T is a

gradient field and we apply the following version of the Stokes theorem [2]
∫

Vi

vn−1
T dμFn−1 =

∫
∂Vi

ψn−1νn−1
i dHμFn−1 −

∫
Vi

ψn−1hn−1 dμFn−1 .

This gives
∫

Vi

vn−1
T dμFn−1 ≈

m∑
p=1

(
‖σi,p,1‖n−1ψ

n−1
i,p,1ν

n−1
i,p,1 + ‖σi,p,2‖n−1ψ

n−1
i,p,2ν

n−1
i,p,2

)

−μn−1(Vi)ψn−1
i hn−1

i

(12)

where ‖ · ‖n−1 denotes the length computed by the metric gn−1 and ψn−1
i,p,1, ψn−1

i,p,2

are the values of ψn−1 in the midpoints of σi,p,1 and σi,p,2. We obtain these
values by linear interpolation.

The function ψ is computed from (7) where, again, we use the cotangent
scheme to discretize the Laplace-Beltrami operator of ψn−1. The volume density
is approximated by

Gn−1
i = μn−1(Vi)

nv

AX
. (13)

4 Experiments and Results

In the first phase of testing, we used the surface and the uniform point cloud
shown in Figure 1. The cloud contains 2562 points. The initial condition was
a triangulated sphere with 2562 vertices. The distance function was computed
in a box volume of 200 × 200 × 200 voxels. In all experiments presented in this
paper, it was approximated by the fast sweeping method [8]. The parameters of
the model were set to τ = 0.002, wa = 300.0, wc = 100.0. We used the area-
uniform redistribution with the redistribution speed ω = 100.0. The evolution
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was stopped after 400 time steps. Since d is a distance function smoothed by
a heat kernel, it is nowhere zero and thus there is no stopping time implied by
the model. However, we can stop the evolution if the difference between Sn−1

and Sn is lower than some threshold. Figure 3 shows the initial condition as
well as a few stages of the evolution. Since a point cloud is usually a rough
approximation of an object, the resulting representative surface might benefit
from some additional smoothing after the evolution stops. In our case, this can
be done by using the same algorithm; we only need to set d = 1 in all voxels and
we obtain a mean curvature flow model. The last two pictures in Figure 3 show
the result of such smoothing. Here, we set wc = 300., ω = 2000, τ = 0.0005 and
we performed only 20 time steps to prevent excessive shrinking of our surface.

Fig. 3. Reconstruction of a surface from a uniform point cloud representation. We
can see the initial surface together with the point cloud and the triangulation of this
surface. What follows is the evolved surface after 100, 150, 200 and 250 time steps, the
surface at the end of the evolution displayed with its triangulation and with the point
cloud. Finally, we show the smoothed surface after applying 20 steps of mean curvature
flow.
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Fig. 4. Reconstruction of a surface from a non-uniform point cloud representation. We
show the results obtained by 400 time steps of the evolution.

Fig. 5. Reconstruction of a surface from a noised point cloud representation. We show
the results obtained by 400 time steps of the evolution and then after 30 additional
steps of mean curvature flow.

The following experiments test our method on potentially more problematic
point clouds (Figure 1). The number of points, the initial condition and model
parameters were the same as in the case of the uniform point cloud. The results
are displayed in Figures 4–7. The non-uniform point cloud did not yield any
special issues and lead to a good surface representation (Figure 4). We then used
it to construct the other point clouds. As for the noisy point cloud, we shifted
each point Pi in the direction of Pi − (0, 0, 0) by r‖Pi‖, where r is a random real
number from 〈−0.05, 0.05〉. To construct the point cloud with outlying points,
we shifted 10 randomly selected points by 0.3‖Pi‖. Finally, by deleting all points
lying in a selected region, we obtained the last point cloud for our tests.

The result that we obtained by using the noised point cloud was, as expected,
quite bumpy. In this case, we applied 30 steps of the mean curvature flow to get
a more acceptable surface representation. On the contrary, the point cloud with
several outlying points did not cause any major problems. Using the regularized
distance function allows the evolving surface to run through an isolated point
due to the non-vanishing curvature term. As we can see in Figure 6, the outliers
are noticed by the evolving surface but afterwards, they are overcome. Finally,
the ability of our method to patch empty regions has been already explained in
Section 2. If some reasonably large part of the data is missing, the model will
create a planar patch as a representation of this region (Figure 7).
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Fig. 6. Reconstruction of a surface from a point cloud representation with outlying
points. We show the evolved surface after 180 time steps (first its triangulation and
then displayed together with the corresponding point cloud), after 220 and 400 time
steps of the evolution.

Fig. 7. Reconstruction of a surface from a point cloud representation with a missing
part. We show the results obtained by 400 time steps of the evolution.

In the next example, we took a point cloud representing a much more com-
plicated object (Figure 8). In this case, we computed the distance function on
a finer grid of 300 × 300 × 300 voxels. The initial surface was also more finely
discretized, it was a sphere with 16386 vertices. The values of the model parame-
ters were τ = 0.002, wa = 300., wc = 30., ω = 100.. We show the result obtained
after 900 time steps and then after a slight smoothing by 5 steps of the mean
curvature flow with parameter values mentioned above.

Finally, we present an experiment illustrating the effect of the curvature driv-
en tangential redistribution. We use the uniform point cloud shown in Figure 3.
The curvature driven redistribution was not used during the whole evolution
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Fig. 8. Reconstruction of a more complicated surface (surface taken from
http://segeval.cs.princeton.edu/) . We show the original surface and the point cloud
representing it. In the second row, we can see our reconstruction obtained after 900 time
steps of evolution and the surface smoothed by 5 additional steps of mean curvature
flow.

process, but we rather used the area-uniform redistribution to optimally cap-
ture the external vector field. After 400 time steps and additional 20 steps of
smoothing, we obtained the surface representation shown in the last two pictures
of Figure 3. This was the starting point for the curvature driven redistribution.
We kept evolving the surface by mean curvature flow but it was now by orders
of magnitude slower; we set wc = 1.0. The redistribution speed changed to
ω = 200.0 and we performed 15 steps of the evolution. The function f used to
redistribute the points was f(H) = e20H .

The result is shown in Figure 9. As we can see, the points are more densely
distributed in the regions with higher mean curvature (compare to the resulting
mesh shown in Figure 3). To provide an evaluation of the redistribution other
than a visual inspection of the resulting mesh, we add two graphs. Here, we
consider the ratio rA,i = μn(Vi)

AV
, where AV is the average control volume area,

AV = A/nv. The graphs show the dependence of rA,i on H – each point of the
plot represents one pair (Hi, rA,i). We can see that before the curvature driven
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Fig. 9. A test example of a representation obtained with the help of curvature driven
tangential redistribution. We show the resulting surface representation obtained after
15 time steps of the redistribution in two different views. Note that the density of
discretization points is higher in the regions with higher mean curvature. The graphs
show the dependence of rA,i on H before and after the curvature driven redistribution.

redistribution, rA,i is close to 1 in all vertices. After 15 steps of the redistribution,
we can observe that rA,i is clearly decreasing with increasing Hi.
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