
COMMUNICATIONS ON doi:10.3934/cpaa.2012.11.147
PURE AND APPLIED ANALYSIS
Volume 11, Number 1, January 2012 pp. 147–172

APPROXIMATION OF NONLINEAR PARABOLIC EQUATIONS

USING A FAMILY OF CONFORMAL AND NON-CONFORMAL

SCHEMES

Robert Eymard
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Abstract. We consider a family of space discretisations for the approximation

of nonlinear parabolic equations, such as the regularised mean curvature flow
level set equation, using semi-implicit or fully implicit time schemes. The

approximate solution provided by such a scheme is shown to converge thanks to

compactness and monotony arguments. Numerical examples show the accuracy
of the method.

1. Introduction. Nonlinear parabolic equations are involved in different physical
or engineering frameworks. For example, the porous medium equation ut−∆um =
0, the Stefan problem ut −∆ϕ(u) = 0 arise in the framework of fluid flows within
porous media. Important improvements in the approximation of their solutions
have been obtained, using finite volume methods. Indeed, such methods are well
suited to the conservative form of these equations.

More surprising is the success of finite volume methods for the approximation of
some nonlinear problems, under the more general form ut−F (u,∇u,D2u) = 0. For
example, in [16], a few algorithms are proposed for the approximation of motion by
mean curvature equation, including finite volume methods, whereas the equation,
namely

ut − |∇u|div (∇u/|∇u|) = 0, (1)

is not in the divergence form. In such cases, finite difference methods have more
intensively been used. The mathematical framework which is under consideration
for the analysis of the convergence of these finite difference schemes relies on the
notion of viscosity solution and monotonous scheme. Such a monotonous behaviour
does not seem straightforward in the framework of finite volume schemes. Indeed,
in a recent paper [8], we study a finite volume method for the approximation of
the motion by mean curvature equation in a regularised sense. The principles,
used in [8] for the mathematical analysis of the convergence of the finite volume
scheme, completely differ from that of the viscosity solutions [5, 3], and do not allow
for handling the case of the non-regularised motion by mean curvature equation
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(nevertheless, this case is handled in some numerical examples provided at the end
of this paper). A regularised sense, as detailed below, must be used for the proof of
convergence of the method.

In the present paper, our aim is to propose a more general framework of ap-
proximation methods for some nonlinear parabolic equations in non-conservative
form.

ν(u,∇u)ut − div(µ(|∇u|)∇u) = f, a.e. in Ω×]0, T [ (2)

with the initial condition

u(x, 0) = u0(x), for a.e. x ∈ Ω, (3)

and the boundary condition

u(x, t) = 0, for a.e. (x, t) ∈ ∂Ω× R+, (4)

under the following hypotheses (called hypotheses (H) in the following) on the real
functions µ, ν, the initial data u0, the right hand side f , and on the domain Ω:

1. Ω is a finite bounded connected open subset of Rd, d ∈ N? (where N? denotes
the set N \ {0}),

2. u0 ∈ H1
0 (Ω),

3. f ∈ L2(Ω×]0, T [) for all T > 0,
4. ν ∈ C0(R× Rd; [νmin, νmax]), with given νmax ≥ νmin > 0,
5. µ ∈ C0(R+; [µmin, µmax]), with given µmax ≥ µmin > 0, is a Lipschitz contin-

uous (non-strictly) decreasing function, and (xµ(x))′ ≥ α for a.e. x ∈ R+ for
a given α > 0.

Remark 1. We could as well consider bounded functions ν(x, t, s, ξ) for (x, t, s, ξ) ∈
Ω×]0, T [×R × Rd, measurable with respect to (x, t), continuous with respect to s
and ξ.

It is worth noticing that the functions µ and ν given by

µ(s) = max(1/
√
s2 + a2, 1/b), ∀s ∈ R+,

ν(z, ξ) = µ(|ξ|), ∀z ∈ R, ∀ξ ∈ Rd, (5)

for given reals 0 < a ≤ b, satisfy (H4-5) with α = a2/b3 (this corresponds to the
regularised level set equation [5]). Let us now give the precise mathematical sense
that we consider for a solution to Problem (2)-(3)-(4) under Hypotheses (H).

Definition 1.1. (Weak solution of (2)-(3)-(4)) Under hypotheses (H), we say
that u is a weak solution of (2)-(3)-(4) if, for all T > 0,

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,
3. the following holds∫ T

0

∫
Ω

(ν(u,∇u)utv+µ(|∇u|)∇u · ∇v) dxdt =

∫ T

0

∫
Ω

f vdxdt,∀v ∈ L2(0, T ;H1
0 (Ω)).

(6)

In the spirit of [8], where we prove the convergence of a finite volume scheme for
the approximation of a weak solution of (2)-(3)-(4) in the sense of Definition 1.1,
we develop in this paper a series of new features:

1. We consider a more general framework for the space discretisations, includ-
ing conformal and non-conformal finite element methods and finite volume
methods inspired by multipoint flux approximation [1].
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2. In [8], the discrete norms involved in the scheme as arguments of functions
µ and ν do not correspond to the exact L2 norm of an approximate gradient
(this imposes to separately prove the strong convergence of this approximate
norm, and of an approximate gradient), whereas we consider in this paper a
family of schemes such that exact norms of the discrete gradients are used,
which allows to directly prove the strong convergence of the gradient from
the convergence of its norm. Hence we can more easily consider in this paper
the framework of a function ν(u,∇u) instead of ν(u, |∇u|), since we prove
the strong convergence of the discrete gradient used in the discretisation of
ν(u,∇u).

3. We present numerical schemes which can resume to 9-point stencil finite vol-
ume scheme (see Section 3.2, where the local elimination of interface unknowns
is possible).

4. The proof that the discrete gradient and its norm are strongly convergent
relies on Hypothesis (H5) instead of Leray-Lions method [12] (see (41)).

The main result of this paper is Theorem (5.5), which states the strong convergence
of the discrete schemes to a solution of (6). It is proved thanks to the following
property. Let F be the function defined by

∀s ∈ R+, F (s) =

∫ s

0

zµ(z)dz ∈
[
µmin

s2

2
, µmax

s2

2

]
. (7)

Then, for any sufficiently regular function u, it holds

d

dt

∫
Ω

F (|∇u(x, t)|)dx =

∫
Ω

µ(|∇u(x, t)|)∇u(x, t) · ∇ut(x, t)dxdt. (8)

Therefore, assuming that this function u is solution of (2) with f = 0 for the sake
of simplicity, we get, by taking v = ut in (6), that ∇u ∈ C0([0, T ];L2(Ω)) and∫ T

0

∫
Ω

ν(u,∇u)ut(x, t)
2dxdt+

∫
Ω

F (|∇u(x, T )|)dx =

∫
Ω

F (|∇u0(x)|)dx. (9)

The discrete equivalent of this property is shown in Lemma 4.1 for the fully-
implicit scheme (using that x 7→ xµ(x) is strictly increasing), and in Lemma 4.3
for the semi-implicit scheme (using that µ is decreasing). Note that the hypothesis
that x 7→ xµ(x) is strictly increasing is used in both schemes for the proof of the
strong convergence of the discrete approximate of the gradient. Unfortunately,
although it is possible to extend some of these properties to the case µ(x) = 1/x,
the convergence study provided in this paper does not hold in this framework.

Remark 2. Note that, thanks to the convergence result proved in this paper, we
also prove the existence of a weak solution u of (2)-(3)-(4) in the sense of Definition
1.1, which satisfies, for all T > 0:

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,
3. div (µ(|∇u|)∇u) ∈ L2(Ω×]0, T [),
4. ν(u,∇u)ut − div (µ(|∇u|)∇u) = f a.e. in Ω×]0, T [.

This paper is organised as follows. In Section 2, we present a family of discreti-
sation tools, examples of which (case of rectangular or simplicial meshes) are given
in Section 3. Then in Section 4, we show some estimates that are used on one hand
in the proof of the existence of at least one solution to the fully implicit scheme,
and of the existence and uniqueness of the solution to the semi-implicit scheme, on



150 R. EYMARD, A. HANDLOVIČOVÁ AND K. MIKULA

the other hand, in the convergence proof provided in Section 5. Finally, numerical
results are given in Section 6.

2. The family of discrete schemes. We now introduce the tools used for pre-
scribing the space discretisation.

Definition 2.1 (Space discretisation). Let Ω be an open bounded connected subset
of Rd, with d ∈ N \ {0}, and ∂Ω = Ω \ Ω its boundary. A space discretisation of Ω
is defined by D = (HD, PD,ΠD,∇D), where

1. We denote by HD a finite dimension vector space on R (the component of any
u ∈ HD being the degrees of freedom of u).

2. We denote by PD : H1
0 (Ω) → HD a linear operator (the interpolation oper-

ator).
3. We denote by ∇D : HD → L2(Ω)d a linear operator (reconstruction of the

gradient), such that ‖∇Du‖L2(Ω)d is a norm on HD, denoted by ‖u‖D.

4. We denote by ΠD : HD → L2(Ω) a linear function (reconstruction of the func-
tion). Therefore, we classically denote by ‖ΠD‖L(HD,L2(Ω)) = sup{‖ΠDu‖L2(Ω),
u ∈ HD with ‖u‖D = 1}.

We can notice that the operators used in Definition 2.1 are quite general, and
provided by a large variety of discretisation schemes.

Remark 3. The easiest examples of such a discretisation are the conformal La-
grange finite element methods: let us assume that a finite family (xi)i∈I of points
of Ω is given, and that, for all i ∈ I, a function ϕi ∈ H1

0 (Ω) is defined such that
ϕi(xi) = 1 and ϕi(xj) = 0 if i 6= j. We then denote HD = RI , the reconstruction
operator is defined for u ∈ HD by ΠDu =

∑
i∈I uiϕi, the interpolation operator

is defined for u ∈ H1
0 (Ω) by (PDu)i = 1

|B(xi,r)|
∫
B(xi,r)

u(x)dx for some r > 0 with

B(xi, r) ⊂ Ω. Then ∇D is defined by ∇Du =
∑
i∈I ui∇ϕi. This example will not be

further considered in this paper, since we prefer focusing on non-conformal methods
including finite volume ones.

Remark 4. The examples which are provided in Section 3 can be seen as non-
conformal finite elements, since they provide an external approximation of the con-
tinuous problem using a discrete variational formulation. But they also can be seen
as finite volume methods, since the discrete variational formulation leads to discrete
balance equations in a partition of the domain, and since the reconstruction of the
solution is piecewise constant in the mesh. Therefore the elements of the mesh can
at the same time be called “finite elements” or “finite volumes”.

Let us now turn to space-time discretisations.

Definition 2.2 (Space-time discretisation). Let Ω be an open bounded connected
subset of Rd, with d ∈ N? and let T > 0 be given. We say that (D, τ) is a space-
time discretisation of Ω×]0, T [ if D is a space discretisation of Ω in the sense of
Definition 2.1 and if there exists NT ∈ N with T = NT τ , where τ > 0 is time
step. We denote by HD,τ (resp. H?

D,τ ) the set of all u = (un)n=0,...,NT (resp.

u = (un)n=1,...,NT ) with un ∈ HD for all n = 0, . . . , NT (resp. n = 1, . . . , NT ).
We denote for all u ∈ H?

D,τ (resp. u ∈ HD,τ ), by ΠD,τu ∈ L2(Ω×]0, T [) and

∇D,τu ∈ L2(Ω×]0, T [)d (resp. Π̃D,τu ∈ L2(Ω×]0, T [) and ∇̃D,τu ∈ L2(Ω×]0, T [)d)
the functions defined by ΠD,τu(x, t) = ΠDu

n(x) and ∇D,τu(x, t) = ∇Dun(x) (resp.

Π̃D,τu(x, t) = ΠDu
n−1(x) and ∇̃D,τu(x, t) = ∇Dun−1(x) ) for a.e. x ∈ Ω and all
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t ∈](n− 1)τ, nτ ]. We finally denote, for all u ∈ HD,τ , by Dτu the function defined
by Dτu(x, t) = ΠD(un − un−1)(x)/τ for a.e. (x, t) ∈ Ω×](n− 1)τ, nτ [,

We finally define PD,τ : L2(0, T ;H1
0 (Ω))→ H?

D,τ ,

by (PD,τv)n = PD

(
1
τ

∫ nτ
(n−1)τ

v(·, t)dt
)

, for n = 1, . . . , NT .

Let (D, τ) be a space-time discretisation of Ω×]0, T [.
We now define two numerical schemes. The fully implicit scheme is defined by

u ∈ HD,τ , u0 = PDu0,∫ T

0

∫
Ω

(
ν(ΠD,τu,∇D,τu)DτuΠD,τv + µ(|∇D,τu|)∇D,τu · ∇D,τv

)
dxdt

=

∫ T

0

∫
Ω

f ΠD,τv dxdt, ∀v ∈ H?
D,τ .

(10)

The semi-implicit scheme is defined by

u ∈ HD,τ , u0 = PDu0,∫ T

0

∫
Ω

(
ν(Π̃D,τu, ∇̃D,τu)DτuΠD,τv + µ(|∇̃D,τu|)∇D,τu · ∇D,τv

)
dxdt

=

∫ T

0

∫
Ω

f ΠD,τv dxdt, ∀v ∈ H?
D,τ .

(11)

Definition 2.3 (Admissible sequence of space discretisations). Let Ω be an open
bounded connected subset of Rd, with d ∈ N? (where N? denotes the set N \ {0}).
We say that (Dm)m∈N is an admissible sequence of space discretisations of Ω if the
following conditions are fulfilled:

1. there exists C > 0 such that

‖ΠDm‖L(HDm ,L
2(Ω)) ≤ C, ∀m ∈ N, (12)

and

‖∇DmPDmv‖L2(Ω)d ≤ C‖∇v‖L2(Ω)d , ∀m ∈ N, ∀v ∈ H1
0 (Ω), (13)

2. the following consistency property holds

lim
m→∞

(
‖v −ΠDmPDmv‖L2(Ω) + ‖∇v −∇DmPDmv‖L2(Ω)d

)
= 0, ∀v ∈ H1

0 (Ω), (14)

3. the following compactness property holds: for all sequence (um)m∈N with
um ∈ HDm such that there exists C > 0 with ‖um‖Dm ≤ C for all m ∈ N,
then there exists u in L2(Ω) such that, up to a sub-sequence, ΠDmum converges
to u in L2(Ω),

4. for all sequence (um)m∈N with um ∈ HDm such that there exists C > 0 with
‖um‖Dm ≤ C for all m ∈ N, and such that there exists u ∈ L2(Ω) such that
ΠDmum converges to u in L2(Ω), then ∇Dmum converges to ∇u for the weak
topology of L2(R)d, prolonging by 0 all functions outside Ω.

Remark 5. The required compactness property 3 can result from different analysis
frameworks. In the case of the conformal finite elements (see Remark 3) it is a
consequence of Rellich’s theorem. In the case of the examples below, which are
inspired by the finite volume framework, this compactness property is a result of
the discrete functional analysis proposed in [7].

Remark 6. It results from the above definition that, if a sequence (um)m∈N with
um ∈ HDm is such that there exists C > 0 with ‖um‖Dm ≤ C for all m ∈ N, and
that there exists u in L2(Ω) such that um converges to u in L2(Ω), then u ∈ H1

0 (Ω).
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Definition 2.4 (Admissible sequence of space-time discretisations). Let Ω be an
open bounded connected subset of Rd, with d ∈ N? and let T > 0. We say that
(Dm, τm)m∈N is an admissible sequence of space-time discretisations of Ω×]0, T [ if
(Dm, τm) is a space-time discretisation of Ω×]0, T [ in the sense of Definition 2.2 for
all m ∈ N, if (Dm)m∈N is an admissible sequence of space discretisations of Ω in the
sense of Definition 2.3, and if (τm)m∈N converges to 0.

Remark 7. It results from the above definition that, for all v ∈ L2(0, T ;H1
0 (Ω)),

thanks to dominated convergence,∇Dm,τmPDm,τmv converges to∇v in L2(Ω×]0, T [)d

and ΠDm,τmPDm,τmv converges to v in L2(Ω×]0, T [).

The next section is devoted to the presentation of precise examples of space
discretisations, and to the detailed expression of Schemes (10) and (11) in these
cases.

3. Examples of non-conformal space discretisations. Since the main appli-
cations which are considered are devoted to image processing, we first focus on
non conformal rectangular finite elements on rectangular domains, and then on non
conformal simplicial finite elements on polygonal domains. All these non conformal
finite element methods can also be seen as finite volume methods.

3.1. A first scheme on rectangular domains. We consider the particular case
where Ω =]a1, b1[× . . .×]ad, bd[ is an open rectangle in Rd.

x
(2)

i(2)

x
(2)

i(2)+1

p

xp xσ

x
(1)

i(1)+1
x
(1)

i(1)

σ

dpσ

Kp,y

y

np,σ

Figure 1. Notations for rectangular meshes of Section 3.1 and
Section 3.2

Definition 3.1. A space discretisation in the sense of Definition 2.1 is defined by
the following way (see Figure 1).

1. A rectangular discretisation of Ω is defined by the increasing sequences ai =

x
(i)
0 < x

(i)
1 < . . . < x

(i)

n(i) = bi, i = 1, . . . , d.
2. We denote by

M =
{

]x
(1)

i(1)
, x

(1)

i(1)+1
[× . . .×]x

(d)

i(d)
, x

(d)

i(d)+1
[, 0 ≤ i(1) < n(1), . . . , 0 ≤ i(d) < n(d)

}
the set of the control volumes. The elements of M are denoted p, q, . . .. We
denote by xp the centre of p. For any p ∈M, let ∂p = p \ p be the boundary
of p; let |p| > 0 denote the measure of p and let hp denote the diameter of p
and hD denote the maximum value of (hp)p∈M.
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3. We denote by Ep the set of all the faces of p ∈ M, by E the union of all Ep,
and for all σ ∈ E , we denote by |σ| its (d− 1)-dimensional measure. For any
σ ∈ E , we define the set Mσ = {p ∈ M, σ ∈ Ep} (which has therefore one
or two elements), we denote by Ep the set of the faces of p ∈ M (it has 2 d
elements) and by xσ the centre of σ. We then denote by dpσ = |xσ − xp| the
orthogonal distance between xp and σ ∈ Ep and by np,σ the normal vector to
σ, outward to p.

4. We denote by Vp the set of all the vertexes of p ∈M (it has 2d elements), by
V the union of all Vp, p ∈ M. For y ∈ Vp, we denote by Kp,y the rectangle
whose faces are parallel to those of p, and whose the set of vertexes contains xp
and y. We denote by Vσ the set of all vertexes of σ ∈ E (it has 2d−1 elements),
and by Ep,y the set of all σ ∈ Ep such that y ∈ Vσ (it has d elements).

5. We define the set HD of all u ∈ RM × RE , with uσ = 0 for σ ⊂ ∂Ω and
n = 1, . . . , NT .

6. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the
constant value up a.e. in p ∈M.

7. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p =

1
|p|
∫
p
v(x)dx for all p ∈M, and by (PDv)σ = 1

|σ|
∫
σ
v(x)ds(x) for all σ ∈ E .

8. For u ∈ HD, p ∈M and y ∈ Vp, we denote by

∇p,yu =
2

|p|
∑
σ∈Ep,y

|σ|(uσ − up)np,σ =
∑
σ∈Ep,y

uσ − up
dpσ

np,σ, (15)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

We then have the following result.

Lemma 3.2. Let Ω =]a1, b1[× . . .×]ad, bd[ be an open rectangle in Rd. Let (Dm)m∈N,
with Dm = (HDm , PDm ,ΠDm ,∇Dm) be defined by Definition 3.1, where hm =

max(x
(j)

i(j)+1
−x(j)

i(j)
) tends to 0 as m→∞, with θm = (x

(j)

i(j)+1
−x(j)

i(j)
)/(x

(k)

i(k)+1
−x(k)

i(k)
)

remains bounded.
Then (Dm)m∈N is an admissible sequence of space discretisations of Ω in the

sense of Definition 2.3.

Proof. Let us recall the result, proved in [7]: for a discretization D in the sense of
Definition 3.1, then the expression ‖u‖D, defined by

‖u‖2D =
∑
p∈M

∑
σ∈Ep

|σ|
dpσ

(uσ − up)2, ∀u ∈ HD,

is a norm on HD such that the discrete Poincaré inequality

‖ΠDu‖L2(Ω) ≤ C‖u‖D, ∀u ∈ HD,
holds, where C only depends on the bound on θ. Moreover, one has that

‖∇Du‖L2(Ω)d = ‖u‖D, ∀u ∈ HD.
Then the (12) is an immediate consequence of the above relations. Inequality (13)
is an immediate consequence of the inequality

((PDv)p − (PDv)σ)
2 ≤ C diam(p)

|σ|
‖∇v‖2L2(Ω)d ,

proved p777 in [6]. Property (14) is a straightforward for any v ∈ C∞c (Ω) by
consistency. It therefore holds for all v ∈ H1

0 (Ω) by density and continuity of PD on
H1

0 (Ω). The compactness property (point 3 of Definition 2.3) is proved in [7].
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Let us write the schemes (10) and (11) in this case. We first choose for test
function v ∈ H?

D,τ , the function such that vnp = 1 for a given p ∈ M and n =
1, . . . , NT , and all other components equal to 0. We get

|p|νmp (unp − un−1
p )− τ

∑
σ∈Ep

|σ|µmp,σ
dpσ

(unσ − unp ) = fnp , (16)

where we set

2dνmp =
∑
y∈Vp

ν(ump ,∇p,yum) and 2d−1µmp,σ =
∑
y∈Vσ

µ(|∇p,yum|), (17)

with m = n for (10) and m = n− 1 for (11), and

fnp =

∫ nτ

(n−1)τ

∫
p

f(x, t)dxdt.

We then choose for test function v ∈ H?
D,τ , the function such that vnσ = 1 for a

given interior face σ common to both control volumes p, q ∈M and n = 1, . . . , NT ,
and all other components equal to 0. We obtain

µmp,σ
dpσ

(unσ − unp ) +
µmq,σ
dqσ

(unσ − unq ) = 0.

The above expression allows, in the case of Scheme (11), for eliminating unσ with
respect to unp and unq . It is then easy to derive an L∞ estimate in this case, which
resumes to L∞ stability if f = 0. Indeed, after the elimination of unσ, consider
the maximum value of unp . Thanks to the sign of the coefficients, we get that this

maximum value must be comprised between un−1
p and that of all unq , for q neighbour

of p. Therefore, we obtain that it must be bounded by the maximum values of all
un−1
p and the boundary value 0. The same reasoning holds for the minimum value,

hence providing the L∞ estimate.

3.2. A second scheme on rectangular domains. We again consider the par-
ticular case where Ω =]a1, b1[× . . .×]ad, bd[ is an open rectangle in Rd.

Definition 3.3. A space discretisation in the sense of Definition 2.1 is now defined
by the following method (see again Figure 1).

1-4. identical to [1-4] section 3.1.
5. We define the set HD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ ), with uσ,y = 0 for
σ ⊂ ∂Ω, y ∈ Vσ and n = 1, . . . , NT .

6. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the
constant value up a.e. in p ∈M.

7. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p =

1
|p|
∫
p
v(x)dx for all p ∈ M, and by (PDv)σ,y = 1

|σ|
∫
σ
v(x)ds(x) for all σ ∈ E

and y ∈ Vσ.
8. For u ∈ HD, p ∈M and y ∈ Vp, we denote by

∇p,yu =
2

|p|
∑
σ∈Ep,y

|σ|(uσ,y − up)np,σ =
∑
σ∈Ep,y

uσ,y − up
dpσ

np,σ, (18)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

Remark 8. This definition differs from that of section (3.1) by the use of 2d−1

different unknowns uσ,y at the interface σ instead of only one uσ.
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We then have the following result, the proof of which is similar to that of Lemma
3.2.

Lemma 3.4. Let Ω =]a1, b1[× . . .×]ad, bd[ be an open rectangle in Rd. Let (Dm)m∈N,
with Dm = (HDm , PDm ,ΠDm ,∇Dm) be defined by Definition 3.3, where hm =

max(x
(j)

i(j)+1
−x(j)

i(j)
) tends to 0 as m→∞, with θm = (x

(j)

i(j)+1
−x(j)

i(j)
)/(x

(k)

i(k)+1
−x(k)

i(k)
)

remains bounded.
Then (Dm)m∈N is an admissible sequence of space discretisations of Ω in the

sense of Definition 2.3.

Let us write the schemes (10) and (11) in this case. For a given p ∈ M and
n = 1, . . . , NT , we get

|p|νmp (unp − un−1
p )− τ

∑
σ∈Ep

∑
y∈Vσ

|σ|µ(|∇p,yum|)
2d−1dpσ

(unσ,y − unp ) = fnp , (19)

where we set
2dνmp =

∑
y∈Vp

ν(ump ,∇p,yum),

with m = n for (10) and m = n− 1 for (11), and

fnp =

∫ nτ

(n−1)τ

∫
p

f(x, t)dxdt.

For a given interior σ common to p, q ∈M, y ∈ Vσ and n = 1, . . . , NT , we have

µ(|∇p,yum|)
dpσ

(unσ,y − unp ) +
µ(|∇q,yum|)

dqσ
(unσ,y − unq ) = 0. (20)

Again, the above expression allows to eliminate unσ,y in the case of Scheme (11),
and an L∞ estimate is derived, following the same reasoning as the one which is
described at the end of the previous section.

3.3. A scheme applying on simplicial meshes. This scheme has a few common
points with the scheme presented in Section 3.2, although we now consider that Ω
be an open bounded polyhedron in Rd.

y

σ
xp

xσ
Kp,y

xσ,y

p

np,σ

Figure 2. Notations for simplicial meshes of Section 3.3

Definition 3.5. A space discretisation in the sense of Definition 2.1 is now defined
by the following method (see Figure 2).
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1. We denote by M a set of disjoint open simplicial domains (triangles in 2D,
tetrahedrons in 3D), such that Ω =

⋃
p∈M p. The elements ofM are denoted

p, q, . . .. We denote by xp the centre of gravity of p. For any p ∈ M, let
∂p = p \ p be the boundary of p; let |p| > 0 denote the measure of p and let
hp denote the diameter of p and hD denote the maximum value of (hp)p∈M.

2. We denote by Ep the set of all the faces of p ∈ M, by E the union of all Ep,
and for all σ ∈ E , we denote by |σ| its (d− 1)-dimensional measure. For any
σ ∈ E , we denote by Mσ = {p ∈ M, σ ∈ Ep}. We assume that the mesh is
conformal, in the sense that, ifMσ has one element, then σ ⊂ ∂Ω and ifMσ

has two elements, then σ ⊂ Ω. We then denote by Ep the faces of p ∈ M (it
has d+ 1 elements) and by xσ the centre of gravity of σ. We then denote np,σ
the normal vector to σ, outward to p.

3. We denote by Vp the set of all the vertexes of p ∈M (it has d+1 elements), by
V the union of all Vp, p ∈M. For y ∈ Vp, we denote by Kp,y the polyhedron,
defined as the set of all x ∈ p such that the barycentric coordinates (sy′)y′∈Vp
of x satisfy sy = maxy′∈Vp sy′ (recall that (sy′)y′∈Vp is defined by x − xp =∑
y′∈Vp sy′(y

′ − xp), such that sy′ ≥ 0 and
∑
y′∈Vp sy′ = 1). We denote by

Vσ the set of all vertexes of σ ∈ E (it has d elements), and by Ep,y the set of
all σ ∈ Ep such that y ∈ Vσ (it has d elements). We then denote, for σ ∈ E
and y ∈ Vσ, by xσ,y the point of σ defined by the barycentric coordinates
(in σ) (sy′)y′∈Vσ , such that sy′ = 1/(d + 1) for all y′ ∈ Vσ \ {y} (therefore
sy = 2/(d+ 1)).

4. We define the set HD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ ), with uσ,y = 0 for
σ ⊂ ∂Ω, y ∈ Vσ and n = 1, . . . , NT .

5. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the
constant value up a.e. in p ∈M.

6. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p =

1
|p|
∫
p
v(x)dx for all p ∈ M. We denote by σy the subset of all x ∈ σ such

that the barycentric coordinates (sy′)y′∈Vσ of x in σ satisfy sy > 1/2, and we

set (PDv)σ,y = d−1
(d+1)|σ|

∫
σ
v(x)ds(x)+ 2

(d+1)|σy|
∫
σy
v(x)ds(x) for all σ ∈ E and

y ∈ Vσ (hence computing a second order approximation at point xσ,y).
7. For u ∈ HD, p ∈M and y ∈ Vp, we denote by

∇p,yu =
d+ 1

|p|
∑
σ∈Ep,y

|σ|
d

(uσ,y − up)np,σ, (21)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

Remark 9. Note that the measure of Kp,y is |p|/(d + 1) (this is easily shown,
considering the affine transformation which sends p to a tetrahedron with all edges
equal).

We then have the following result.

Lemma 3.6. Let Ω be an open bounded polyhedron in Rd. Let (Dm)m∈N, with
Dm = (HDm , PDm ,ΠDm ,∇Dm) be defined by Definition 3.5, where the
hm = maxp∈M diam(p) tends to 0 as m → ∞, with θm = minp∈M diam(p)/ρp (ρp
being the supremum of the diameter of any ball included in p) remains bounded.

Then (Dm)m∈N is an admissible sequence of space discretisations of Ω in the
sense of Definition 2.3.
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Proof. The proof of this lemma relies on the remarkable expression (21) (see [2, 13,
14]). Firstly, it allows similar compactness steps to that of the proof of Lemma 3.2.
Secondly, this expression is consistent with regular functions, in the sense that, if
there exists G ∈ Rd such that up = G · xp and uσ,y = G · xσ,y, then ∇p,yu = G.
This consistency relation allows for the verification of the other properties required
by Definition 2.3.

Let us write the schemes (10) and (11) in this case. For a given p ∈ M and
n = 1, . . . , NT , we get

|p|νmp (unp − un−1
p )− τ

∑
σ∈Ep

∑
y∈Vσ

|σ|
d
µ(|∇p,yum|)∇p,yun · np,σ = fnp , (22)

where we set

(d+ 1)νmp =
∑
y∈Vp

ν(ump ,∇p,yum),

with m = n for (10) and m = n− 1 for (11), and

fnp =

∫ nτ

(n−1)τ

∫
p

f(x, t)dxdt.

For a given interior σ common to p, q ∈M, y ∈ Vσ and n = 1, . . . , NT , we have

µ(|∇p,yum|)∇p,yun · np,σ = µ(|∇q,yum|)∇q,yun · np,σ. (23)

In the case of Scheme (11), the previous relations allow to eliminate the values unσ,y
for all edges y ∈ Vσ, as linear combinations of all unq such that y ∈ Vq. The resulting
linear system only depends on the cell centred values, and the stencil connects all
pairs of simplexes with a common vertex. In this linear system, the signs of the
coefficients depend on the geometry, preventing from an easy derivation of an L∞

estimate.

4. Properties of the schemes. Before focusing on the estimates satisfied by the
approximate solutions, we first present a few properties which are useful in the
convergence study.

4.1. Estimates and existence of a solution to the fully implicit scheme.

Lemma 4.1. L2(Ω×]0, T [) estimate on Dτu and L∞(0, T ;HD) estimate, fully
implicit scheme.

Let Hypotheses (H) be fulfilled. Let (D, τ) be a space-time discretisation of
Ω×]0, T [ in the sense of Definition 2.2. Let u ∈ HD,τ be a solution of (10). Then
it holds:

νmin

∫ mτ

0

∫
Ω

Dτu(x, t)2dxdt+ µmin‖∇Dum‖2L2(Ω)d

≤ µmax‖∇DPDu0‖2L2(Ω)d +
1

νmin
‖f‖2L2(Ω×]0,T [), ∀m = 1, . . . , NT .

(24)

Proof. We set v = Dτu in the scheme and in (10) we integrate in time on the
interval ]0,mτ [, for m = 1, . . . , NT . Let us remark that, thanks to Hypothesis (H5)
which implies the convexity of F , we have

∀c1, c2 ∈ R+, F (c2)− F (c1) =

∫ c2

c1

zµ(z)dz ≤ c2µ(c2)(c2 − c1). (25)
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We can then write

F (|∇Dun(x)|)−F (|∇Dun−1(x)|)≤µ(|∇Dun(x)|)|∇Dun(x)|(|∇Dun(x)|−|∇Dun−1(x)|).

Note that the Cauchy-Schwarz inequality implies

|∇Dun(x)|(|∇Dun(x)| − |∇Dun−1(x)|) ≤ ∇Dun(x) · (∇Dun(x)−∇Dun−1(x)).

Thanks to property (7), and to the Young inequality applied to the right hand side,
we conclude (24).
Lemma 4.2 (Existence of at least one solution to the fully implicit scheme). Under
Hypotheses (H), let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of
Definition 2.2. Then there exists at least one u ∈ HD,τ such that (10) holds.

Proof. We first define, for any λ ∈ [0, 1], the functions µλ and νλ by µλ(s) =
µmax(1−λ) +λµ(s) and νλ(s, ξ) = νmin(1−λ) +λν(s, ξ). Since estimate (24) holds
independently of λ, since the problem is linear for λ = 0, the topological degree
argument [9], applied to the function Φ : H?

D,τ → H?
D,τ defined by

Φ(u)ni =

∫
Ω

νλ(un(x),∇Dun(x))(ΠDu
n(x)−ΠDu

n−1(x))ΠDvi(x)dx

+τ

∫
Ω

µλ(|∇Dun(x)|)∇Dun(x) · ∇Dvi(x)dx

−
∫

Ω

∫ nτ
(n−1)τ

f(x, t)dtΠDvi(x)dx,

where (vi)i=1,...,M is a basis of HD, ensures the existence of at least one solution to
Scheme (10) .

Lemma 4.3. L2(Ω×]0, T [) estimate on ut and L∞(0, T ;HD) estimate, semi-
implicit scheme. Let Hypotheses (H) be fulfilled. Let (D, τ) be a space-time dis-
cretisation of Ω×]0, T [ in the sense of Definition 2.2. Let u ∈ HD,τ be a solution of
(11). Then it holds:

νmin

∫ mτ

0

Dτu(x, t)2dxdt+ µmin‖∇Dum‖2L2(Ω)d

+µmin

m∑
n=1

∫
Ω

(|∇Dun(x)| − |∇Dun−1(x)|)2dx

≤ µmax‖∇DPDu0‖2L2(Ω)d +
1

νmin
‖f‖2L2(Ω×]0,T [), ∀m = 1, . . . , NT ,

(26)

hence proving the existence and uniqueness of the solution u ∈ HD,τ to (11).

Proof. We proceed as in the proof of Lemma 4.1. We remark that, thanks to
Hypothesis (H5),

∀c1, c2 ∈ R+,

∫ c2

c1

zµ(z)dz +
1

2
(c2 − c1)2µ(c1) ≤ c2µ(c1)(c2 − c1). (27)

Indeed, we set, for c1, c2 ∈ R+, Φc1(c2) = c2µ(c1)(c2 − c1) − 1
2 (c2 − c1)2µ(c1) −∫ c2

c1
zµ(z)dz. We have Φc1(c1) = 0, and Φ′c1(c2) = c2µ(c1) − c2µ(c2), whose sign is

that of c2 − c1 since µ is (non-strictly) decreasing. Hence Φc1(c2) ≥ 0 and we get

F (|∇Dun(x)|)− F (|∇Dun−1(x)|) +
µmin

2
(|∇Dun(x)| − |∇Dun−1(x)|)2

≤ |∇Dun(x)|µ(|∇Dun−1(x)|)(|∇Dun(x)| − |∇Dun−1(x)|).

Then the conclusion follows, as in the proof of Lemma 4.1.
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5. Convergence. Thanks to the estimates proved in the above section, we are
now in position for proving the convergence of the scheme, using the monotonicity
properties of the operators.

5.1. Convergence properties for the fully implicit scheme. We consider the
function uD,τ ∈ HD,τ satisfying (10). We define

wD,τ = f − ν(ΠD,τuD,τ ,∇D,τuD,τ )DτuD,τ , (28)

GD,τ = µ(|∇D,τuD,τ |)∇D,τuD,τ , (29)

Note that uD,τ is the solution of

u ∈ HD,τ ,∫ T

0

∫
Ω

GD,τ (x, t) · ∇D,τv(x, t)dxdt =

∫ T

0

∫
Ω

wD,τ (x, t)ΠD,τv(x, t)dxdt, ∀v ∈ H?
D,τ .

(30)
We then have the following convergence lemma.

Lemma 5.1 (A convergence property of the fully implicit scheme). Let Hypotheses
(H) be fulfilled. Let (Dm, τm)m∈N be an admissible sequence of space-time discreti-
sations of Ω×]0, T [ in the sense of Definition 2.4. Let, for all m ∈ N, um ∈ HDm,τm
be such that (10) hold.

Then there exist a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N,
and functions
ū ∈ L∞(0, T ;H1

0 (Ω))∩C0(0, T ;L2(Ω)), with ūt ∈ L2(Ω×]0, T [) and u(., 0) = u0,
Ḡ ∈ L2(Ω×]0, T [)d and w̄ ∈ L2(Ω×]0, T [) such that

1. ΠDm,τmum converges in L∞(0, T ;L2(Ω)) to ū as m→∞,
2. Dτmum weakly converges in L2(Ω×]0, T [) to ūt as m→∞,
3. GDm,τm , defined by (29), weakly converges to Ḡ in L2(Ω×]0, T [)d as m→∞,
4. wDm,τm , defined by (28), weakly converges to w̄ in L2(Ω×]0, T [) as m→∞,
5. it holds

lim
m→∞

∫ T

0

∫
Ω

GDm,τm(x, t) · ∇Dm,τmum(x, t)dxdt =

∫ T

0

∫
Ω

Ḡ(x, t) · ∇ū(x, t)dxdt.

(31)

Proof. Thanks to (24), GDm,τm remains bounded in L∞(0, T ;L2(Ω)) and wDm,τm
remains bounded in L2(Ω×]0, T [). Hence, up to a sub-sequence, the existence of
Ḡ ∈ L2(Ω×]0, T [)d and w̄ ∈ L2(Ω×]0, T [) such that GDm,τm weakly converges to Ḡ
in L2(Ω×]0, T [)d and wDm,τm weakly converges to w̄ in L2(Ω×]0, T [).

We then remark that the sequence um is bounded in L∞(0, T ;HDm), which pro-
vides, thanks to compactness property assumed in Definition 2.3, to the L2(Ω×]0, T [)
bound on Dτmum and to an adaptation of Ascoli’s theorem similar to that done in
[8], that there exists ū ∈ L∞(0, T ;H1

0 (Ω))∩C0(0, T ;L2(Ω)), with ūt ∈ L2(Ω×]0, T [)
such that, up to a sub-sequence, ΠDm,τmum converges in L∞(0, T ;L2(Ω)) to ū as
m → ∞. We then get that Dτmum weakly converges in L2(Ω×]0, T [) to ūt as
m → ∞. The proof that u(., 0) = u0 results from the definition of u0 and from
Property (14). One of the difficulties is to respectively identify Ḡ and w̄ with
µ(|∇ū|)∇ū and ν(ū,∇ū). This will be done in further lemmas, thanks to the prop-
erty (31) stated in the present lemma, that we have now to prove. Note that in the
proof below, we drop some indexes m for the simplicity of notation.
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Let ϕ ∈ L2(0, T ;H1
0 (Ω)) be given. Letting v = PD,τϕ in (30), and passing to the

limit, we get∫ T

0

∫
Ω

Ḡ(x, t) · ∇ϕ(x, t)dxdt =

∫ T

0

∫
Ω

w̄(x, t)ϕ(x, t)dxdt ∀ϕ ∈ L2(0, T ;H1
0 (Ω)).

(32)
Hence, setting ϕ = ū in (32), we get∫ T

0

∫
Ω

Ḡ(x, t) · ∇ū(x, t)dxdt =

∫ T

0

∫
Ω

w̄(x, t)ū(x, t)dxdt.

Passing to the limit in (30) with v = um (the right hand side converges thanks to
weak/strong convergence), we then get (31).

5.2. Convergence properties for the semi-implicit scheme. We consider
uD,τ ∈ HD,τ , given by (11). We define

w̃D,τ = f − ν(Π̃D,τuD,τ , ∇̃D,τuD,τ )DτuD,τ , (33)

G̃D,τ = µ(|∇̃D,τuD,τ |)∇D,τuD,τ , (34)

and GD,τ defined by (29).
Note that uD,τ is the solution of

u ∈ HD,τ ,∫ T

0

∫
Ω

G̃(x, t) · ∇D,τv(x, t)dxdt =

∫ T

0

∫
Ω

w̃(x, t)vD,τ (x, t)dxdt, ∀v ∈ H?
D,τ .

(35)
We then have the following convergence lemma.

Lemma 5.2 (A convergence property of the semi-implicit scheme). Let (Dm, τm)m∈N
be an admissible sequence of space-time discretisations of Ω×]0, T [ in the sense of
Definition 2.4. Let, for all m ∈ N, um ∈ HDm,τm be such that (11) holds.

Then there exist a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N,
and functions
ū ∈ L∞(0, T ;H1

0 (Ω))∩C0(0, T ;L2(Ω)), with ūt ∈ L2(Ω×]0, T [) and u(., 0) = u0,
Ḡ ∈ L2(Ω×]0, T [)d and w̄ ∈ L2(Ω×]0, T [) such that

1. ΠDm,τmum converges in L∞(0, T ;L2(Ω)) to ū as m→∞,
2. Dτmum weakly converges in L2(Ω×]0, T [) to ut as m→∞,

3. G̃Dm,τm , defined by (34), and GDm,τm , defined by (29), weakly converge to Ḡ
in L2(Ω×]0, T [)d as m→∞, and

lim
m→∞

∫ T

0

∫
Ω

(G̃Dm,τm(x, t)−GDm,τm(x, t)) · ∇Dm,τmum(x, t)dxdt = 0, (36)

4. w̃Dm,τm , defined by (33), weakly converges to w̄ in L2(Ω×]0, T [) as m→∞,
5. relation (31) holds.

Proof. The proof mainly follows the same steps as that of Lemma 5.1. Let us focus
on the points which are specific. Writing

‖|∇D,τu| − |∇̃D,τu|‖2L2(Ω×]0,T [)d = τ

NT∑
n=1

∫
Ω

(|∇Dun(x)| − |∇Dun−1(x)|)2dx, (37)
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we get, from (26), that ‖|∇Dm,τmum| − |∇̃Dm,τmum|‖L2(Ω×]0,T [)d tends to 0 since

τm −→ 0 as m −→∞. This leads, for any ψ ∈ L2(Ω×]0, T [), that the quantity∫ T

0

∫
Ω

(G̃Dm,τm(x, t)−GDm,τm(x, t)) · ψ(x, t)dxdt

≤
∫ T

0

∫
Ω

∣∣∣µ(|∇̃Dm,τmum(x, t)|)− µ(|∇Dm,τmum(x, t)|)
∣∣∣

·|∇Dm,τmum(x, t) · ψ(x, t)|dxdt

tends to 0 as m→∞ thanks to (37) and properties of function µ. The same holds

for
∫ T

0

∫
Ω

(G̃Dm,τm(x, t)−GDm,τm(x, t)) · ∇Dmum(x, t)dxdt, which proves (36).

5.3. Strong convergence of ∇Du. The problem is now to show the convergence
in L2(Ω×]0, T [) of ∇Dmum to ∇ū. This will result from property (31) (which holds
for both the fully implicit and the semi-implicit schemes), and from the properties
of function µ. Indeed, this property is the key point of the proof of the following
lemma which uses Minty’s trick.

Lemma 5.3. Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be an admissible
sequence of space-time discretisations of Ω×]0, T [ in the sense of Definition 2.4.

Let us assume that a sequence (um)m∈N is such that um ∈ HDm,τm for all m ∈
N, and such that um converges in L2(Ω×]0, T [) to ū ∈ L∞(0, T ;H1

0 (Ω)), ∇Dmum
weakly converges to ∇ū in L2(Ω×]0, T [), GDm,τm , defined by (29), weakly converges
to Ḡ in L2(Ω×]0, T [)d as m → ∞ and we assume that (31) holds. For all W ∈
L2(Ω×]0, T [)d, we denote by

Tm(W ) =

∫ T

0

∫
Ω

(GDm,τm − µ(|W |)W ) · (∇Dm,τmum −W )dxdt. (38)

Then the following holds

lim
m→∞

Tm(W ) =

∫ T

0

∫
Ω

(Ḡ− µ(|W |)W ) · (∇ū−W )dxdt, (39)

and therefore

Ḡ(x, t) = µ(|∇ū(x, t)|)∇ū(x, t), for a.e. (x, t) ∈ Ω×]0, T [. (40)

Proof. In order to pass to the limit in Tm(W ), we write Tm(W ) = T
(1)
m (W ) −

T
(2)
m (W )− T (3)

m (W ) + T (4)(W ) with

T (1)
m (W ) =

∫ T

0

∫
Ω

GDm,τm(x, t) · ∇Dm,τmumdxdt,

T (2)
m (W ) =

∫ T

0

∫
Ω

GDm,τm(x, t) ·Wdxdt,

T (3)
m (W ) =

∫ T

0

∫
Ω

µ(|W |)W · ∇Dm,τmumdxdt,

and

T (4)(W ) =

∫ T

0

∫
Ω

µ(|W |)W ·Wdxdt.

Thanks to properties of admissible sequences of discretisations, we get

lim
m→∞

T (2)
m (W ) =

∫ T

0

∫
Ω

Ḡ ·Wdxdt,
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lim
m→∞

T (3)
m (W ) =

∫ T

0

∫
Ω

µ(|W |)W (x, t) · ∇ūdxdt,

Relation (31) provides

lim
m→∞

T (1)
m (W ) =

∫ T

0

∫
Ω

Ḡ · ∇ūdxdt.

Hence we get (39), which is sufficient to prove next Lemma 5.4. Nevertheless, let
us apply Minty’s trick (which remains available in the framework of non strictly
monotonous operators): we set W = ∇ū− λψ, with λ > 0 and ψ ∈ C∞c (Ω×]0, T [)d

in (39). We get, dividing by λ,∫ T

0

∫
Ω

(
Ḡ− µ(|∇ū− λψ|)(∇ū− λψ)

)
ψdxdt ≥ 0.

We can let λ −→ 0 in the above inequality, using Lebesgue’s dominated convergence
theorem. We then get ∫ T

0

∫
Ω

(Ḡ− µ(|∇ū|∇ū)ψdxdt ≥ 0.

Since this also holds for −ψ, we get∫ T

0

∫
Ω

(Ḡ− µ(|∇ū|∇ū)ψdxdt = 0.

Hence Ḡ− µ(|∇ū|∇ū) = 0 a.e. in Ω×]0, T [, which achieves the proof of (40).

We now have the following lemma.

Lemma 5.4. Under the same hypotheses as Lemma 5.3, ∇Dm,τmum converges in
L2(Ω×]0, T [) to ∇ū as m tends to ∞.

Proof. We first remark that, for all V,W ∈ L2(Ω×]0, T [)d, it holds

∀V,W ∈ L2(Ω×]0, T [)d,

∫ T

0

∫
Ω

(µ(|W |)W − µ(|V |)V ) · (W − V ) dxdt

≥α‖|W | − |V |‖2L2(Ω×]0,T [). (41)

Indeed, thanks to the Cauchy-Schwarz inequality, we get∫ T

0

∫
Ω

µ(|W |)W · V dxdt ≤
∫ T

0

∫
Ω

µ(|W |)|W | |V |dxdt,

and the same property holds exchanging the roles of W and V . Hence∫ T

0

∫
Ω

(µ(|W |)W − µ(|V |)V ) · (W − V ) dxdt

≥
∫ T

0

∫
Ω

(µ(|W |)|W | − µ(|V |)|V |) (|W | − |V |) dxdt.

Property (H5) on µ provides (41). Taking W = ∇Dmum and V = ∇ū in (41), we
get

‖|∇Dmum| − |∇ū|‖2L2(Ω×]0,T [) ≤
1

α
Tm(∇ū),

and, thanks to (39), limm→∞ Tm(∇ū) = 0. Therefore

lim
m→∞

‖|∇Dmum| − |∇ū|‖L2(Ω×]0,T [) = 0,
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which, in addition to the convergence of ∇Dmum to ∇ū for the weak topology of
L2(Ω×]0, T [), provides the convergence in L2(Ω×]0, T [) of ∇Dmum to ∇ū.

We can now conclude the convergence of the scheme.

Theorem 5.5. Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be an admissible
sequence of space-time discretisations of Ω×]0, T [ in the sense of Definition 2.4.

Let, for all m ∈ N, um be such that (10) (fully implicit scheme) or (11) (semi-
implicit scheme) hold.

Then there exists a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N,
and there exists a function ū ∈ L∞(0, T ;H1

0 (Ω)), weak solution of (2)-(3)-(4) in the
sense of Definition 1.1, such that uDm,τm tends to ū in L∞(0, T ;L2(Ω)), ∇Dmum
tends to ∇ū in L2(Ω×]0, T [)d.

Proof. We first apply Lemmas 5.1 or 5.2. We get (30) or (35). We apply Lemma
5.4. We thus get that

w̄ = f − ν(ū,∇ū)ūt a.e. in Ω×]0, T [,

which, in addition to (40), concludes the proof.

6. Numerical experiments. In this section we present several numerical exam-
ples to illustrate the properties of the proposed numerical schemes. They are de-
voted to the solution of regularised mean curvature flow and to the motion of 2D
curves by curvature in level set formulation. In all examples we use both the semi-
implicit and fully implicit schemes. We compute the errors and experimental order
of convergence (EOC) for the whole level set function and also for the level set
representing moving curve. Let us emphasise that for all the tests also proposed in
[8], the order of the obtained errors and EOC are very close, using similar space
and time steps. In the tables below n is number of finite volumes along each
boundary side and n2 is a total number of finite volumes. We consider the square
domain Ω =] − 1.25, 1.25[×] − 1.25, 1.25[ and compute the errors of the solution
in L2(Ω×]0, T [) norm denoted by E2, L∞(0, T ;L2(Ω)) denoted by E∞ and for the
gradient of the solution in L2(Ω×]0, T [)d denoted by EG2 and L∞(0, T ;L2(Ω)d)
norm denoted by EG∞. We assume that µ and ν are defined by (5) with various
values of a, taking for b a sufficiently large value (recall that the discrete gradient
remains bounded if the discrete solution satisfies an L∞ bound).

Example 1. In this example we compare a numerical solution with the exact
solution

u(x, y, t) =
x2 + y2

2
+ t

to Equation (2), setting a2 = 1/2 in (5) and defining f by

f(x, y, t) = − 1/2

(x2 + y2 + 1/2)3/2
,

defining the initial condition and non-homogeneous Dirichlet boundary conditions
according to the exact solution in the time interval [0, T ] = [0, 0.3125].

We consider two types of grids. The first type is a standard n × n square grid,
on which we apply Schemes (15)-(17) and (18)-(20). Scheme (21)-(23) is applied on
the second type, depicted in Figure 3, consisting in a triangular mesh obtained by
n×n repetitions of a pattern build with 14 triangles. The advantage of this type of
mesh is that the regularity factor is independent of n, and that no local higher order
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Figure 3. Triangular n× n× 14 grid with n = 12.

consistency is introduced, hence reproducing the properties of a general triangular
mesh. In this example and in the other ones, the time step τ fulfils the relation
τ = C/n2, where 1/n is proportional to the diameter of finite volumes (recall that
the schemes are unconditionally stable, but this relation is used in order to ensure
classical order of convergence in the case of parabolic PDEs). The linear systems are
either solved by direct Gaussian elimination (which can be a very efficient method
for solving such sparse linear systems, taking into account some algebraic properties
of the stencil) or by iterative Gauss-Seidel linear solver. In the experiments on
triangular meshes we use the direct solver, whereas on the rectangular grids we
prefer the Gauss-Seidel method, which often provides smaller computing time on
large cases. In order to prevent the choice of the linear solver from modifying the
numerical results, the precision prescribed to the iterative solver is comparable to
that of the direct solver.

All the computations are performed on a PC computer, using the double precision
type for the real values. For the fully implicit scheme, we need about 30 nonlinear
iterations when fixing the tolerance on the square of the L2 norm of the residual
to TOL = 10−20. A sufficient precision is also obtained with TOL = 10−10 in
nonlinear iterations and then 10 iterations in one time step are needed.

The results with m = n − 1 (semi-implicit scheme) are presented in Tables 1, 3
and 5, and the results with m = n (fully implicit scheme) are presented in Tables
2, 4 and 6.

They show, on this smooth example, that the the precision of the fully implicit
scheme is comparable with that of the semi-implicit one in both cases of rectangular
and triangular meshes. Let us mention that the fully implicit scheme demands more
CPU time. All the schemes have EOC = 2 in solution error and, interestingly, the
EOC in the L2 norm is about 2 also for gradients for rectangular grids and it is
about 1.5 for triangular meshes.
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 4.644e-03 - 1.140e-02 - 1.281e-02 - 2.387e-02 -
20 1.5625e-02 1.347e-03 1.786 3.145e-03 1.858 4.024e-03 1.669 8.480e-03 1.493
40 3.90625e-03 3.482e-04 1.952 7.729e-04 2.025 1.112e-03 1.845 2.996e-03 1.501
80 9.765625e-04 8.677e-05 2.005 1.897e-04 2.027 2.902e-04 1.949 1.066e-03 1.491
160 2.44141e-04 2.156e-05 2.009 4.693e-05 2.015 7.410e-05 1.970 3.780e-04 1.496
320 6.10352e-05 5.366e-06 2.007 1.167e-05 2.008 1.872e-05 1.985 1.340e-04 1.496

Table 1. Example 1, error reports and EOCs for the semi-implicit
scheme (15)-(17) on n× n square meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.167e-03 - 1.394e-02 - 1.549e-02 - 3.461e-02 -
20 1.5625e-02 1.471e-03 2.068 3.260e-03 2.097 4.413e-03 1.811 1.305e-02 1.407
40 3.90625e-03 3.558e-04 2.048 7.782e-04 2.067 1.162e-03 1.925 4.772e-03 1.451
80 9.765625e-04 8.723e-05 2.028 1.900e-04 2.034 2.969e-04 1.969 1.716e-03 1.476
160 2.44141e-04 2.158e-05 2.015 4.694e-05 2.017 7.500e-05 1.986 6.117e-04 1.488
320 6.10352e-05 5.532e-06 1.964 1.206e-05 1.961 2.087e-03 1.845 2.078e-03 1.558

Table 2. Example 1, error reports and EOCs for the fully implicit
scheme (15)-(17) on n× n square meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 3.750e-03 - 9.132e-03 - 1.339e-02 - 2.507e-02 -
20 1.5625e-02 1.218e-03 1.622 2.821e-03 1.694 4.064e-03 1.720 8.734e-03 1.521
40 3.90625e-03 3.318e-04 1.876 7.340e-04 1.942 1.108e-03 1.875 3.050e-03 1.518
80 9.765625e-04 8.479e-05 1.968 1.851e-04 1.988 2.892e-04 1.938 1.076e-03 1.503
160 2.44141e-04 2.131e-05 1.992 4.636e-05 1.997 7.395e-05 1.967 3.797e-04 1.503
320 6.10352e-05 5.336e-06 1.999 1.160e-05 1.999 1.870e-05 1.984 1.343e-04 1.499

Table 3. Example 1, error reports and EOCs for the semi-implicit
scheme (18)-(20) on n× n square meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 4.894e-03 - 1.091e-02 - 1.593e-02 - 3.647e-02 -
20 1.5625e-02 1.324e-03 1.886 2.914e-03 1.905 4.402e-03 1.856 1.334e-02 1.451
40 3.90625e-03 3.388e-04 1.967 7.389e-04 1.980 1.155e-03 1.930 4.819e-03 1.469
80 9.765625e-04 8.523e-05 1.991 1.853e-04 1.996 2.958e-04 1.965 1.724e-03 1.483
160 2.44141e-04 2.134e-05 1.998 4.638e-05 1.998 7.483e-05 1.983 6.130e-04 1.492
320 6.10352e-05 5.969e-06 1.838 1.203e-05 1.947 1.937e-05 1.950 2.124e-04 1.529

Table 4. Example 1, error reports and EOCs for the fully implicit
scheme (18) -(20) on n× n square meshes.

Example 2. Now we use the exact viscosity solution [15]

u(x, y, t) = min{x
2 + y2 − 1

2
+ t, 0}

to the level set equation (1), which is (2) in the case f = 0 and

µ(s) = 1/s, ∀s ∈ R?+, and ν(z, ξ) = µ(|ξ|), ∀z ∈ R, ∀ξ ∈ Rd \ 0, (42)
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
3 6.25e-02 8.43e-03 - 1.96e-02 - 3.22e-02 - 6.53e-02 -
6 1.5625e-02 2.50e-03 1.75 5.65e-03 1.79 1.03e-02 1.64 2.78e-02 1.23
12 3.90625e-03 6.66e-04 1.90 1.45e-03 1.96 3.37e-03 1.61 1.26e-02 1.14
24 9.765625e-04 1.67e-04 2.000 3.62e-04 2.000 1.28e-03 1.40 5.95e-03 1.08

Table 5. Example 1, error reports and EOCs for the semi-implicit
scheme (21)-(23) on n× n× 14 triangular meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
3 6.25e-02 1.00e-02 - 2.22e-02 - 3.19e-02 - 7.41e-02 -
6 1.5625e-02 2.65e-03 1.91 5.77e-03 1.94 9.85e-03 1.69 2.83e-02 1.39
12 3.90625e-03 6.75e-04 1.97 1.45e-03 2.00 3.26e-03 1.60 1.08e-02 1.39
24 9.765625e-04 1.68e-04 2.006 3.63e-04 2.000 1.26e-03 1.37 4.21e-03 1.36

Table 6. Example 1, error reports and EOCs for the fully implicit
scheme (21)-(23) on n× n× 14 triangular meshes.
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Figure 4. Example 2: Initial condition

with zero Dirichlet boundary conditions, in the time interval [0, T ] = [0, 0.3125].
The initial condition and the exact and numerically computed solution (for a square
160× 160 mesh) are plotted in Figures 4 and 5.

In this example, the solution contains flat regions, so we replace, for its numerical
approximation, (42) by (5) with a > 0 (this is the so-called Evans-Spruck type
regularisation [5]). Since the gradient of the solution jumps on a circular curve,
we cannot expect a second order accurate approximation of the solution. However,
as we see from Tables 7-10, the numerical schemes converge also in this singular
case and naturally, EOC is equal (or close to) 1 for the solution error. In order
to mimic convergence of numerical solution to (42) we use the coupling a = h in
(5) in order to fulfil the accuracy objectives. One can also observe that the errors
obtained using the fully implicit scheme in this non-smooth example are slightly
better than that provided by the semi-implicit one. However, since the CPU time
needed by the fully-implicit scheme is greater, the semi-implicit scheme appears as
a reasonable compromise (cf. [11, 4]) in practical applications.

Example 3. In this example we compute the displacement of the unit circle by
its curvature, and we compare the numerical results with the exact solution. The
exact radius r(t) of a shrinking circle can be analytically expressed by

r(t) =
√
r(0)2 − 2t, t ∈ [0, T ], where T =

r(0)2

2
. (43)
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Figure 5. Example 2, the exact (left) and numerical solution
(right) at time 0.3125.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.474e-02 - 1.413e-01 - 2.843e-01 - 5.659e-01 -
20 1.5625e-02 4.747e-02 0.448 1.138e-01 0.312 2.380e-01 0.256 4.655e-01 0.282
40 3.90625e-03 2.879e-02 0.721 7.273e-02 0.646 1.849e-01 0.364 3.617e-01 0.364
80 9.76563e-04 1.586e-02 0.860 4.072e-02 0.767 1.437e-01 0.364 2.807e-01 0.366
160 2.44141e-04 8.365e-03 0.923 2.159e-02 0.985 1.119e-01 0.361 2.171e-01 0.371
320 6.10352e-05 4.302e-03 0.960 1.115e-02 0.909 8.747e-02 0.355 1.695e-01 0.357

Table 7. Example 2, error reports and EOCs for semi-implicit
scheme (15)-(17), a = h on n× n square meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.530e-02 - 1.398e-01 - 2.898e-01 - 5.717e-01 -
20 1.5625e-02 4.279e-02 0.610 1.053e-01 0.410 2.375e-01 0.287 4.710e-01 0.078
40 3.90625e-03 2.421e-02 0.822 6.328e-02 0.735 1.908e-01 0.316 3.874e-01 0.511
80 9.76563e-04 1.299e-02 0.898 3.451e-02 0.875 1.537e-01 0.312 3.076e-01 0.445
160 2.44141e-04 6.819e-03 0.929 1.819e-02 0.924 1.227e-01 0.325 2.422e-01 0.358
320 6.10352e-05 3.517e-03 0.955 9.412e-03 0.950 9.603e-02 0.353 1.875e-01 0.369

Table 8. Example 2, error reports and EOCs for fully implicit
scheme (15)-(17), a = h, on n× n square meshes.

The initial condition is given by

u0(x, y) = −1 +
√
x2 + y2, (44)

which represents the distance function to the initial unit circle. Since we use zero
Neumann boundary conditions in this example, the initial level set function is de-
formed, see Figure 6, but the error on the interface decreases with respect to the
space and time steps, indicating the convergence of the method, as it can be seen
in Tables 11 and 12.
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.478e-02 - 1.413e-01 - 2.892e-01 - 5.661e-01 -
20 1.5625e-02 4.754e-02 0.447 1.139e-01 0.312 2.398e-01 0.255 4.656e-01 0.282
40 3.90625e-03 2.881e-02 0.722 7.277e-02 0.646 1.852e-01 0.364 3.620e-01 0.363
80 9.76563e-04 1.587e-02 0.860 4.074e-02 0.837 1.439e-01 0.364 2.809e-01 0.366
160 2.44141e-04 8.368e-03 0.923 2.160e-02 0.915 1.120e-01 0.361 2.172e-01 0.371
320 6.10352e-05 4.303e-03 0.960 1.115e-02 0.954 8.752e-02 0.356 1.696e-01 0.357

Table 9. Example 2, error reports and EOCs for semi-implicit
scheme (18)-(20), a = h, on n× n square meshes.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.536e-02 - 1.400e-01 - 2.899e-01 - 5.714e-01 -
20 1.5625e-02 4.301e-02 0.604 1.057e-01 0.405 2.374e-01 0.288 4.702e-01 0.281
40 3.90625e-03 2.439e-02 0.818 6.365e-02 0.732 1.888e-01 0.330 3.835e-01 0.294
80 9.76563e-04 1.307e-02 0.900 3.471e-02 0.875 1.506e-01 0.326 3.014e-01 0.348
160 2.44141e-04 6.842e-03 0.934 1.825e-02 0.927 1.196e-01 0.333 2.360e-01 0.353
320 6.10352e-05 3.522e-03 0.958 9.424e-03 0.953 9.361e-02 0.353 1.831e-01 0.366

Table 10. Example 2, error reports and EOCs for fully implicit
scheme (18) -(20), a = h, on n× n square meshes.

Figure 6. Example 3, the level set function at time t = 0 (left)
and t = 0.439 (right).

The comparison of the numerical solution with the exact one (43) is performed
within the time interval [0, T ], where T = 0.375, by a subsequent refinement of the
grid. The measurement of the error is similar to that of [10]. For every discrete
time step k = 0, 1, . . . , N , we first compute all the points xki , i = 1, 2, . . . , P where
the piecewise linear representation of the numerical solution becomes equal to zero
along the finite element grid lines. Then we compute the distances rki , i = 1, 2, . . . , P
between the origin and the points xki , i = 1, 2, . . . , P . Finally, these distances are
compared to the radius r(kτ) of the exact evolving circle. Then the formula

E2 =

√√√√ N∑
k=0

τ
1

P

P∑
i=1

(rki − r(kτ))2 (45)
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is used for assessing the error in the L2(0, T ;L2(S1)) norm, denoting by S1 the
unit circle and setting T = Nτ . The results for the semi-implicit and fully im-
plicit schemes on rectangular grids are summarised in Tables 11 and 12. In all the
cases, the convergence to the exact solution in the norm defined by (45) seems to
be numerically observed. Since, in this definition, P is not constant during consec-
utive time steps, the EOCs look less regular than in the previous two examples.
Nevertheless, Table 12 seems to show second order convergence in the case of the
fully-implicit scheme (18)-(20), using the coupling τ = h2.

n τ E2 semi-implicit EOC E2 fully-implicit EOC
10 6.25e-02 9.035e-02 - 9.303e-02 -
20 1.5625e-02 4.831e-02 0.903 2.311e-02 2.009
40 3.90625e-03 1.200e-02 2.009 3.314e-04 6.124
80 9.76563e-04 9.864e-04 3.604 1.470e-04 1.172
160 2.44141e-04 5.122e-05 4.267 1.750e-05 3.070
320 6.10352e-05 1.867e-05 1.456 4.459e-06 1.973

Table 11. Example 3, error reports and EOCs for scheme (15)-
(17) semi and fully implicit version, a = h, on n×n square meshes.

n τ E2 semi-implicit EOC E2 fully-implicit EOC
10 6.25e-02 9.036e-02 - 9.309e-02 -
20 1.5625e-02 4.832e-02 0.903 2.339e-02 1.993
40 3.90625e-03 1.201e-02 2.008 2.880e-04 6.344
80 9.76563e-04 9.857e-04 3.607 6.922e-05 2.057
160 2.44141e-04 5.135e-05 4.263 1.408e-05 2.298
320 6.10352e-05 1.868e-05 1.458 2.510e-06 2.488

Table 12. Example 3, error reports and EOCs for scheme (18)
-(20) semi and fully implicit version, a = h, on n×n square meshes.

In Figure 7 we represent the numerical evolution of a circle together with the
exact solution, setting n = 80, τ = h2 and using 400 time steps. We hardly
distinguish in this figure the numerical solution and the exact one.
Example 4. Finally, we consider the mean curvature flow of a quatrefoil, defined
as the zero level set of the initial level set function constructed by the formula

u0(x, y) = −1 +

√
x2 + y2

rL
,where rL = 0.6 + 0.4 sin

(
4arctg(

y

x
)
)
. (46)

The evolution is computed in time interval [0, T ], T = 0.22461, n = 80, τ = h2

by both schemes (15)-(17) and (18) -(20) and the results are presented in Figure 8,
showing very close results.

7. Conclusions. The family of discrete schemes presented in this paper shows very
easy implementation properties, and satisfactory accuracy. The adaptation of the
viscosity solution sense to this discrete framework remains an open problem.
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Figure 8. Example 3. Evolution of a quatrefoil, first scheme on
rectangles (left, red, solid), second scheme on rectangles (right,
blue, dashed) in time steps tN = Nτ , τ = 9.76563e − 4, N =
0, 10, 20, . . . , 220.
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