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Abstract

We present various numerical approaches for solving the oblique derivative
boundary value problem. At first, we describe a numerical solution by the
boundary element method where the oblique derivative is treated by its de-
composition into the normal and tangential components. The derived boundary
integral equation is discretized using the collocation technique with linear basis
functions. Then we present solution by the finite volume method on and above
the Earth’s surface. In this case, the oblique derivative in the boundary condition
is treated in three different ways, namely (i) by an approach where the oblique
derivative is decomposed into normal and two tangential components which are
then approximated by means of numerical solution values (ii) by an approach
based on the first order upwind scheme; and finally (iii) by a method for
constructing non-uniform hexahedron 3D grids above the Earth’s surface and the
higher order upwind scheme. Every of proposed approaches is tested by the so-
called experimental order of convergence. Numerical experiments on synthetic
data aim to demonstrate their efficiency.

Zusammenfassung

Der Beitrag beschftigt sich mit verschiedenen numerischen Verfahren zum
schiefachsigen Randwertproblem der Geodsie. Zunchst wird eine numerische
Lsung des Randwertproblems mittels Randelementmethoden beschrieben,
welche die schiefachsigen Ableitungen in Normal- und Tangentialkomponenten
zerlegt. Die sich ergebende Randintegralgleichung wird mittels Kollokations-
technik unter Verwendung linearer Basisfunktionen diskretisiert. Es folgt
ein Lsungsvorschlag mittels Finite-Volumen-Technik auf und oberhalb der
Erdoberflche. In diesem Fall wird eine schiefachsige Ableitung auf drei
verschiedene Arten behandelt, nmlich (i) durch einen Zerlegungsansatz in
Normal- und zwei Tangentialkomponenten, die dann mittels numerischer
Lsungswerte Approximation finden (ii) durch einen Zugang, der auf ein
erster und zweiter Ordnung basierendes upwind – Schema umsetzt (iii) durch
eine Methodik der Konstruktion nicht-gleichfrmiger hexaedrischer 3D-Gitter
oberhalb der Erdoberflche und einem upwind Schema hherer Ordnung. Jeder der
vorgeschlagenen Zugnge wird numerisch auf ihre Effizienz untersucht.

Keywords
Geodetic boundary value problem · Oblique derivative boundary condition ·
Boundary element method · Finite volume method · Numerical solution ·
Global gravity field modelling · Local gravity field modelling · Upwind
method · Advection equation · Evolving surfaces
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1 Introduction

A determination of the Earth’s gravity field is usually formulated in terms of the
geodetic boundary value problems (BVPs). A combination of terrestrial gravimetric
measurements and precise 3D positioning by GNSS directly yields gravity distur-
bances. They naturally lead to boundary conditions (BC) of the fixed gravimetric
boundary value problem (FGBVP), namely to the oblique derivative BC. Hence,
from the mathematical point of view, the FGBVP represents an exterior oblique
derivative geodetic BVP for the Laplace equation, cf. Koch and Pope [33], Freeden
and Kersten [19], Bjerhammar and Svensson [8], Holota [28].

Classically, a solution procedure for the oblique derivative problem has been
based on integral equations using the single-layer potential, cf. Bitzadse [7],
Miranda [49]. Koch and Pope [33] applied such an integral equation procedure
to solve the FGBVP. However, the strong nature of the singularities demanding
Cauchy’s principal integral values turned out to be a serious obstacle, see Freeden
and Gerhards [18]. Later, Freeden and Kersten [20] proposed a new concept
of approximations using the generalized Fourier expansions to transfer strongly
singular integrals into regular ones and this approach has been further developed,
e.g., in Freeden [17], Bauer [5], Gutting [24–26], Freeden and Michel [21], Freeden
and Gerhards [18]. Recently, Freeden and Nutz [22] published the conceptual setup
of the Runge-Walsh theorem for the oblique derivative problem of physical geodesy.

A development of high performance computing facilities has brought new
opportunities for numerical solutions of the geodetic BVPs as well. Efficient
numerical methods such as the boundary element method (BEM), the finite element
method (FEM) or the finite volume method (FVM) can be also applied for global
as well as local gravity field modelling. Among various approaches, we distinguish
between solution to geodetic BVPs on infinite domains, see e.g., Holota [28], Klees
et al. [32], Nesvadba et al. [50], Čunderlík et al. [11], Holota and Nesvadba [29], and
on finite domains, cf. Fašková et al. [16], Minarechová et al. [48], Macák et al. [38].

In the case of BEM, there have been published several papers and here we
mention only few of them, i.e., Klees [31], Lehmann and Klees [35], Klees et al.
[32], Čunderlík et al. [11] or Čunderlík and Mikula [12]. The oblique derivative
problem treated by BEM is discussed in Čunderlík et al. [13]. The FEM applied
to gravity field modelling has been studied in Meissl [45], Shaofeng and Dingbo
[53] or Fašková et al. [16]. The first application of FVM has been introduced by
Fašková [15] and its parallel implementation by Minarechová et al. [48]. However,
both papers have studied the geodetic BVP with the Neumann BC. The first insight
of FVM applied to the oblique derivative BVP has been discussed in [39]. Later
this effort was further developed in Macák et al. [38, 40], where treatment of
the oblique derivative by the central scheme and the first order upwind scheme
[36], respectively, were developed for solving FGBVPs on uniform grids above
the ellipsoid. Recently, Medl’a et al. [44] presented the FVM on non-uniform grids,
where a discretization method based on an evolution of the Earth’s surface has been
developed. In this way, one obtains a more regular non-uniform 3D hexahedron grid.
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Numerically, an innovative higher order upwind method for non-uniform grids has
been applied.

In this chapter, we formulate the oblique derivative BVP and present concise
solutions by two numerical methods, namely

• the boundary element method,
• the finite volume method.

In case of the BEM, the oblique derivative in the BC is decomposed into one
normal and two tangential components that are expressed through the gradients of
the unknown disturbing potential.

In case of the FVM, the oblique derivative in the BC is treated in three different
ways, i.e.,

• the oblique derivative is decomposed into normal and two tangential components
which are then approximated by means of numerical solution values using the
central scheme applied on uniform grids,

• using the first order upwind scheme that is applied on uniform grids,
• using the higher order upwind scheme that is applied on non-uniform grids.

Every proposed approach is tested by various representative numerical experiments.

2 Formulation of the Oblique Derivative Boundary Value
Problem

Let us consider the FGBVP, cf. [8, 28, 33]:

ΔT (x) = 0, x ∈ R3 − S, (1)

∇T (x) · s(x) = −δg(x), x ∈ ∂S, (2)

T (x) → 0, as |x| → ∞, (3)

where S is the Earth, T (x) is the disturbing potential defined as a difference between
the real and normal gravity potential at any point x = (x, y, z), δg(x) is the
gravity disturbance and s(x) = −∇U(x)/|∇U(x)| is the unit vector normal to the
equipotential surface of the normal potential U(x) at any point x.

Equations (1), (2), and (3) represent an exterior BVP for the Laplace equation,
i.e., the computational domain (outside the Earth) is infinite. From the aforemen-
tioned numerical methods it is natural to apply BEM that is suitable for exterior
BVPs since it reduces the problem from the 3D infinite domain onto its “2D”
boundary.

On the contrary, FVM requires a discretization of the whole computational
domain into finite volumes. To that goal we construct a domain Ω in the external
space above the Earth, see [16]. Such a domain Ω (Fig. 1) is bounded by the bottom
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Fig. 1 The bounded domain
Ω – global gravity field
modelling

surface Γ ⊂ ∂Ω representing the Earth’s surface and an upper surface created at
appropriate altitude, e.g., at mean altitude of the GOCE satellite orbits.

In case of local gravity field modelling, see Fig. 2, we choose part of the Earth’s
surface and we add side boundaries. Then on the top and side boundaries the
Dirichlet-type BC for disturbing potential can be generated from any GOCE-based
satellite-only geopotential model.

In the bounded domain Ω , we consider the following BVP

ΔT (x) = 0, x ∈ Ω ⊂ R
3, (4)

∇T (x) · s(x) = −δg(x), x ∈ Γ ⊂ ∂Ω, (5)

T (x) = TSAT (x), x ∈ ∂Ω − Γ, (6)

where Γ ⊂ ∂Ω represents the Earth topography or its part, i.e., the bottom
boundary, ∂Ω − Γ represents the top boundary together with side boundaries (in
case of local gravity field modelling), and TSAT is the disturbing potential generated
from any GOCE-based satellite-only geopotential model.

In the case that the Dirichlet and oblique derivative BC are obtained from
different sources, problem with a compatibility of BC can arise on the edge where
bottom and side boundaries meet. Then the Dirichlet BC (6) is prescribed also in
a narrow band of the bottom boundary along to this edge, i.e., Γ is given by the
bottom part of ∂Γ minus the narrow band.
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Fig. 2 The bounded domain
Ω – local gravity field
modelling

3 Numerical Solution by the Boundary Element Method

An objective of the BEM is to replace a partial differential equation solved in a
3D domain by an equivalent equation that gives a solution on the boundary of the
domain only (cf. [9, 27, 37, 52]). There are two fundamental approaches to derive
an integral formulation of the Laplace equation on the boundary. The first one is
often called the direct method, i.e., the integral equations can be derived through
an application of the Green’s third identity. The second one is called the indirect
method and is based on the assumption that harmonic functions can be expressed
in terms of a single-layer or double-layer potential generated by continuous source
density functions defined on the boundary. However, such source densities have
usually formal character without a direct physical relation to the problem. Therefore
in the following we focus on the direct BEM formulation where values of the
function and its normal derivative over the boundary play the role of the source
densities in generating the harmonic function over the whole solution domain [9].

3.1 Boundary Integral Equation for the Fixed Gravimetric BVP

A main advantage of BEM is the fact that only the boundary of the solution domain
requires a division into its elements (Fig. 3), so the dimension of the problem is
reduced by one. The direct BEM formulation applied to the Laplace equation (1)
results in the boundary integral equation (BIE), [9]
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Fig. 3 The discretization of the Earth’s surface by the global triangulation

1

2
T (x) +

∫

Γ

T (y)
∂G

∂n
(x, y)dyΓ =

∫

Γ

∂T

∂n
(y)G(x, y)dyΓ, (7)

where Γ is the boundary, dΓ is the area element and the kernel function G

represents the fundamental solution of the Laplace equation,

G(x, y) = 1

4π |x − y| , x, y ∈ R3. (8)

The term ∂T /∂n in BIE (7) represents the normal derivative, while FGBVP includes
the oblique derivative BC. In order to derive BIE (7) for the oblique derivative
problem we follow the idea described in [3]. At first we decompose the vector
∇T into the normal and tangential components

∇T = (∇T · n)n + (∇T · t)t + (∇T · f)f, (9)
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where n is the unit normal vector, t and f are the unit tangential vectors. They
represent a local orthonormal base system. Then the oblique derivative term can
be written in the form

∇T · s = (∇T · n)n · s + (∇T · t)t · s + (∇T · f)f · s. (10)

From this equation we express the normal derivative

∂T

∂n
= ∇T · n = 1

n · s
[∇T · s − (∇T · t)t · s − (∇T · f)f · s] . (11)

Inserting Eq. (11) into Eq. (7) we get BIE for our oblique derivative problem

1

2
T (x) +

∫

Γ

T (y)
∂G

∂n
(x, y)dyΓ +

∫

Γ

((∇T · t) t · s)
(n · s)

(y)G(x, y)dyΓ +

+
∫

Γ

((∇T · f) f · s)
(n · s)

(y)G(x, y)dyΓ =
∫

Γ

(∇T · s)
(n · s)

(y)G(x, y)dyΓ, x ∈ Γ.

(12)

The term ∇T · s on the right-hand side of BIE (12) represents the oblique derivative
BC (2) and thus can be replaced by negative values of the input surface gravity
disturbances. Then BIE (12) represents the direct BEM formulation for FGBVP
defined by Eqs. (1), (2), and (3).

3.2 Collocation with Linear Basis Function

As a numerical technique to discretize BIE (12) we use the collocation method
with linear basis functions (denoting by the C1 collocation). The Earth’s surface as
a boundary of the domain is approximated by a triangulation of the topography

expressed as a set of panels ΔΓj (Fig. 3), i.e., Γ =
N⋃

j=1
ΔΓj . The vertices

xi, . . . , xN of the triangles represent the nodes – the collocation points. The C1

collocation involves a piecewise linear representation of the boundary functions T

and δg on planar triangles [9]

T (x) ≈
3∑

k=1

Tkψk(x), x ∈ ΔΓj , (13)

δg(x) ≈
3∑

k=1

δgkψk(x), x ∈ ΔΓj , (14)
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where Tk and δgk for k = 1, 2, 3 represent values of the boundary functions at the
vertices of the triangle ΔΓj . The linear basis functions ψ1, ψ2, . . . , ψN are given by

ψj (xi ) = 1, xi = xj , (15)

ψj (xi ) = 0, xi �= xj , (16)

where i = 1, .., N ; j = 1, .., N and N is the number of the collocation points.
These approximations allow to reduce the original BIE (7) to a discrete form (more
details can be found in [11]).

In the case of BIE (12) for the oblique derivative, a contribution of the tangential
components is expressed through the gradients of the unknown disturbing potential.
In the C1 collocation they can be expressed through the gradients of the linear basis
functions

∇T (x) ≈
3∑

k=1

Tk∇ψk(x), x ∈ ΔΓj , (17)

where Tk are unknown values of the disturbing potential at collocation points that
represent vertices of the triangle ΔΓj and ψk are the linear basis functions at these
points. Since the gradient of the linear basis function ∇ψj is constant on the whole
triangle ΔΓj , it can be expressed using the Green theorem

∇ψj = 1

m
(
ΔΓj

)
∫

ΔΓj

∇ψj dΔΓ = 1

m
(
ΔΓj

)
∫

∂Γj

ψjη d∂Γ, (18)

where m(ΔΓj ) is the area of the triangle ΔΓj and η is the normal vector to its
sides ∂Γ . Considering a fact that the j th linear basis function equals to 1 at the j th

collocation point and to 0 at others vertices of the triangle ΔΓj , i.e., at mth and kth

collocation points, Eq. (17) can be simplified into the form

∇ψj = 1

2m
(
ΔΓj

) [
ljmηjm + ljkηjk

]
, (19)

where ljm and ljk are the lengths of the sides of the triangle intersecting at the j th

collocation point, and ηjm and ηjk are the normal vectors to these sides, see Fig. 4.
Considering all these approximations we get a discrete form of BIE (12) for each

collocation point i.

ciTiψi+
N∑

j=1

∫

suppψj

Tj

[
∂Gij

∂n
ψj+

(∇ψj ·tj
) sj ·tj

nj ·sj Gij+
(∇ψj ·fj

) sj ·fj

nj ·sj Gij

]
dΓj=
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Fig. 4 Triangle intersecting
at the j th collocation point
and normal vectors ηjm and
ηkj to its sides

=
N∑

j=1

∫

suppψj

δgjGij

ψj

nj ·sj dΓj , i = 1, . . . , N, (20)

where suppψj is the support of the j th basis function. The coefficient ci represents
a “spatial segment” bounded by the triangles joined at the ith collocation point. In
the case of the linear basis functions, it can be evaluated by the expression [42]

ci = 1

4π
[2π +

S∑
s=1

sgn(ρi · (ns × ns+1)) arccos(ns · ns+2)], (21)

where ρi is the distance vector at the ith collocation point, ns is the normal unit
vector to the sth triangle of the suppψi and S represents the number of triangles in
the suppψi .

Equations (20) represent the system of linear equations that can be rewritten into
the matrix-vector form

Mt = L δg, (22)

where t = (T1, . . . , TN)T and δg = (δg1, . . . , δgN)T . Coefficients of the matrices
M and L represent integrals that need to be computed using an appropriate
discretization of the integral operators in (20). The discretization of the integral op-
erators is affected by the weak singularity of the kernel functions. The integrals with
regular integrands, which represent non-diagonal coefficients, are approximated by
the Gaussian quadrature rules defined on a triangle [34]. Their discrete form is
given by
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Lij = 1

4π

S∑
s=1

Ajs

cos ϕjs

K∑
k=1

ψkwk

riks

, i �= j (23)

Mij = 1

4π

S∑
s=1

[
Ajs

(
kijs

K∑
k=1

ψkwk

r3
iks

+∇ψjs · tj+∇ψjs ·fj

cos ϕjs

K∑
k=1

wk

riks

)]
, i �=j (24)

where Ajs is the area of the sth triangular element of the suppψj , kijs
is the distance

from the ith collocation point to the plane represented by this triangular element, K

is the number of points used for the Gaussian quadrature with their corresponding
weights wk and linear basis functions ψk , and riks is the distance from the ith

collocation point to the kth quadrature point of the sth triangular element. The j th

component of the vector δg in (22) corresponds to the input value of the measured
surface gravity disturbance δg at the j th collocation point. The cos ϕjs represents a
projection of the unit vector s at the j th collocation point to the normal vector n of
the sth triangular element of the suppψj , kijs

.
The non-regular integrals (singular elements) arise only for the diagonal com-

ponents of the linear system. They require special evaluation techniques in order
to handle the singularity of the kernel function. Thanks to the diagonal component
ci and the orthogonality of the normal to its planar triangular element, the singular
element is represented by the spatial segment [3]

Mii = ci . (25)

The kernel function G (Eq. (8)) in integrals on the right-hand side of Eq. (20) is
weakly singular. Hence, the diagonal coefficients Lii can be evaluated analytically

Lii = 1

2π

S∑
s=1

Ais

ρs cos ϕis

ln
tan[(βs + αs)/2]

tan(βs/2)
. (26)

where Ais is the area of the sth triangle of the suppψi determined by the line of
length ρs and angles αs , βs (Fig. 5).

The diagonal component in Eq. (25) can be evaluated geometrically using (21) or
through the physical consideration. The second approach is based on the fact that a
constant potential applied over a closed body produces no flux. Accordingly, in case
of the exterior Neumann problems, the sum of all components in each row should
be equal to 1 [9]. Then one can easily calculate coefficient Mii after evaluating of
all non-diagonal coefficients, i.e.,

Mii = 1 −
N∑

j=1,i �=j

M∗
ij , (27)

where coefficients M∗
ij do not include contributions of tangential components.



12 R. Čunderlík et al.

Fig. 5 Evaluating of the
singular element (the C1

collocation)

M∗
ij = 1

4π

S∑
s=1

Ajs kijs

K∑
k=1

ψkwk

r3
iks

, i �= j. (28)

The matrix M in Eq. (22) is a nonsymmetric dense N ×N matrix. Consequently,
memory requirements and CPU-time consumptions are of the order O(N2). It
means that for increasing N (of the order 105 and more), the BEM applications
lead to large-scale linear systems with enormous memory requirements. Therefore
computing on parallel computers with distributed memory is practically inevitable.

In the last decades there have been developed numerous compression techniques
that can be applied to reduce a numerical complexity of BEM, e.g., the fast multipole
method (FMM), Hierarchical matrices (H-matrices) or panel clustering. Here we
briefly mention that the FMM approximates the kernel function in Eq. (8) factorizing
the x, y dependency by a multipole expansion [23]. Hence, interactions of the
far zones can be evaluated straightforwardly and the original dense matrix M is
transformed into a sparse one. An implementation of the FMM as well as panel
clustering to the gravity field modelling by the Galerkin BEM is published in [32].

A main idea of the H-matrices is based on an approximation of the entire system
matrix that is split into a family of submatrices. Large submatrices are stored in
factorized representation, while small submatrices are stored in standard represen-
tation. This allows to reduce memory requirements significantly while improving
the efficiency. Among others we briefly mention the Adaptive Cross Approximation
(ACA) algorithm where numerically rank-deficient sub-blocks, which correspond
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to interactions of well-separated groups of nodes, can be efficiently compressed
through an approach very similar to the column-pivoted LU decomposition [55].

3.3 Numerical Experiments

To demonstrate properties of our BEM approach, we present a reconstruction of a
known harmonic function directly on the Earth’s surface where the corresponding
oblique derivative BCs are prescribed. The Earth’s surface has been approximated
by a triangulated surface. Vertices of the global triangulation have represented the
collocation points and they have been regularly distributed over the whole Earth’s
surface (Fig. 3). Their horizontal positions have been generated by the algorithm
developed in [10]. A chosen level of the discretization has yielded a size of the
triangular elements as well as number of collocation points (N ) (Table 1). Vertical
positions of the collocation points have been interpolated from the DNSC mean sea
surface [1] at oceans, and SRTM30PLUS-V5.0 global topography model [6] on
lands. In this way 3D positions of the collocation points have been constructed. At
these points the disturbing potential as a reconstructed harmonic function and the
surface gravity disturbances as the oblique derivative BCs have been generated from
the EGM2008 geopotential model up to degree and order 2160 [51].

All large-scale parallel computations were performed on the cluster with 1.2 TB
of distributed memory. The standard MPI (Message Passing Interface) subroutines
[2] have been used for the code parallelization. As a linear solver, the BiConjugate
Gradient Stabilized (BiCGSTAB) method [4, 54] has been used, which is suitable
for dense and nonsymmetric matrices. To reduce large memory requirements we
have used an iterative procedure introduced in [12]. In the first iterative step it has
incorporated a priori known global solutions generated from the ITG-GRACE03S
satellite-only geopotential model up to degree 180 [43]. These “approximate”
values of the disturbing potential have been used to evaluate a contribution of the
far zones to every collocation point. It means that all “far zones components” of
the original system matrix multiplied by the approximate values of the unknown
disturbing potential have been passed to the known right hand side of Eq. (22). In
this way values of the disturbing potential at collocation points have been iteratively
improved and the original dense stiffness matrix have been transformed into the

Table 1 Statistical
characteristics of the residuals
between the BEM solutions
and EGM2008 [units: m2s−2]

CASE A B

Resolution 0.075 deg 0.05 deg

Nodes 5 760 002 12 960 002

Mean −1.315 −0.939

Max 1.216 0.084

Min −13.145 −7.320

STD 1.033 0.564
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sparse one. Such an approach has allowed us to reduce the memory requirements
significantly, however, in the cost of large CPU-time consumption.

Our experiences have shown that our numerical scheme based on the discrete
BIE (20) works well for solutions on coarse grids or triangulations. However, for
very refined triangulation the system matrix M has become worse conditioned
and the BiCGSTAB has stopped converge, even using preconditioning. It is due
to the fact that in areas of extremely complicated Earth’s surface, the tangential
components have become stronger, and taking into account that the kernel function
for the tangential components is one order stronger than for the normal component
(O(r−1) vs. O(r−2), see Eq. (24)), this has caused the worse conditioned system
matrix. To overcome such a drawback we have decided to use an iterative approach
in which the tangential components have remained on the right-hand-side

1

2
T P (p) +

∫

Γ

T P (q)
∂G

∂n
(p, q)dΓq =

=
∫

Γ

∇T · s − (∇T P−1 · t)t · s − (∇T P−1 · f)f · s
n · s

(q)G(p, q)dΓq (29)

where P is an iterative step. Since we have used the iterative approach also for the
elimination of far zones’ interactions, in the first iteration we have used the same
disturbing potential generated from the ITG-GRACE03S model. It means that in
one process such an iterative procedure has treated both, the oblique derivative as
well as elimination of far zones’ interactions. Consequently, the system matrix has
changed to M∗ which is generally well-conditioned also for refined triangulation
and the BiCGSTAB solver has converged. Coefficients of the system matrix M∗
have be evaluated using Eqs. (27) and (28).

Table 1 summarizes statistical characteristics of the residuals between the BEM
solutions and EGM2008 for different levels of the discretization. Figure 6 depicts
these residuals. We remind that the BEM solutions are obtained at collocation
points directly on the Earth’s surface considering its complicated topography. It is
evident that the largest residuals are in high mountains, especially in the Himalayas
and Tibetan plateau. However, refining of the triangulation has resulted in an
obvious improvement. This improvement has been achieved despite the fact that
more refined triangulation has involved more detailed consideration of the Earth’s
surface topography. It is worth to note that the BEM applications allow also
local refinements of the global triangulation. In this way one can achieve more
precise solution, especially over regions with a complicated boundary, while the
overall memory requirements can be reduced. And this is challenging for further
investigation.
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Fig. 6 Residuals between the BEM solution and EGM2008 for the triangulation with (a) 5 760
002, and (b) 12 960 002 collocation points [units: m2s−2]

4 Numerical Solution by the Finite Volume Method

The general discretization approach is to divide the computational domain Ω into
the regular uniform hexahedron grid of finite volumes Vi,j,k . Then integrate the
equation over each finite volume with a use of the divergence theorem that turns
some of the volume integrals into surface integrals. Then the resulting discretised
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equations equate fluxes across finite volumes to sources and sinks inside the volume,
and they can be solved with standard direct or iterative methods.

So we multiply Eq. (4) by minus 1 and in aforementioned manner

−
∫

Vi,j,k

ΔT dV = −
∫

∂Vi,j,k

∇T · n dS. (30)

we obtain the weak formulation of Eq. (4) in the finite volume Vi,j,k

−
∫

∂Vi,j,k

∂T

∂n
dS = 0, (31)

where n is a unit normal vector to the boundary of the finite volume Vi,j,k .
Let us denote the representative point of the finite volume Vi,j,k by xi,j,k . Finite

volumes are constructed around inner (those that do not lie on the boundary ∂Ω)
representative points. Let N1 denote the set of all triplets (p, q, r),|p|+|q|+|r| = 1.
Then the finite volumes Vi+p,j+q,k+r , (i, j, k) ∈ N1 share a common 2D boundary
e
p,q,r
i,j,k with the finite volume Vi,j,k .

Using such a discretization we can write

−
∑

(p,q,r)∈N1

∫

e
p,q,r
i,j,k

∂T

∂np,q,r
i,j,k

dS = 0, (32)

where np,q,r
i,j,k is the unit normal vector oriented from the finite volume Vi,j,k

to Vi+p,j+q,k+r . The derivation in the direction of the normal vector can be
approximated by

∂T

∂np,q,r
i,j,k

≈ Ti+p,j+q,k+r − Ti,j,k

d
p,q,r
i,j,k

. (33)

Unknown values Ti,j,k are considered in points xi,j,k and d
p,q,r
i,j,k is a distance

between points xi,j,k and xi+p,j+q,k+r . It is worth noting that the normal vector
np,q,r

i,j,k has to be identical with the connecting line of representative points. In other
case, the non-uniform grid has to be handled.

By considering the derivative in the normal direction to be constant on the
boundary e

p,q,r
i,j,k and utilizing Eq. (33) we obtain

−
∑

(p,q,r)∈N1

m
(
e
p,q,r
i,j,k

) Ti+p,j+q,k+r − Ti,j,k

d
p,q,r
i,j,k

= 0, (34)
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where m
(
e
p,q,r
i,j,k

)
is an area if the boundary e

p,q,r
i,j,k . This equation can be written in

the form

∑
(p,q,r)∈N1

m
(
e
p,q,r
i,j,k

)

d
p,q,r
i,j,k

(
Ti,j,k − Ti+p,j+q,k+r

) = 0, (35)

representing the linear system of algebraic equations for FVM. Then the term
m

(
e
p,q,r
i,j,k

)

d
p,q,r
i,j,k

defined on sides of the finite volume Vi,j,k is referred to as the transmis-

sivity coefficient [14]. The system (35) must be accompanied by BCs. In case of the
Dirichlet BC (6), we prescribe the value of Ti+p,j+q,k+r on the boundary. In case of
the oblique derivative BC (5) it needs a special treatment which is discussed in the
following section.

5 The Oblique Derivative Boundary Condition in the
Oblique Derivative Boundary Value Problem

As we have mentioned above, in this section we present three different approaches
to the oblique derivative BC in the oblique derivative BVPs, namely by

(a) the central scheme applied on uniform grids,
(b) the first order upwind scheme applied on uniform grids ,
(c) the higher order upwind scheme applied on non-uniform grids .

5.1 Approach Based on the Central Scheme Applied on Uniform
Grids

The following approximations apply for a finite volume Vi,j,k for which the
boundary e

−1,0,0
i,j,k lies on the bottom boundary Γ (Fig. 7).

Let N3 denote the set of all triplets (p, q, r), |p| + |q| + |r| = 3. Then the finite
volumes Vi+p,j+q,k+r , (i, j, k) ∈ N3 share a common vertex with the finite volume
Vi,j,k . Then let us denote this common vertex by xp,q,r

i,j,k and it holds

xp,q,r
i,j,k = 1

8

∑
(l,m,n)∈B(p,q,r)

xi+l,j+m,k+n, (36)

where
B(p, q, r) = {(p, q, r), (p, q, 0), (p, 0, r), (p, 0, 0), (0, q, r), (0, q, 0), (0, 0, r),

(0, 0, 0)}.
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Fig. 7 Illustration of the FVM grid notation

So let us suppose the oblique derivative BVP (4), (5), and (6). We start by
splitting the gradient in (5) into one normal and two tangential directions

∇T = (∇T · n)n + (∇T · t)t + (∇T · f)f = ∂T

∂n
n + ∂T

∂t
t + ∂T

∂f
f, (37)

where n is the normal vector and t, f are tangent vectors to Γ ⊂ ∂Ω ⊂ R3. These
three vectors form an orthonormal basis. Then we put (37) into (5) to obtain

∇T · s =
(

∂T

∂n
n + ∂T

∂t
t + ∂T

∂f
f
)

· s = ∂T

∂n
n · s + ∂T

∂t
t · s + ∂T

∂f
f · s (38)

and the BC (5) is transformed into the form

∂T

∂n
n · s + ∂T

∂t
t · s + ∂T

∂f
f · s = δg. (39)

We set approximations of normal and tangent vectors

n = xi−1,j,k − xi,j,k

|xi−1,j,k − xi,j,k| ,

t = x−1,1,1
i,j,k − x−1,−1,−1

i,j,k

|x−1,1,1
i,j,k − x−1,−1,−1

i,j,k | ,

f = x−1,1,−1
i,j,k − x−1,−1,1

i,j,k

|x−1,1,−1
i,j,k − x−1,−1,1

i,j,k | . (40)

And we approximate the normal and tangential derivatives in (39) by
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∂T

∂n
= Ti−1,j,k − Ti,j,k

|xi−1,j,k − xi,j,k| ,

∂T

∂t
= T

−1,1,1
i,j,k − T

−1,−1,−1
i,j,k

|x−1,1,1
i,j,k − x−1,−1,−1

i,j,k | ,

∂T

∂f
= T

−1,1,−1
i,j,k − T

−1,−1,1
i,j,k

|x−1,1,−1
i,j,k − x−1,−1,1

i,j,k | , (41)

where values T
p,q,r
i,j,k are defined by

T
p,q,r
i,j,k = 1

8

∑
(l,m,n)∈B(p,q,r)

Ti+l,j+m,k+n, (42)

If we put these approximations into (39) we get a discrete form of the 3D oblique
derivative BC (5)

∇T · s ≈ Ti−1,j,k − Ti,j,k

|xi−1,j,k − xi,j,k|n · s + T
−1,1,1
i,j,k − T

−1,−1,−1
i,j,k

|x−1,1,1
i,j,k − x−1,−1,−1

i,j,k | t · s +

+ T
−1,1,−1
i,j,k − T

−1,−1,1
i,j,k

|x−1,1,−1
i,j,k − x−1,−1,1

i,j,k | f · s = δg. (43)

These equations are incorporated into the FVM linear system which is then solved.

5.1.1 Numerical Experiments
The numerical schemes will be qualified according to the value of the so-called
experimental order of convergence (EOC) that can be computed as follows. If
we assume that the error of the scheme in some norm is proportional to some
power of the grid size, i.e., Error(h) = Chε , with a constant C, then having
two grids with sizes h1 and h2, where h1 > h2, yields two errors Error(h1) =
C(h1)

ε and Error(h2) = C(h2)
ε from where we can simply extract ε =

log h1
h2

(Error(h1)/Error(h2)). If h2 = h1
2 then ε = log2(Error(h1)/Error(h2)).

Then the ε is the EOC and can be determined by comparing numerical solutions and
exact solutions on subsequently refined grids.

Now let us remind that gravity disturbance defined as a difference between
magnitudes of the real and normal gravity represents a projection of ∇T (x) into
the unit vector s(x). The oblique derivative arises from the fact that the direction
of s(x) in general does not coincide with the normal n(x) to the Earth’s surface. It
means that here we can distinguish two angles; the first one between n(x) a s(x)

is known, while the second one between ∇T (x) and s(x) is unknown due to an
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unknown direction of ∇T (x). To simulate such a situation we perform the following
two testing experiments.

In the first testing experiment, we have the computational domain a tesseroid
bounded by two concentric spheres with radii r1 = 1 and r2 = 2, and a coaxial
cone with dimension (0, π/2) × (0, π/2). There have been the oblique BC (5) on
the bottom boundary and the Dirichlet BC on the upper and side boundaries applied.
The oblique derivative vector s is chosen to be

s =
xC − x

i− 1
2 ,j,k

|xC − x
i− 1

2 ,j,k
| ,

where the center point is xC = (0.1,−0.2,−0.1). As the Dirichlet BC (6) we have
considered the exact solution of (4) in the form T(x, y, z) = 1/r , where r is the
distance from the center point xC . As the Neumann/oblique BC on the bottom
boundary, we have supposed the derivative of this exact solution that is equal to
−1/r2. The results can be seen in Table 2. One can see that the proposed approach
is second order accurate.

For the second testing experiment we have the same computational domain and
the same BCs as in the previous one, but the oblique vector s has been rotated by
20◦. The coordinates of the center point have been xC = (−0.2, 0.1, 0.2). The
L2(Ω)-norm of differences between the exact and numerical solutions as well as
the EOC of the method are shown in Table 3. One can see that also in this case with
the rotated oblique vector, the value of EOC of the proposed approach reaches value
2. It is worth noting that in case when the oblique vector is identical with gradient
vector, we can project to the normal without incorporating error. However, if this is
not so (this is the case of rotation), we can’t solve BVP with Neumann BC, but we
have to use the proposed approach.

The third numerical experiment has dealt with the FGBVP and the computational
domain Ω above Himalaya region approximated by the ellipsoid WGS84. A

Table 2 The L2(Ω)-norm
and the EOC for the
experiment with the oblique
BC, when the center point is
shifted xC =
(0.1,−0.2,−0.1)

n1 × n2 × n3 ||T − T ||L2(Ω) EOC

2 × 2 × 4 6.74805.10−2 –

4 × 4 × 8 9.00317.10−3 2.90597

8 × 8 × 16 1.54266.10−3 2.54502

16 × 16 × 32 3.01950.10−4 2.35328

32 × 32 × 64 0.67123.10−5 2.16928

Table 3 The L2(Ω)-norm
and the EOC for the
experiment with the oblique
BC. The center point is
shifted xC = (−0.2, 0.1, 0.2)

and the oblique vector s is
rotated by 20◦

n1 × n2 × n3 ||T − T ||L2(Ω) EOC

2 × 2 × 4 6.43828.10−2 –

4 × 4 × 8 8.14779.10−3 2.98220

8 × 8 × 16 1.34261.10−3 2.60137

16 × 16 × 32 2.44307.10−4 2.45827

32 × 32 × 64 0.52002.10−5 2.23204
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range for the ellipsoidal latitude and longitude has been B ∈ 〈20.0◦, 50.0◦〉 and
L ∈ 〈60.0◦, 110.0◦〉, respectively. To calculate the oblique derivative vector, the
ellipsoidal heights above reference ellipsoid WGS84 have been generated from
SRTM30 [6]. The upper boundary has been 240 km above the WGS84 reference
ellipsoid. The number of finite volumes has been 1200 in height, 900 in meridional
and 1500 in zonal directions, i.e., 5′ × 5′ × 200 m sized volumes have been created.
All BCs, namely gravity disturbances as well the disturbing potential, have been
generated from EGM2008, see [51]. Results are depicted in Figs. 8 and 9 with

Fig. 8 The disturbing potential solution T in the area of Himalaya region [units: m2s−2]

Fig. 9 Local improvement in T from the oblique BC when using EGM08 data only [units: m2s−2]
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Table 4 Comparison of
statistical characteristics in
between the disturbing
potential computed by FVM
applied to solving BVP with
the oblique BC using EGM08
data only, and the disturbing
potential generated from
EGM08 directly [units:
m2s−2]

AREA HIMALAYA

Min −0.87

Mean 0.04

Max 0.95

Std 0.17

RMS 0.18

Fig. 10 Illustration of the
2D FVM grid. The dashed
lines denote the boundaries of
added finite volumes, the
vector s is depicted by red

corresponding statistics presented in Table 4. One can observe that the highest
values of residuals are in the areas of the mountainous ridges.

More details about this approach can be found in [41].

5.2 Approach Based on the First Order Upwind Scheme Applied
on Uniform Grids

In this approach, the oblique derivative BC is interpreted as a stationary advection
equation for the unknown disturbing potential. Then its approximation is done by
using the first order upwind scheme, which takes into account information from
inflow parts of the finite volume boundary only.

Since in upwind scheme is natural to have outer normal to the computational
domain (see Fig. 10), we multiply the unit vector s(x) by minus 1.

So one can rewrite the divergence of T (x)s(x) in the form
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∇ · (T (x)s(x)) = T (x)∇ · s(x) + ∇T (x) · s(x). (44)

By inserting (44) into Eq. (5), we obtain

∇ · (T (x)s(x)) − T (x)∇ · s(x) = δg(x). (45)

We add one row of finite volumes under the bottom boundary, see Fig. 10, and
integrate (45) over one of the added finite volumes Vi,j,k (we omit (x) to simplify
the notation in the following equations)

∫

Vi,j,k

∇ · (T s) dV −
∫

Vi,j,k

T ∇ · s dV =
∫

Vi,j,k

δg dV. (46)

Using a constant approximation of the solution T on the finite volume Vi,j,k denoted
by Ti,j,k and applying the divergence theorem to the left-hand side of Eq. (46) we
obtain

∑
(p,q,r)∈N1

∫

e
p,q,r
i,j,k

T s · np,q,r
i,j,k dS −

∑
(p,q,r)∈N1

Ti,j,k

∫

e
p,q,r
i,j,k

s · np,q,r
i,j,k dS =

=
∫

Vi,j,k

δg dV. (47)

Denoting a constant approximation of the solution on the interface e
p,q,r
i,j,k by T

p,q,r
i,j,k

and a volume of the finite volume Vi,j,k by m(Vi,j,k) yields

∑
(p,q,r)∈N1

T
p,q,r
i,j,k

∫

e
p,q,r
i,j,k

s · np,q,r
i,j,k dS −

∑
(p,q,r)∈N1

Ti,j,k

∫

e
p,q,r
i,j,k

s · np,q,r
i,j,k dS

= δg m(Vi,j,k). (48)

When we denote

s
p,q,r
i,j,k =

∫

e
p,q,r
i,j,k

s · np,q,r
i,j,k dS ≈ m(e

p,q,r
i,j,k ) s · np,q,r

i,j,k , (49)

we finally obtain

∑
(p,q,r)∈N1

s
p,q,r
i,j,k (T

p,q,r
i,j,k − Ti,j,k) = δg m(p). (50)
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Due to an analogy of the oblique derivative BC (5) and the stationary advection
equation, we have applied an upwind principle, which is used exclusively in solving
advection equations in fluid dynamics [36]. Then we define

T
p,q,r
i,j,k = Ti,j,k, if s

p,q,r
i,j,k > 0, (51)

T
p,q,r
i,j,k = Ti+p,j+q,k+r , if s

p,q,r
i,j,k < 0, (52)

which correspond to the inflow part to the finite volume Vi,j,k (sp,q,r
i,j,k < 0) and

outflow part to the finite volume Vi,j,k (sp,q,r
i,j,k > 0) when s is understood as an

advection velocity vector. By using (51) and (52) in (50) we obtain the final form of
an approximation to the oblique derivative BC (5) as

∑
(p,q,r)∈Nin

1

s
p,q,r
i,j,k (Ti+p,j+q,k+r − Ti,j,k) = δg m(p), (53)

where Nin
1 is a set of neighbours at the inflow boundaries of the finite volume Vi,j,k ,

i.e., where s
p,q,r
i,j,k < 0.

5.2.1 Numerical Experiments
Now, we present two numerical experiments, one testing and one with real data. In
the testing numerical experiment, the computational domain has been a tesseroid
bounded by two concentric spheres with radii Rd = 1 m and Ru = 2 m, and a
coaxial cone with dimension (0, π/4)× (0, π/4). As the Dirichlet BC (6), the exact
solution of (5) in the form T ∗ = 1/r on the upper and the side boundaries, has been
prescribed. The direction of the unit vector s1(x), i.e., the unit gradient vector of the
exact solution, has been modified by angle ±α to create a new unit vector s(x). For
this experiment we have chosen α = 20◦. The coordinates of the point mass source
have been xC = (0.3,−0.2, 0.1). Then the oblique derivative BC is given by the
projection ∇T (x) · s(x) = −(1/r2) cos(α). The L2(Ω) and MAX(Γ ) norms of
differences between the exact and numerical solutions and the EOC of the methods
are shown in Table 5. We observe stable behaviour of EOC for the upwind scheme
and oscillatory EOC for the central scheme.

Table 5 The L2(Ω)-norm, MAX(Γ )-norm and the EOC for the 3D experiment with the 3D oblique
derivative BC when the oblique vector s does not have direction of the solution gradient

Upwind scheme Central scheme

n1×n2×n3 ‖T ∗ − T ‖L2(Ω) EOC ‖T ∗ − T ‖MAX(Γ ) EOC ‖T ∗ − T ‖L2(Ω) EOC ‖T ∗ − T ‖MAX(Γ ) EOC

8×8×4 0.177728 – 0.362022 – 0.061529 – 0.3511 –

16×16×8 0.059441 1.58 0.177806 1.03 0.146351 −1.25 0.209212 0.75

32×32×16 0.022542 1.39 0.083563 1.08 0.058753 1.31 0.050549 2.05

64×64×32 0.010819 1.05 0.041756 1.00 0.008090 2.86 0.053722 2.64

128×128×64 0.005143 1.07 0.019506 1.13 0.004520 0.83 0.024245 0.84
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In numerical experiment with real data, we apply the upwind scheme for global
gravity field modelling. We try to reconstruct a harmonic function given by the
EGM2008 geopotential model up to degree 2160 [51]. It means that all BCs are
generated from this model. The Dirichlet BC in the form of the disturbing potential
is prescribed on the upper boundary at the constant altitude of 240 km above the
reference ellipsoid. The oblique derivative BCs are generated as the first derivative
of the disturbing potential in the direction of the normal to the reference ellipsoid.
They are generated at points on the real topography that is approximated using the
SRTM30PLUS global topography model [6]. Our goal is to show a convergence of
the FVM solution to EGM2008 when refining the computational grid.

Although the oblique derivative BCs are considered at points on the real
topography, in our FVM approach we so far use a structured grid of finite volumes.
It means that the computational domain Ω in our computations is bounded by
the reference ellipsoid. However, all input data here are adopted from the real
topography. This means that np,q,r

i,j,k on the bottom boundary is given by the normal
to the topography and not by the normal to the ellipsoid. Then the unit vector
s(x) represents the normal to the reference ellipsoid while the direction of np,q,r

i,j,k

represents the normal to the Earth’s surface and is adopted from our approximation
of the topography. In this way we are able to evaluate the coefficients sp,q,r

i,j,k in our
approximation of the oblique derivative BC.

The computational grid is constructed using the number of divisions in L,B,H

directions given by n1 × n2 × n3:

(a) 540 × 270 × 75 (resolution: 40′ × 40′ × 3200 m),
(b) 1080 × 540 × 150 (resolution: 20′ × 20′ × 1600 m),
(c) 2160 × 1080 × 300 (resolution: 10′ × 10′× 800 m),
(d) 4320 × 2160 × 600 (resolution: 5′ × 5′× 400 m).

The obtained FVM solutions are compared with EGM2008. The statistical
characteristics of residuals on the bottom boundary as well as computational aspects
are summarized in Table 6. One can see that the FVM solution converges to
EGM2008 by refining the finite volume grid, i.e., the mean value, STD as well
as maximum norm are decreasing. It is worth to note that every refinement of the
discretization involves a more detailed consideration of the topography. This does
not allow us to compute EOC directly, however, STD as well as the maximum norm
in Table 6 indicate that the upwind scheme is the first order accurate.

Table 6 Statistics of residuals in T [m2s−2] on the bottom boundary Γ for successive refinements,
and computational details

Resolution Min. Max. Mean STD (total) STD (Sea) STD (Land)

40′ × 40′ −78.910 80.426 −0.392 5.238 4.771 6.228

20′ × 20′ −46.584 27.558 −0.273 1.948 1.489 2.750

10′ × 10′ −22.011 7.954 −0.265 0.904 0.327 1.578

5′ × 5′ −13.926 7.932 −0.114 0.558 0.183 0.991
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Fig. 11 Residuals in T [m2.s−2] between the disturbing potential computed by the FVM solution
with upwind treatment of oblique derivative and EGM2008 solution on the bottom boundary Γ

The residuals between the most refined FVM solution in case (d) and EGM2008
are depicted in Fig. 11. The largest residuals are negative and they evidently
correlate with high mountainous areas of Himalayas and Andes. The minimal values
of residuals in Table 6 indicate that refinements of the discretization improve the
FVM solution also in these zones of complicated topography. This confirms that the
presented FVM approach based on the upwind treatment of the oblique derivative
BC is able to reconstruct a harmonic function and thus is efficient to solve the
oblique derivative BVP.

More details about this approach can be found in [38].

5.3 Approach Based on the Higher Order Upwind Scheme
Applied on Non-uniform Grids

Now we will present FVM on non-uniform grids above the Earth’s topography. The
oblique derivative BC is again treated as a stationary advection equation. We use a
method for discretization of the computational domain based on an evolution of the
Earth’s surface depending on its mean curvature. This approach involves a tangential
redistribution of the evolving surface discretization points leading to a construction
of a more regular non-uniform 3D hexahedron grid. Then we present a discretization
of the Laplace equation and oblique derivative BC on such non-uniform grids. It
consists of a reconstruction of the normal derivative to the finite volume using
derivatives in the tangential directions. Numerically, the oblique derivative BC
treated as an advection equation and a new higher order upwind method for non-
uniform grids are applied.

First, let us see the computational domain Ω and its grid as a parametrized
volume. A parametrization determines a distribution of points, which in a discrete
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form determines our finite volume grid. Let us denote by S = {x(u, v, t), u ∈
(0, 1), v ∈ (0, 1), t ∈ (0, tend)} the unknown parametrization of Ω . We consider
that S(u, v, 0) approximates the Earth’s topography and we would like to force it
in such a way that S(u, v, tend) forms approximately a part of an ellipsoid at height
H above the reference ellipsoid. This problem can be treated in such a way that
S(u, v, tend) will be the reference ellipsoid, which is then scaled to be approximately
at the height H and S(u, v, 0) remains unchanged. The 3D volume S can be seen
as an evolving surface for which parameter t is the time. The grid is constructed by
an evolution of the surface S(u, v, 0) by its mean curvature and a force f , where
f corresponds to the mean curvature of the reference ellipsoid in the point S∗. The
point S∗ is given by the projection of S(u, v, t) to the reference ellipsoid. Using this
evolution we achieve that the surface continuously forms a shape of a part of the
ellipsoid and the mathematical formulation of this process is given by [46]

∂tx(u, v, t) = ε (kN + f N) , (54)

where unknown x is the position vector of the evolving surface S, k is two times
its mean curvature and N is the normal vector at the point x. The scalar f is the
force applied in direction of the normal vector N. The vector kN is computed as
kN = Δsx, where Δs is the so-called Laplace-Beltrami operator [46]. The scalar ε is
a parameter determining how fast the surface is moving. The equation (54) is solved
using the FVM. Boundary points of the surface do not have to be on the reference
ellipsoid at time 0 due to real topography. We want them to get on the reference
ellipsoid in time tend . So we decided that boundary points will move linearly to the
points on the ellipsoid, but we allow them also a tangential movement. Points of the
grid of the computational domain Ω are discrete points of scaled S. These points
are scaled around the origin (0, 0, 0) with the factor 1 + 240000/6378137.

5.4 Controlling the Quality of Grid by Using the Tangential
Redistribution of Points

A redistribution of points on a surface is important for a uniformity of the
computational grid and a numerical stability of a surface evolution. In our approach,
we decided to follow principles published in [30, 46]. In this case, the discrete
surface is composed by discrete parallels and meridians which cross in discrete
points xij . In the point xij , the i-th discrete meridian crosses the j -th discrete
parallel. Then the uniform redistribution can be achieved by adding a tangential
movement of the surface in the directions Tpi and Tmj , where Tpi is a tangent to
the i-th parallel and Tmj is a tangent to the j -th meridian. The tangential movement
does not change the shape of a surface.

Let us have only one general curve Γ on the surface. This curve moves as the
surface S moves. The parametrization Γ = {x(u, t), u ∈ (0, 1), t ∈ (0, tend)}
determines a discretization of the curve . If we have n points on a curve Γ at time
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Fig. 12 Illustration of the
curve Γ on the surface S and
TΓ , NΓ

1 , NΓ
2

point m, points of the curve are xi = x
(

i
n
,m

)
. If the curve has a uniform distribution

at time 0, we want to preserve this distribution. If it does not have the uniform
distribution, we want redistribute points uniformly. Using this parametrization we
can write TΓ = xu/|xu|.

There is another important parametrization of Γ . It is called the arc-length
parametrization. We denote it by s. For this parametrization it holds |dx|

ds
= 1.

Using this parametrization we can write TΓ = xs and using the Frenet formula
kNΓ = TΓ

s = xss .
For better clarity, we have decided to denote the surface normal by NS and the

surface mean curvature by kS . Movement of the curve is split in three perpendicular
directions: the direction TΓ which is a tangent vector of the curve Γ , and other two
directions NΓ

1 , NΓ
2 which lie in the normal plane of the curve Γ . The direction NΓ

1 is
chosen to be the normal vector of the surface NS . The third vector is NΓ

2 = NΓ
1 ×TΓ

(see the Fig. 12).
In general, the curve evolution is given by the equation

∂tx = UΓ NΓ
1 + V Γ NΓ

2 + AΓ TΓ , (55)

where x is the position vector of the curve Γ on the surface S. Since the curve is
moving by (54), the values of UΓ ,V Γ and AΓ are given by

UΓ =
(
ε
(
kSNS + f NS

))
· NΓ

1 ,

V Γ =
(
ε
(
kSNS + f NS

))
· NΓ

2 ,

AΓ =
(
ε
(
kSNS + f NS

))
· TΓ . (56)

Since NΓ
1 = NS , NΓ

2 ⊥ NS and TΓ ⊥ NS we have
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UΓ = ε
(
kS + f

)
,

V Γ = 0,

AΓ = 0. (57)

Using these facts and by adding a new tangent velocity αΓ TΓ , we obtain

∂tx = UΓ NΓ
1 + αΓ TΓ . (58)

The scalar αΓ is a quantity providing the tangential redistribution of points on the
curve Γ . Since we do not want this velocity to move boundary points, we set α(0) =
α(1) = 0.

Let us introduce a function gΓ = |xu| =
√(

dx1
du

)2 +
(

dx2
du

)2 +
(

dx3
du

)2 = ds
du

,

which can be used for the point distribution. From the discrete point of view, gΓ

is proportional to a distance between points on the curve. Let us denote LΓ the

length of the curve Γ . If
(

gΓ

LΓ

)
t

= 0, the ratio of distances between points and

length of the curve remains the same. This equation determines which αΓ gives us
an redistribution conserving initial one and it can be rewritten to

(
gΓ

LΓ

)
t

= gΓ

LΓ

(
αΓ

s − UΓ kΓ
1 + 〈UΓ kΓ

1 〉Γ
)
. (59)

The detailed process of obtaining Eq. (59) can be found in [44].
If we want to determinate gΓ such that we obtain an asymptotically uniform

redistribution, we can choose [47]

(
gΓ

LΓ

)
t

= ω

(
1 − gΓ

LΓ

)
. (60)

For change of
(

gΓ

LΓ

)
t

in time holds Eq. (59) and after substituting it into Eq. (60),

we can see that everything in (60) except the term αΓ is given by the evolution of
the curve and the surface. The equation (60) can be rewriten to

αΓ
s = −UΓ kΓ

1 + 〈UΓ kΓ
1 〉Γ + ω

(
LΓ

gΓ
− 1

)
, (61)

from where we can determine αΓ for any curve Γ on the surface S.
By adding such movement in direction of tangent vector of the curves, the

final equation for the surface evolution, which includes also tangential evolution
of points, is given by
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∂tx = ε (kN + f N) + 〈αΓ TΓ 〉, (62)

where 〈αΓ TΓ 〉 = ∑
Γ ∈MΓ αΓ TΓ /|MΓ | and MΓ is the set of curves crossing in

the point x which we want to redistribute and |MΓ | is a cardinality of the set MΓ .
Since redistributions on crossing curves do not have to be compatible, we take the
average value. In the continuous case, the Eqs. (62) and (54) give the same image
of the evolving surface, but in the discrete case we obtain almost uniform point
redistribution by using (62).

5.5 Numerical Approximation of Evolving Surface

Let us assume that the surface is composed by ni meridians and nj parallels. A
point of an intersection of the i-th meridian and the j -th parallel in a time index t is
denoted by xij t . Let p, q ∈ {−1, 0, 1} and let Nint denote a set of all (p, q), |p| +
|q| = int , where int denote an integer number. So points xi+p,j+q,t , (p, q) ∈ N1
are north, south, east, west neighbouring points and points xi+p,j+q,t , (p, q) ∈ N2
are north-east, north-west, south-east, south-west neighbouring points. If we do not
specify that (p, q) belongs to N1 or N2, we always consider that it belongs to the
set N1.

The surface is divided into finite volumes. A finite volume Vijt is associated with
the point xij t . Vertices of the finite volume are given by centers of line segments
connecting points xij t and xi+p,j+q,t , (p, q) ∈ N1, and by centers of quadrilaterals
given by points xij t , xi+p,j,t , xi,j+q,t , xi+p,,j+q,t , (p, q) ∈ N2. These vertices are
denoted by xpq

ij t , see Fig. 13, and they are computed by the formula

xpq
ij t = 1

4

∑
(l,m)∈B(p,q)

xi+l,j+m,t , (63)

where B(p, q) = {(p, q),(p, 0),(0, q),(0, 0)}.
A boundary between Vijt and Vi+p,j+q,t , (p, q) ∈ N1 is kinked, so it is

composed by two line segments. Let us denote by e
pqr
ij t , (p, q) ∈ N1, r ∈ {−1, 1},

two line segments forming the boundary between the finite volumes Vijt and
Vi+p,j+q,t . Let us define a function, which generate a corner vertex of e

pqr
ij t

� (p, q, r) =
{

(r, q), p = 0,

(p, r), q = 0.
(64)

A line segment e
pqr
ij t is then given by points xpq

ij t and x�(p,q,r)
i,j,t . Let us denote npqr

ij t

an outer normal to the e
pqr
ij t . For better understanding see the Fig. 13.

Let k be equal to one for simplicity. By integrating (62) over the finite volume
Vijt we get
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a)

Vi,j,t

xi,j,t

xi+1,j,txi−1,j,t

xi,j−1,t

xi,j+1,t

x1,1
i,jt

x1,−1
i,jt

x1,0
i,jt

b)

e1,0,1
i,jt

e1,0,−1
i,jt

Vi,j,t

n1,0,1
i,jt

n1,0,−1
i,jt

xi,j,t

xi+1,j,t

Fig. 13 The finite volume with representative points and finite volume with normals and edges

∫

Vijt

∂txdS =
∫

Vijt

ΔsxdS +
∫

Vijt

f NdS +
∫

Vijt

〈αΓ TΓ 〉dS (65)

and by using Green’s theorem we have

∫

Vijt

∂txdS =
∫

∂Vijt

∇sx · nij tds +
∫

Vijt

f NdS +
∫

Vijt

〈αΓ TΓ 〉dS. (66)

Using definition of the finite volume, the first term on the right-hand side of (66)
can be rewritten as

∫

∂Vijt

∇sx · nij tds =
∑

(p,q)∈N1

∑
r∈{−1,1}

∫

e
pqr
ij t

∇sx · npqr
ij t ds =

=
∑

(p,q)∈N1

∑
r∈{−1,1}

∫

e
pqr
ij t

∂x

∂npqr
ij t

ds. (67)

A derivative of x in the direction of npqr
ij t is considered constant on the boundary

e
pqr
ij t . In general, a vector xi+p,j+q,t − xij t is not in the direction of the normal

vector npqr
ij t , so the derivative in the direction of the normal vector is approximated

by a derivative in a direction of xi+p,j+q,t − xij t and a derivative in a direction of
the tangent vector to e

pqr
ij t . The tangent vector to e

pqr
ij t is defined as

tp,q,r
i,j,k = x�(p,q,r)

i,j,k − xpq
i,j,k

|x�(p,q,r)
i,j,k − xpq

i,j,k|
. (68)
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A unit vector vpq
ij t , which is pointing from the neighbouring point xi+p,j+q,t to the

point xi,j,t , is given by

vpq
ij t = xi+p,j+q,t − xi,j,t

|xi+p,j+q,t − xi,j,t | . (69)

An approximation of the normal vector to e
pqr
ij t is defined as

npqr
ij t = vpq

ij t × tp,q,r
i,j,k

|vpq
ij t × tp,q,r

i,j,k | × tp,q,r
i,j,k . (70)

Since vectors vpq
ij t , npqr

ij t and tpqr
ij t lie in the same plane, the vector vpq

ij t can be

expressed as a linear combination of npqr
ij t and tpqr

ij t , and it holds

∇sx·spqr
ij t = ∇sx·(βpqr

ij t npqr
ij t +γ

pqr
ij t tpqr

ij t ) = β
pqr
ij t ∇sx·npqr

ij t +γ
pqr
ij t ∇sx·tpqr

ij t (71)

where β
pqr
ij t = npqr

ij t · vpq
ij t and γ

pqr
ij t = tpqr

ij t · vpq
ij t . Thus the derivative in the normal

direction can be expressed as

∇sx · npqr
ij t = 1

β
pqr
ij t

∇sx · spqr
ij t − γ

pqr
ij t

β
pqr
ij t

∇sx · tpqr
ij t , (72)

and approximated by

∇sx · npqr
ij t = 1

β
pqr
ij t

xi+p,j+q,t+1 − xi,j,t+1

|xi+p,j+q,t − xi,j,t | − γ
pqr
ij t

β
pqr
ij t

x�(p,q,r)

i,j,t+1 − xpq

i,j,t+1

|x�(p,q,r)
i,j,t − xpq

i,j,t |
. (73)

Using this equation and because the length of e
pqr

ij t1 is equal to

m(e
pqr

ij t1) = |x�(p,q,r)
i,j,t − xpq

i,j,t |, (74)

Eq. (67) can be approximated by

∑
(p,q)∈N1

∑
r∈{−1,1}

∫

e
pqr
ij t

∂x

∂npqr
ij t

ds ≈
∑

(p,q)∈N1

∑
r∈{−1,1}

(
m(e

pqr

ij t1)

β
pqr
ij t

xi+p,j+q,t+1 − xi,j,t+1

|xi+p,j+q,t − xi,j,t | − γ
pqr
ij t

β
pqr
ij t

(
x�(p,q,r)

i,j,t+1 − xpq

i,j,t+1

))
. (75)
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Because x�(p,q,r)

i,j,t+1 and xpq

i,j,t+1 are vertices of the finite volume computed as in (63),
the equation can be rewritten

∑
(p,q)∈N1

∑
r∈{−1,1}

(
m(e

pqr

ij t1)

β
pqr
ij t

xi+p,j+q,t+1 − xi,j,t+1

|xi+p,j+q,t − xi,j,t |

− γ
pqr
ij t

4β
pqr
ij t

⎛
⎝ ∑

(l,m)∈B(�(p,q,r))

xi+l,j+m,t+1 −
∑

(l,m)∈B(p,q)

xi+l,j+m,t+1

⎞
⎠

)
. (76)

A constant value of f Nij t is considered on the finite volume Vijt . So the second
term on the right-hand side of the equation (66) can be rewritten as

∫

Vijt

f NdS = m(Vijt )f Nij t , (77)

where m(Vijt ) is a 2D measure of Vijt . In order to compute Nij t , we consider a
vector kNij t computed by Eq. (76), where all values are taken at time index t . Then
the normal vector to the surface is given by

Nij t = kNij t

|kNij t | . (78)

The meridians and parallels are curves according to which we are going to
redistribute points on the surface. Only one meridian and one parallel go through
the point xij t . Let us consider the i-th meridian and the j -th parallel. The point xij t

is the i-th point on the j -th parallel and the j -th point on the i-th parallel in time t .
So we can write

∫

Vijt

〈αΓ TΓ 〉dS =
∫

Vijt

αiTi + αj Tj

2
dS, (79)

where Ti (Tj ) is the tangent vector to the i-th meridian (j -th parallel). Values of
αiTi and αj Tj are considered constant on Vijt and we approximate them using
central differences

∫

Vijt

αiTi + αj Tj

2
dS =

= m(Vijt )

2
·
(

αi
jt

xi,j+1,t+1 − xi,j−1,t+1

|xi,j+1,t − xi,j−1,t | + α
j
it

xi+1,j,t+1 − xi−1,j,t+1

|xi,j+1,t − xi,j−1,t |
)

(80)
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where αi
jt (αj

it ) is αi (αj ) in the j -th (i-th) point on the i-th (j -th) parallel in time t .
A time derivative is considered constant on the finite volume and is approximated
by a finite difference

∫

Vijt

∂txdS = m(Vijt )

(
xi,j,t+1 − xij t

Δt

)
. (81)

Using Eqs. (75), (77), (80), and (81), we get

m(Vijt )

(
xi,j,t+1 − xij t

Δt

)
=

∑
(p,q)∈N1

∑
r∈{−1,1}

(
m(e

pqr

ij t1)

β
pqr
ij t

xi+p,j+q,t+1 − xi,j,t+1

|xi+p,j+q,t − xi,j,t |

− α
pqr
ij t

4β
pqr
ij t

( ∑
(l,m,)∈B(�(p,q,r))

xi+l,j+m,t+1 −
∑

(l,m,)∈B(p,q)

xi+l,j+m,t+1

))

+ m(Vijt )f Nij t

+ m(Vijt )

2

(
αi

jt

xi,j+1,t+1 − xi,j−1,t+1

|xi,j+1,t − xi,j−1,t | + α
j
it

xi+1,j,t+1 − xi−1,j,t+1

|xi,j+1,t − xi,j−1,t |
)

. (82)

We have a system of ni × nj equations with ni × nj unknowns xij,t+1, where
i = 1, . . . , ni and j = 1, . . . , nj .

Values of αi
jt (αj

it respectively) are computed before the system of equations (82)
is solved. We obtain these values by solving Eq. (61). Approximating the derivative
in (61) by using the backward difference and taking the right-hand side in the
discrete points we get

αi
jt − αi

j−1,t

|xi,j t − xi,j−1,t | = Ui
j−1/2,t k

i
1,j−1/2,t − 〈Ui

t k
i
1t 〉i + ω

(
Li

t |xi,j t − xi,j−1,t |
nj

− 1

)

(83)
where

ki
m,j−1/2,t =

(
ki
m,j t − ki

m,,j−1,t

)
/2,m = 1, 2 (84)

ki
m,j t = kNi

j t · Ni
m,j t , m = 1, 2 (85)

Ni
1,j t = Ni

j t , (86)

Ni
2,j t = Ni

1,j t × Ti
j t , (87)

Ti
j t = xi,j+1,t − xi,j−1,t

|xi,j+1,t − xi,j−1,t | , (88)
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kNi
j t =

xi,j+1,t−xi,j,t

|xi,j+1,t−xi,j,t | − xi,j,t−xi,j−1,t

|xi,j,t−xi,j−1,t |
(|xi,j+1,t − xi,j,t | + |xi,j,t − xi,j−1,t |)/2

, (89)

Ui
j−1/2,t =

(
Ui

j+1,t + Ui
j,t

)
/2, (90)

Ui
j,t = (εkNij t + f Nij t ) · Ni

1,j t , (91)

〈Uiki
1〉i = 1

Li
t

nj∑
l=1

hil(U
i
l−1/2k

i
1,l−1/2), (92)

Li
t =

nj∑
i=1

|xi,j t − xi,j−1,t |. (93)

From (83), (93) and (93) we get

αi
jt = αi

j−1,t − |xi,j t − xi,j−1,t |
(
Ui

j−1/2,t k
i
1,j−1/2,t

)
+

+ |xi,j t − xi,j−1,t |
nj∑
l=1

|xi,lt − xi,l−1,t |
(
Ui

l−1/2,t k
i
1,l−1/2,t

)
+

+ ω

(
Li

t

nj

− |xi,j t − xi,j−1,t |
)

. (94)

Because αi
0,t = 0 (αj

0,t = 0), every value of αi
jt (α

j
it ) can be computed before solving

system of equations (81). The system of equations (82) can be solved using the
BiCGSTAB method [4, 54].

5.6 Discretization of the Oblique Derivative BVP for the Laplace
Equation

5.6.1 Approximation of the Laplace Equation
In this section, we introduce FVM for a discretization of Eq. (4) on a non-uniform
grids.

We discretize the domain Ω by the non-uniform regular hexahedron grid using
the approach described in the previous section. Such constructed vertices are
representative points of finite volumes. Vertices of the finite volume xp,q,r

i,j,k are
constructed in the center of eight neighbouring representative points using Eq. (36),

Using the same principles as in Eqs. (30) and (31) we obtain Eq. (32). Unlike for
uniform grids, where the vector xi+p,j+q,k+r − xi,j,k and the normal vector np,q,r

i,j,k

are parallel, we can not use Eq. (33) to approximate the normal derivative. For this
approximation we utilize the same idea as in Sect. 5.1 of splitting a derivative in the
directions of three linearly independent directions.
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One of the vectors is the unit vector vp,q,r
i,j,k , which is pointing from the

neighbouring point xi,j,k to the point xi+p,j+q,k+r , and is given by

vp,q,r
i,j,k = xi+p,j+q,k+r − xi,j,k

|xi+p,j+q,k+r − xi,j,k| . (95)

Let us introduce new operations on the set N1

⊕(p, q, r) =

⎧⎪⎪⎨
⎪⎪⎩

(p, 1, 1),

(1, q, 1),

(1, 1, r),

p �= 0

q �= 0

r �= 0

�(p, q, r) =

⎧⎪⎪⎨
⎪⎪⎩

(p,−1,−1),

(−1, q,−1),

(−1,−1, r),

p �= 0

q �= 0

r �= 0

�(p, q, r) =

⎧⎪⎪⎨
⎪⎪⎩

(p, 1,−1),

(1, q,−1),

(1,−1, r),

p �= 0

q �= 0

r �= 0

�(p, q, r) =

⎧⎪⎪⎨
⎪⎪⎩

(p,−1, 1),

(−1, q, 1),

(−1, 1, r),

p �= 0

q �= 0

r �= 0

Thanks to these operations we can write the vertices of the boundary e
p,q,r
i,j,k as

x�(p,q,r)
i,j,k , x�(p,q,r)

i,j,k , x⊕(p,q,r)
i,j,k and x⊕(p,q,r)

i,j,k . These vertices are used to compute

tangent vectors. The first tangent vector tp,q,r
i,j,k to the boundary between e

p,q,r
i,j,k is

given by

tp,q,r
i,j,k = x⊕(p,q,r)

i,j,k − x�(p,q,r)
i,j,k

|x⊕(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
. (96)

The second tangent vector f p,q,r
i,j,k is given by other two vertices of e

p,q,r
i,j,k ,

f p,q,r
i,j,k = x�(p,q,r)

i,j,k − x�(p,q,r)
i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
. (97)

The normal vector to the boundary of the finite volume is then defined by
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Fig. 14 The finite volume

np,q,r
i,j,k = tp,q,r

i,j,k × f p,q,r
i,j,k . (98)

where np,q,r
i,j,k is the outer normal relative to the finite volume Vi,j,k (see Fig. 14).

Since the vector vpqr
ijk can be expressed as a linear reconstruction of npqr

ijk , tpqr
ijk

and fpqr
ijk , it holds

∇T · vpqr
ijk = ∇T · (β

pqr
ijk npqr

ijk + α
pqr
ijk tpqr

ijk + γ
pqr
ijk fpqr

ijk )

= β
pqr
ijk ∇T · npqr

ijk + α
pqr
ijk ∇T · tpqr

ijk + γ
pqr
ijk ∇T · fpqr

ijk , (99)

where coefficients α
pqr
ijk , β

pqr
ijk and γ

pqr
ijk are given by solving a linear system of

equations

vpqr
ijk = β

pqr
ijk npqr

ijk + α
pqr
ijk tpqr

ijk + γ
pqr
ijk fpqr

ijk . (100)

Therefore, for the derivative in the direction of normal we get

∇T · npqr
ijk = 1

β
pqr
ijk

(∇T · vpqr
ijk − α

pqr
ijk ∇T · tpqr

ijk − γ
pqr
ijk ∇T · fpqr

ijk ). (101)

Equation (101) is approximated by
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1

β
pqr
ijk

(∇T · vpqr
ijk − α

pqr
ijk ∇T · tpqr

ijk − γ
pqr
ijk ∇T · fpqr

ijk ) ≈

1

β
pqr
ijk

Tijk − Ti+p,j+q,k+r

d
pqr
ijk

− α
pqr
ijk

β
pqr
ijk

T
⊕(p,q,r)
i,j,k − T

�(p,q,r)
i,j,k

|x⊕(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |

− γ
pqr
ijk

β
pqr
ijk

T
�(p,q,r)
i,j,k − T

�(p,q,r)
i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
, (102)

where T
⊕(p,q,r)
i,j,k are the values at the points x⊕(p,q,r)

i,j,k .
Equation (32) can be rewritten using Eq. (102) in the form

−
∑

(p,q,r)∈N1

m(e
pqr
ijk )

(
1

β
pqr
ijk

Tijk − Ti+p,j+q,k+r

d
pqr
ijk

− α
pqr
ijk

β
pqr
ijk

T
⊕(p,q,r)
i,j,k − T

�(p,q,r)
i,j,k

|x⊕(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
− γ

pqr
ijk

β
pqr
ijk

T
�(p,q,r)
i,j,k − T

�(p,q,r)
i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |

)
=0. (103)

For the finite volumes, that are adjacent to the boundary finite volumes, the value
Ti+p,j+q,k+r is given by the Dirichlet BC (6). Similarly as in Eq. 42 the values

T
⊕(p,q,r)
i,j,k are not given in representative points, but in points x⊕(p,q,r)

i,j,k , which
are vertices of the finite volume. They are at the center of the corresponding
representative points (36). So values T

⊕(p,q,r)
i,j,k are approximated by

T
⊕(p,q,r)
i,j,k = T (x⊕(p,q,r)

i,j,k ) = 1

8

∑
(l,m,n)∈B(⊕(p,q,r))

Ti+l,j+m,k+n, (104)

and values T
�(p,q,r)
i,j,k , T

�(p,q,r)
i,j,k , T

�(p,q,r)
i,j,k in Eq. (103) can be expressed similarly.

It is worth noting that for an uniform grid Eq. (103) is the same as Eq. (35).

5.6.2 Approximation of the Oblique Derivative Boundary Condition
In this section we introduce a higher order discretization of the oblique derivative
BC (5).

The computational domain is divided by finite volumes as in the previous
subsection. However, the finite volumes are constructed also around representative
points on the boundary Γ . Vertices common to boundary finite volumes and inner
finite volumes are located at the center of the representative points defined by (36).
Other vertices of the boundary finite volumes are obtained by mirroring of the
former ones through Γ . The set of added finite volumes is denoted by O.

As in Sect. 5.1, we understand Eq. (5) as an advection equation and we can obtain
Eq. (50) using the same principles.
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The difference between this method and the first order upwind method is in the
approximation of the value T

p,q,r
i,j,k . In this case, we do not simply assign a value

Ti,j,k or Ti+p,j+q,k+r to the boundary but we correct it using a gradient. Using this
method there are two ways how to approximate the value T

p,q,r
i,j,k

T
p,q,r
i,j,k = Ti,j,k + ∇Ti,j,k · (xp,q,r

i,j,k − xi,j,k), (105)

T
p,q,r
i,j,k = Ti+p,j+q,k+r + ∇Ti+p,j+q,k+r · (xp,q,r

i,j,k − xi+p,j+q,k+r ), (106)

We choose an appropriate approximation using an upwind method. If s
p,q,r
i,j,k > 0 we

use Eqs. (105) and (106) otherwise. Then Eq. (50) becomes

∑
(p,q,r)∈Nin

1 (i,j,k)

(Ti+p,j+q,k+r + ∇Ti+p,j+q,k+r · (xp,q,r
i,j,k − xi+p,j+q,k+r ))s

p,q,r
i,j,k

+
∑

(p,q,r)∈Nout
1 (i,j,k)

(Ti,j,k + ∇Ti,j,k · (xp,q,r
i,j,k − xi,j,k))s

p,q,r
i,j,k

−
∑

(p,q,r)∈Nin
1 (i,j,k)

Ti,j,ks
p,q,r
i,j,k −

∑
(p,q,r)∈Nout

1 (i,j,k)

Ti,j,ks
p,q,r
i,j,k = |Vi,j,k|δg.

(107)

By using the functions max(0, s
p,q,r
i,j,k ) and min(0, s

p,q,r
i,j,k ) we can write

∑
(p,q,r)∈N1

[
(Ti+p,j+q,k+r+∇Ti+p,j+q,k+r ·(xp,q,r

i,j,k −xi+p,j+q,k+r )) min(0, s
p,q,r
i,j,k )

+ (Ti,j,k + ∇Ti,j,k · (xp,q,r
i,j,k − xi,j,k)) max(0, s

p,q,r
i,j,k ) − Ti,j,ks

p,q,r
i,j,k

]
= |Vi,j,k|δg.

(108)

The gradient on the finite volume Vi,j,k can be expressed using derivatives in three
linear independent directions. Let us denote these directions p, q, r. For derivatives
in these directions applies

∂T

∂p
= ∇T · p = ∂T

∂x
px + ∂T

∂y
py + ∂T

∂z
pz,

∂T

∂q
= ∇T · q = ∂T

∂x
qx + ∂T

∂y
qy + ∂T

∂z
qz,

∂T

∂r
= ∇T · r = ∂T

∂x
rx + ∂T

∂y
ry + ∂T

∂z
rz. (109)
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If we look at (109) as a system of linear equations for unknowns ∂T
∂x

, ∂T
∂y

, ∂T
∂z

, we
obtain the solution

∂T

∂x
= −−pzqy

∂T
∂r + pyqz

∂T
∂r − qz

∂T
∂p ry + pz

∂T
∂q ry + qy

∂T
∂p rz − py

∂T
∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

∂T

∂y
= −pzqx

∂T
∂r − pxqz

∂T
∂r + qz

∂T
∂p rx − pz

∂T
∂q rx − qx

∂T
∂p rz + px

∂T
∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

∂T

∂z
= −−pyqx

∂T
∂r + pxqy

∂T
∂r − qy

∂T
∂p rx + py

∂T
∂q rx + qx

∂T
∂p ry − px

∂T
∂q ry

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

(110)

and thus

∇Ti,j,k = p × q ∂T
∂r + q × r ∂T

∂p + r × p ∂T
∂q

det(p, q, r)
, (111)

where

det(p, q, r) = det

⎛
⎝px py pz

qx qy qz

rx ry rz

⎞
⎠ . (112)

If the finite volume, on which we want to reconstruct the gradient, is the inner finite
volume, then p, q, r are defined by

p = xi+1,j,k − xi−1,j,k

|xi+1,j,k − xi−1,j,k| ,

q = xi,j+1,k − xi,j−1,k

|xi,j+1,k − xi,j−1,k| ,

r = xi,j,k+1 − xi,j,k−1

|xi,j,k+1 − xi,j,k−1| . (113)

Approximation of derivatives in these directions are

∂T

∂p
≈ Ti+1,j,k − Ti−1,j,k

|xi+1,j,k − xi−1,j,k| ,

∂T

∂q
≈ Ti,j+1,k − Ti,j−1,k

|xi,j+1,k − xi,j−1,k| ,

∂T

∂r
≈ Ti,j,k+1 − Ti,j,k−1

|xi,j,k+1 − xi,j,k−1| . (114)
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On the other hand, if the finite volume is the boundary finite volume then one of the
neighbouring finite volumes does not exist. Let say the finite volume Vi−1,j,k does
not exist. Then we cannot use Ti−1,j,k for reconstruction but we can use the oblique
derivative g(xijk) in direction s(xijk). Let us denote them g and s. Then p, q, r are
defined by

p = s,

q = xi,j+1,k − xi,j−1,k

|xi,j+1,k − xi,j−1,k| ,

r = xi,j,k+1 − xi,j,k−1

|xi,j,k+1 − xi,j,k−1| . (115)

Approximation of derivatives in these directions are

∂T

∂p
= δg,

∂T

∂q
≈ Ti,j+1,k − Ti,j−1,k

|xi,j+1,k − xi,j−1,k| ,

∂T

∂r
≈ Ti,j,k+1 − Ti,j,k−1

|xi,j,k+1 − xi,j,k−1| , (116)

and so

∇Ti,j,k =
s × q

Ti,j,k+1 − Ti,j,k−1

|xi,j,k+1 − xi,j,k−1| + q × r δg + r × s
Ti,j+1,k − Ti,j−1,k

|xi,j+1,k − xi,j−1,k|
det(s, q, r)

.

(117)

Substituting Eq. (117) into Eq. (108), we get equations for boundary finite volumes
Vi,j,k ∈ O. Due to the construction of our scheme, the equations for these finite
volumes may require two neighbouring finite volumes in the directions of q and
r. For those which do not have such neighbours, we have to prescribe Dirichlet
BC, which is also in accordance with the compatibility of BCs mentioned in the
introduction. All these equations, together with equations from the discretization of
the Laplace equation form a numerical scheme for solving the BVP (4), (5) and (6).

5.7 Numerical Experiments

In the first experiment we solve the BVP (4), (5) and (6) with BCs obtained from
an artificial harmonic function defined on a computational domain, see Fig. 15. This
computational domain is bounded by four planar side boundaries, a spherical upper
boundary and by the bottom boundary given by a perturbed sphere. In order to test
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Fig. 15 Computational
domain for the first
experiment

the numerical scheme, we constructed the most coarse grid. Then refined grids were
constructed by adding new representative points in-between representative points
of the previous grid using Eq. (36). The exact solution was chosen as T (x) =

1
|x−(0.1,0.2,0.3)| and its values were used to generate the oblique derivative and the
Dirichlet BC. The oblique derivative BC were prescribed on the perturbed sphere as
the bottom boundary. The vectors in the direction of ∇T (x) were rotated alternately
by the angle of π/6 around x, y, z axes to get the vectors v, see Fig. 16. Table 7
depicts the L2-norm and maximum norm of residuals between the obtained FVM
solutions and the exact solution and the achieved EOC.

The second experiment is computed on the same computational domain with the
exact solution taken from EGM2008 while using only the SH coefficients up to
degree and order 5. The oblique derivative is generated as the first derivative of the
disturbing potential (the exact solution) in the radial direction. This radial direction
represents the oblique direction since it differs from the direction of the normal
vector to the bottom boundary. Table 8 shows the L2-norm and maximum norm of
residuals between the obtained FVM solutions and exact solution, and the achieved
EOC. Both experiments show that EOC of our FVM approach is about 1.6, which
means that if we decrease the maximal size of the finite volumes by 2 then the error
of our solution will decrease approximately by 3 (21.6 ≈ 3.03).

Following numerical experiments were performed in the domain above the Hi-
malayas bounded by 〈60◦, 110◦〉 meridians and 〈20◦, 50◦〉 parallels. The EGM2008
up to degree 2160 was used to generate all BCs and the harmonic function. The
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Fig. 16 Oblique derivative
directions for the first
experiment

Table 7 The L2 norm and
max norm of residuals, and
EOC of FVM for the problem
with the exact solution
T (x) = |x− (0.1, 0.2, 0.3)|−1

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125 0.000229 – 0.00269 –

0.0642 7.00358e−05 1.761 0.00102 1.429

0.0324 2.43723e−05 1.545 0.000418 1.31582

0.0162 7.90755e−06 1.635 0.000153 1.45607

0.00817 2.44251e−06 1.702 5.23081e−05 1.56279

bottom boundary was given by grid points that are located on the Earth’s surface.
Their spacing in horizontal directions was uniform. Their heights were interpolated
from the SRTM30 PLUS topography model [6], see Fig. 17a. An upper boundary
was chosen in the height of 240 km above a reference ellipsoid corresponding to
an average altitude of the GOCE satellite orbits. The resulting 3D computational
grid constructed by our surface evolution method is non-uniform. On the bottom
boundary the first derivatives in the radial direction were prescribed that represented
the oblique derivative BC. On the rest of the boundary the Dirichlet BC in form of
the disturbing potential were prescribed. All these BCs were generated from the
EGM2008 model up to degree 2160.
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Table 8 The L2 norm and
max norm of residuals, and
EOC of FVM for the problem
with exact solution taken
from the EGM2008 up to
degree and order 5

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125 9.25506e−05 – 0.000911 –

0.0642 2.39154e−05 2.01 0.000348 1.43

0.0324 8.80662e−06 1.462 0.0001389 1.349

0.0162 2.96979e−06 1.579 4.87918e−05 1.51659

0.00817 9.39478e−07 1.667 1.5969e−05 1.61833

Fig. 17 (a) The Earth’s surface topography over the Himalayas (the bottom boundary) [m], (b)
the disturbing potential from EGM2008 on the Earth’s surface [m2s−2], (c) the disturbing potential
from our FVM solution [m2s−2], d, e, f) residuals between the EGM2008 and our FVM solution,
where grid density is: (d) 501 × 301 × 25, (e) 1001 × 601 × 49, (f) 2001 × 1201 × 97 points
[m2s−2]

Three experiments with different grid densities were performed, namely the grids
with the densities 501 × 301 × 25, 1001 × 601 × 49 and 2001 × 1201 × 97 points.
They approximately correspond to spacing 0.1◦ × 0.1◦ × 10 , 0.05◦ × 0.05◦ × 5
and 0.025◦ × 0.025◦ × 2.5 km.

Figure 17b shows EGM2008 at points on the Earth’s topography as the harmonic
function that we are reconstructing. The obtained FVM solution for the most dense
grid is depicted in Fig. 17c. Residuals between EGM2008 and our FVM solutions on
the bottom boundary can be seen in Fig. 17c, d, e. The statistical characteristics of
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Table 9 Statistics of residuals between our FVM solution and the EGM2008 in the domian above
the Himalayas [m2s−2]
Resolution 0.1◦ × 0.1◦ × 10 km 0.05◦ × 0.05◦ × 5 km 0.025◦ × 0.025◦ × 2.5 km

Grid density 501 × 301 × 25 1001 × 601 × 49 2001 × 1201 × 97

Min. value -5.07 -1.68 -0.44

Mean value 1.79 0.87 0.33

Max. value 23.05 11.98 3.90

St. deviaton 2.3 1.09 0.37

the corresponding residuals are summarized in Table 9. It is evident that refinements
of the grid leads to higher accuracy of the FVM solution giving better agreement
with EGM2008. Standard deviations (STDs) are decreasing from 2.3 to 0.37 m2s−2

(∼2.3 dm to 3.7 cm) and the maximal values from 23.1 to 3.9 m2s−2 (∼from
2.3 m to 3.9 dm).

6 Summary

In this chapter we have presented several numerical approaches for solving the
oblique derivative boundary value problem based on the boundary element and
finite volume methods. Some of these approaches have been applied on uniform
and one on nonuniform grids. The presented numerical experiments have confirmed
that obtained numerical solutions converge to the exact solutions. Finally we may
conclude that presented numerical methods may provide an important basis for
solving various geoscientific problems described by partial differential equations.
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