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Abstract The article deals with filtering of data on closed surfaces by using the
linear and nonlinear diffusion equations. The linear diffusion filtering is given by
the Laplace–Beltrami operator representing linear diffusion along the surface. For the
nonlinear diffusion filtering, we introduce nonlinear diffusion equations with diffusion
coefficient depending on surface gradient and/or surface Laplacian of solution. This
allows adaptive filtering respecting edges and local extrema in the data. For numerical
discretization we develop a surface finite-volume method to approximate the partial
differential equations on surfaces like sphere, ellipsoid or the Earth surface. The sur-
faces are approximated by a polyhedral mesh created by planar triangles representing
subdivision of an initial icosahedron or octahedron grids. Numerical experiments illus-
trate behaviour of the linear and nonlinear diffusion filters on testing data and on real
measurements, namely the GOCE satellite observations and the satellite-only mean
dynamic topography. They show advantages of the nonlinear filters which, on the
contrary to the linear one, preserve important structures in processed geodesy data.
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1 Introduction

In many applications it is necessary to analyse data, e.g. classical images given on
2D or 3D regular grid structure or geoscience data given on 2D surfaces like Earth
topography or satellite orbits, which are often contaminated by noise, and their quality
can be rather poor. Nonlinear partial differential equations (PDEs) can be used to
automatically produce output of higher quality, enhance the sharpness, filter out the
noise, extract shapes, etc. From the mathematical point of view, the input processed
data can be modelled by a real function u0(x), u0 : Ω → R, where Ω ⊂ Rd

represents a spatial domain. In image analysis, Ω is typically rectangular and d = 2
or 3, in surface data analysis Ω is a closed or open surface in R3. In the presented
approach, we are strongly inspired by ideas from classical image processing which
we transfer to geodesy surface data analysis.

Image processing operations based on PDEs involve such important tasks as
image filtering, edge detection, deblurring and image enhancement, restoration, image
inpainting, shape extraction and analysis, image segmentation, motion analysis,
motion based filtering etc. (Alvarez et al. 1993; Alvarez and Morel 1994; Romeny
1994; Sethian 1999; Weickert 1998; Caselles et al. 1998; Nielsen et al. 1999; Sapiro
2001; Osher and Fedkiw 2003). Typical 2D examples are given by a large variety
of medical and bioengineering images, satellite images, texts pre-processed for auto-
matic reading, old corrupted photographs or any other digital images of poor quality.
3D or even 4D image analysis applications arise in biology, medicine or in material
quality control, where 3D volumetric aquisition methods are widely used nowadays,
see e.g. (Faure et al. 2016).

The first step to use PDEs for image processing was done in the beginning of
eighties (Koenderink 1984; Witkin 1983). By the simple observation that the Gauss
function

Gσ (x) = 1

(4πσ)d/2 e−|x |2/4σ (1)

is the fundamental solution of the linear heat (diffusion) equation, it has been possible
to replace the classical image processing operation—convolution of an image with
the Gauss kernel (normal probability distribution function) with variance v = √

2σ
(Gaussian smoothing)—by solving the linear heat (diffusion) equation

ut = Δu (2)

for time t = σ with initial condition given by the processed image u0. Here Δ

denotes the classical Laplace operator in cartesian coordinates and ut denotes the
time derivative of the unknown function u(t, x), u : [0, T ] × Ω → R.

It is well known that Gaussian smoothing (linear diffusion) blurs edges and moves
their positions in images as well as smooths out local extrema of data. Although such
phenomena can cause no problems in some examples of data analysis, in applications
where, e.g. a visual impression is crucial and a precise localization of edges and
values at extrema are necessary, the linear (Gaussian) smoothing is generally not the
best choice. A way has been found to overcome these shortcomings, namely to switch
to nonlinear diffusion models.
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Due to the evolutionary character of the processwhich controls the processing using
diffusion equations, application of any PDE to an initially given image is understood as
its embedding in the so-called scale space. The Gaussian smoothing represents linear
scale space. In the case of nonlinear PDEs one speaks about nonlinear scale space. The
axioms and fundamental properties of such embeddings have been summarized and
studiedbyAlvarez et al. (1993),Alvarez andMorel (1994), andLions (1994),where the
notion of image multiscale analysis has been introduced. The image multiscale analy-
sis associates with a given image u0(x) a family u(t, x) of smoothed-simplified images
depending on an abstract parameter t ∈ [0, T ], the scale. As has been proved inAlvarez
et al. (1993), if such a family fulfills certain basic assumptions—pyramidal structure,
regularity and local comparison principle—then u(t, x), u : [0, T ] × Ω → R, can be
represented as the unique viscosity solution [in the sense of Crandall et al. (1992)] of a
general second order (degenerate) parabolic partial differential equation. This theoret-
ical result has also an important practical counterpart. The equations of (degenerate)
parabolic type have a smoothing property, so they are a natural tool for filtering (image
simplification) by removing spurious structures, e.g. noise. Moreover, the simplifica-
tion should be “data oriented”, e.g. it should respect edges and not blur them. Such
requirements, or even more sophisticated ones related to the differential characteris-
tics of the image, bring strong nonlinearity into the parabolic PDEs, and make this
field interesting not only because of the applications but also from a mathematical and
numerical point of view.

Since the end of the 80s, the nonlinear diffusion equations have been used for
processing of 2D and 3D images. After the pioneering work of Perona and Malik
(1987)whomodified the linear heat equation (2) to nonlinear diffusion preserving edge
positions, there has been a great deal of interest in the application and analysis of such
equations. At present, the following nonlinear PDE suggested by Catté et al. (1992),
often called regularized Perona–Malikmodel, iswidely used in various practical image
processing applications:

ut − ∇ · (g(|∇Gσ ∗ u|)∇u) = 0, (3)

where u(t, x) is an unknown function. The equation is accompanied by the zero
Neumann boundary conditions, the initial condition is given by the processed image
u0 ∈ L∞(Ω), the following assumptions on diffusion coefficient function g and
smoothing kernel Gσ are prescribed

g : R+
0 → R+ is a nonincreasing function, g(0) = 1, g(s) → 0 for s → ∞, (4)

Gσ ∈ C∞(Rd) is a smoothing kernel,
∫

Rd
Gσ (x) dx = 1,

∫
Rd

|∇Gσ | dx ≤ Cσ ,

(5)

Gσ (x) → δx for σ → 0, where δx is Dirac function localized at point x, (6)

and

∇Gσ ∗ u(x) =
∫

Rd

∇Gσ (x − ξ)ũ(ξ) dξ, (7)
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where ũ is an extension of u to Rd . One can consider the extension of u by 0 outside
Ω or the reflective periodic extension of the image (Catté et al. 1992).

The Eq. (3) represents a modification of the original Perona–Malik model (Perona
and Malik 1987; Nitzberg and Shiota 1992; Kichenassamy 1997)

ut − ∇ · (g(|∇u|)∇u) = 0, (8)

called also anisotropic diffusion in the computer vision community. Perona and Malik
introduced (8) in the context of edge enhancement. The equation selectively diffuses
the image in the regions where the signal has small variance in intensity in contrast
with those regions where the signal changes its tendency. Such a diffusion process
is governed by the shape of the diffusion coefficient given by the function g in (8)
and by its dependence on ∇u, which is understood as an edge indicator (Perona and
Malik 1987). Since g → 0 for large gradients, the diffusion is strongly slowed down
on edges, while outside them it provides averaging of pixel intensities as in the linear
case. From a mathematical point of view, for practical choices of g (e.g. g(s) =
1/(1 + s2), g(s) = e−s2 ), the original Perona–Malik equation (8) can behave locally
like the backward heat equation. It is, in general, an ill-posed problem which suffers
from non-uniqueness and whose solvability is a difficult problem (Kichenassamy
1997). One way to overcome this disadvantage was proposed in (Catté et al. 1992),
where the convolution with the Gaussian kernel Gσ was introduced into the decision
process for the value of the diffusion coefficient, cf. (3). Since convolution with the
Gaussian is equivalent to linear diffusion, their model combines ideas of linear and
nonlinear scale space equations. Such a slight modification made it possible to prove
the existence and uniqueness of solutions for the modified equation, and to keep the
practical advantages of the original formulation (Catté et al. 1992).Moreover, usage of
the Gaussian gradient ∇Gσ ∗ u combines the theoretical and implementation aspects
of the model. The convolution (with prescribed σ ) gives a unique way to compute
gradients of a piecewise constant image. It also bounds (depending on σ ) the gradient
of the solution as input of the function g in the continuous model—which corresponds
to the situation in numerical implementations where gradients evaluated on a discrete
grid are finite.Also, the local edge enhancement ismore understandable in the presence
of noise.

In this paper we present linear and nonlinear diffusion filteringmethods for geodesy
data given on closed surfaces. For readers interested in image processing numerical
algorithms on regular grids we refer, e.g. to (Mikula and Ramarosy 2001; Kriva et al.
2010) and further references therein. In order to process surface data by PDEs like (2)
and (3), instead of standard gradient and Laplacian, we have to consider the surface
gradient and surface Laplacian—so called Laplace–Beltrami operator. For any scalar
function u defined on an open subset G of Rd containing surface Ω the surface
(tangential) gradient is defined by

∇su = ∇u − (∇u · ν)ν (9)

where ν is outer unit normal to the closed surfaceΩ and∇u denotes the usual gradient
and · denotes the usual scalar product on Rd . The tangential gradient∇su only depends
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on the values of u restricted to surface Ω and ∇su · ν = 0. The Laplace–Beltrami
operator on surface Ω is then defined as the tangential divergence of the tangential
gradient, i.e.

Δsu = ∇s · ∇su. (10)

We also recall the Green (integration by parts) formula for scalar functions on surfaces
and its consequences (Gilbarg and Trudinger 1988; Dziuk and Elliott 2007, 2013),
which will be used in derivation of numerical schemes later in the paper. Let Γ be
a subset of Ω having a boundary ∂Γ whose unit outer normal, tangential to Γ , is
denoted by η. Then

∫
Γ

∇su d A =
∫

∂Γ

uη da −
∫

Γ

Huνd A (11)

where H denotes the (scalar)mean curvature ofΓ , and d A denotes 2D surface element
measure and da denotes 1D curve element measure, for the proof see (Dziuk and
Elliott 2013), Theorem 2.10. Let q be a tangential vector field to the surface Γ , i.e.
q · ν = 0, a typical example used later is the so called surface diffusion flux given by
q = g∇su, where g is a scalar function defined on the surface. Then from (11) we
obtain divergence theorem on the surface

∫
Γ

∇s · q d A =
∫

∂Γ

q · η da −
∫

Γ

Hq · νd A =
∫

∂Γ

q · η da. (12)

and choosing g = 1 in surface diffusion flux we get

∫
Γ

Δsu d A =
∫

∂Γ

∇su · η da. (13)

In the following sections, we introduce and discuss linear and nonlinear diffusion
models depending on surface gradient and surface Laplacian. We present in details
their numerical discretization by surface finite volume method and study behaviour
of models and their numerical discretizations on testing examples as well as on real
geodesy data.

2 The linear diffusion filter on a surface

The linear diffusion of a scalar function u on a closed surface Ω is given by the
equation

∂t u = Δsu, (14)

which is a direct generalization of Eq. (2) and serves for a uniform smoothing of data
on surfaces. Since the surface is closed no boundary conditions have to be prescribed.
Processed data u0(x) defined on Ω gives initial condition for (14).
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Fig. 1 Finite volume Vi

2.1 Numerical discretization of linear diffusion on a surface

The differential equation (14) is numerically solved by the surface finite volume
method (Čunderlík et al. 2012; Eymard et al. 2003). In this approach, the surface
Ω is approximated by an appropriate triangulation defined by N representative nodes
Xi , Xi ⊂ Ω, i = 1, . . . , N . These nodes represent vertices of the triangular grid
defined by planar triangles Tiq , q = 1, . . . , Qi , i = 1, . . . , N , where Qi is the num-
ber of triangleswith the vertex Xi . Other two vertices of the triangle Tiq will be denoted

by Xq1
i and Xq2

i . A value of function u in the node Xi is denoted by ui . For the given
triangulation we construct a finite volume grid. At each node Xi we create a co-volume
(finite volume) Vi bounded by straight lines that connect midpoints between Xi and
its neighbours Xq1

i , Xq2
i with centers of mass of all triangles joined in the node Xi

(see Fig. 1).
By integrating Eq. (14) over the finite volume Vi and by applying (13) to its right

hand side we obtain ∫
Vi

∂t u d A =
∫

∂Vi

∇su · ηi da, (15)

where ∇su represents the surface gradient of the function u and ηi is a unit outer
normal, tangential to the co-volume boundary ∂Vi . Taking into account geometry of
this boundary we get

∫
Vi

∂t u d A =
Qi∑

q=1

∫
∂Viq

∇su · ηiqda, (16)

where ∂Viq are parts of the co-volume boundary that belong to Tiq having normal
vectors ηiq .

Equation (14) is solved in a time interval [0, T ]. This interval is divided into M time
steps t j , j = 1, . . . , M and the time derivative ∂t u is approximated by the backward
difference

∂t u ≈ u j − u j−1

τ
, (17)
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where τ = t j − t j−1 denotes the time step and the value of u j represents a solution in
the j th time step. Then the left hand side of the Eq. (16) can be approximated by

∫
Vi

∂t u d A ≈ m(Vi )
u j

i − u j−1
i

τ
, (18)

where m(Vi ) denotes the area of co-volume Vi , and we get

m(Vi )
u j

i − u j−1
i

τ
=

Qi∑
q=1

∫
∂Viq

∇su j · ηiqda. (19)

For the right hand side of Eq. (19) let us consider a linear representation of u j on
each triangle. Then the surface gradient ∇su j is a constant vector over each triangle
Tiq and we can replace it by the mean value

∇su j = 1

m(Tiq)

∫
Tiq

∇su j da, (20)

where m(Tiq) denotes the area of the triangle Tiq . Applying (11) to the right hand side
of Eq. (20), since any triangle has the zero mean curvature, we obtain

∇su j = 1

m(Tiq)

∫
∂Tiq

u j · niqda, (21)

where niq is the unit outer normal vector, tangential to the boundary of the triangle
Tiq . For the linear representation of u j , the integral over the triangle boundary can be

expressed as a sum of average values from each triangle side, and denoting by P j
Tiq

the constant approximation of the surface gradient on the triangle Tiq , we get

P j
Tiq

= 1

m(Tiq)

(u j
i + u j

q1

2
diq1niq1 + u j

i + u j
q2

2
diq2niq2 + u j

q1 + u j
q2

2
dq1q2nq1q2

)

(22)
where u j

i , u j
q1, u j

q2 denotes the nodal values of the solution in triangle nodes

Xi , Xq1
i , Xq2

i , see Figs. 2 and 3, where all geometrical quantities appearing in (22)
are plotted.

Consequently, the approximation of Eq. (19) can be written in the form

m(Vi )
u j

i − u j−1
i

τ
=

Qi∑
q=1

∫
∂Viq

P j
Tiq

· ηiqda. (23)

Since P j
Tiq

is a constant vector and
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Fig. 2 Plot of the triangle Tiq
sides with lengths diq1, diq2,
dq1q2, and portions of the

co-volume boundary e1iq , e2iq
belonging to the triangle Tiq

Fig. 3 Plot of the outer unit
normal vectors to the triangle
Tiq sides, niq1, niq2, nq1q2,
and to the co-volume boundary,
η1iq , η2iq

∫
∂Viq

ηiq = m(e1iq)η1iq + m(e2iq)η2iq , (24)

where m(e1iq) and m(e2iq) are lengths of the parts of the co-volume boundaries inside
the triangle Tiq , see Fig. 2, we get

m(Vi )
u j

i − u j−1
i

τ
=

Qi∑
q=1

[
m(e1iq)η1iq · P j

Tiq
+ m(e2iq)η

2,
iq · P j

Tiq

]
(25)

which can be, for every i = 1, . . . , N , written in the form

u j
i − τ

m(Vi )

Qi∑
q=1

[
m(e1iq)η1iq · P j

Tiq
+ m(e2iq)η

2,
iq · P j

Tiq

]
= u j−1

i (26)

and represents the implicit numerical scheme for solving linear diffusion equation (14)
on the closed surface Ω .

Equation (26) represent a linear system of equations which can be written in the
form
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Au j = u j−1 (27)

where A represents the system matrix and u j = [u j
1, . . . , u j

N ]T is a vector of nodal
values of the solution in the j th time step. The system matrix A is a sparse non-
symmetric matrix and its properties depend on the time step τ and geometry of the
triangulation. Let us define a local numbering of nodal values in co-volume and its
neighbourhood: the nodal value in the co-volume centre will be denoted by u j

i0 and

its neighbouring unknown values are denoted by u j
i1, . . . , u j

i Qi
. Then the equation

corresponding to co-volume Vi contains Qi + 1 unknowns u j
i0, u j

i1, . . . , u j
i Qi

and i th
row of the linear system (27) is given by

Qi∑
q=0

a j
iqu j

iq = u j−1
i0 , (28)

where a j
i0, a j

i1, . . . , a j
i Qi

represent non-zero coefficients in the i th row of the matrix
A (let us note that for the linear diffusion approximation the upper (time) index j is
dummy, but it will play a role in nonlinear diffusion approximation later). The exact
column locations of these non-zero coefficients depends on a global indexing of the
corresponding nodal value. However, one can easily see that the diagonal coefficient
a j

i0 can be expressed in the form

a j
i0 = 1 − τ

m(Vi )

Qi∑
q=1

1

2m(Tiq)

[
m(e1iq)η1iq · (diq1niq1 + ·diq2niq2)

+ m(e2iq)η2iq · (diq1niq1 + diq2niq2)

]
(29)

and the non-diagonal coefficients a j
iq , q = 1, . . . , Qi , are given by

a j
iq = − τ

m(Vi )

(
1

2m(Tiq)

[
m(e1iq)η1iq · (diq1niq1 + dq1q2nq1q2)

+ m(e2iq)η2iq · (diq1niq1 + dq1q2nq1q2)
]

+ 1

2m(Tik)

[
m(e1ik)η

1
ik · (dik1nik1 + dk1k2nk1k2)

+ m(e2ik)η
2
ik · (dik1nik1 + dk1k2nk1k2)

])
. (30)

where two triangles with indexes q and k are involved and index k = q − 1 if q > 1
and k = Qi if q = 1.
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2.2 Behaviour of the linear diffusion on a closed surface

In this subsection, we present a simple numerical experiment showing how an additive
noise is filtered fromanartificial functiondefinedon a spherical computational domain.
To approximate a unit sphere we use the seventh subdivision of the initial icosahedral
grid. The process of subdivision is illustrated in Fig. 4.

In this experiment, we use the triangulation with 163,842 nodes and 327,680 trian-
gles. On this triangulated sphere we defined an artificial piecewise linear function w

in such a way that wi = 1 for all nodes located on lands and wi = 0 for all nodes at
oceans (see Fig. 5).

Onto this function w, we put an additive noise up to 40 % at 16,661 nodes which
represent approximately 10 % of all nodes randomly distributed over the sphere.
The generated uniform non-Gaussian additive noise is from the interval (−0.4, 0.4)
and after adding the noise we get our piecewise linear initial condition u0 for which
u0

i ∈ (0.6, 1.4) on lands and u0
i ∈ (−0.4, 0.4) at oceans (see Fig. 6).

The system of linear equations (27) has to be solved in every filtering (time) step.
To that goal, in all our numerical experiments, we use the SOR (successive-over-
relaxation) method (Young 1971). In order to get convergence of SOR, we make the
systemmatrix diagonally dominant choosing the time step τ proportional to an average
area of the co-volumes (Čunderlík et al. 2012)

Fig. 4 Process of subdivision of the initial icosahedron

Fig. 5 Artificial function w
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Fig. 6 Initial condition u0

Fig. 7 Profiles across South America from the solution of filtering of the additive noise using the surface
linear diffusion after 2, 5 and 10 time steps

τ = 1

N

N∑
i=1

m (Vi ) . (31)

The choice of the time step is essential for the whole filtering process and implies
how many filtering (time) steps (we call it also iterations) will be necessary to get
reasonable results.

Our numerical results obtained after 2, 5 and 10 iterations of the linear diffusion
filtering (τ = 7 · 10−5) are depicted in Fig. 8. Figure 7 shows the corresponding
profiles along the equator across South America.

From the result, it is evident that this approach reduces the additive noise but it has
a uniform smoothing effect similarly to other linear filters. Together with denoising
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Fig. 8 The solution of filtering of the additive noise using the surface linear diffusion after a 2, b 5, and
c 10 time steps
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it smooths out the main structures represented by the edges of continents. This can
produce serious inaccuracies in interpretation of processed data. A way how to avoid
such inaccuracies is to use nonlinear filtering methods.

3 The nonlinear diffusion filters on a surface

To perform a nonuniform smoothing of data on surfaces we need to choose an appro-
priate diffusion coefficient in diffusion PDEs. The main idea is that the diffusion
coefficient should not be a constant but a nonlinear function of differential character-
istics of data.

3.1 The nonlinear diffusion depending on the surface gradient-regularized
surface Perona–Malik model

In this approach, originally developed in Čunderlík et al. (2012), we use an analogy
with the regularized Perona–Malik model (3) from the classical image processing and
we suggest following PDE

∂t u = ∇s · (g(|∇suσ |)∇su) (32)

for filtering the data on surfaces. The nonlinear diffusivity function g depends on the
term ∇suσ , the surface gradient of solution u smoothed by the surface linear diffusion
for a short time intervalσ , and represents an edge detector for surface data.We consider
g in the form

g(|∇suσ |) = 1

1 + K |∇suσ |2 , K ≥ 0, (33)

where constant K represents an edge sensitivity parameter. By this definition, g fulfils
assumption (4) and returns values from the range

0 < g(|∇suσ |) ≤ 1. (34)

The parameter K determines how sensitive will be the edge detector to high values of
a smoothed surface gradient of u and gives us a decision capability which gradients to
preserve. Large gradients which represent edges in processed data yield a small value
of edge detector and vice versa. If the values of edge detector are close to zero, the
diffusion process is strongly slowed down, on the other hand, if the values are close
to 1, the process is similar to the linear diffusion. This allows the adaptive smoothing
according to surface gradients of the solution. The parameter σ affects the solution
uσ of the surface linear diffusion from which the surface gradient is computed. This
presmoothing of surface gradients causes that only un-noisy edges will be preserved in
nonlinear adaptive smoothing process. An appropriate choice of the parameters K and
σ plays an important role in the filtering process and needs to be tuned experimentally.

To approximate the Eq. (32) we again apply the surface finite volume method and
use the same notation as in Sect. 2. By integrating (32) over the finite volume Vi and
by applying (12) to its right hand side, we obtain
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∫
Vi

∂t u d A =
∫

∂Vi

g
(|∇suσ |)∇su · ηi da. (35)

After analogous steps as described in Sect. 2, we obtain the numerical scheme

u j
i − τ

m(Vi )

Qi∑
q=1

[
m(e1iq)η1

iq · P j
Tiq

g
(∣∣Pσ, j−1

Tiq

∣∣)

×m(e2iq)η
2,
iq · P j

Tiq
g

(∣∣Pσ, j−1
Tiq

∣∣)
]

= u j−1
i , (36)

i = 1, . . . N , which represents a semi-implicit numerical scheme for solving the
regularized Perona–Malik model on the closed surface Ω . The diffusivity function g
inside the scheme (36) depends on Pσ, j−1

Tiq
that represents numerical approximation

of the surface gradient on triangle Tiq of the solution u at the previous time step j − 1
smoothed by one step σ of the surface linear diffusion. In such a way the nonlinearity
in the Eq. (32) is treated by using the smoothed gradients from the previous time step,
thus leading to system of linear equations. Comparing the semi-implicit scheme (36)
with the implicit scheme (26) for the surface linear diffusion, the difference is that now
the surface gradients P j

Tiq
are multiplied by the edge detector function g which allows

the adaptive smoothing according to the smoothed surface gradients evaluated at the
previous time step. Consequently, the edge detector is step by step evolving in time
giving an opportunity to preserve main structures in the data and effectively reduce the
noise. Our experience shows that the regularized surface Perona–Malik model (32)
successfully reduces noise while preserves edges, but we have also observed that it
slightly smooths out local extrema of filtered data (Čunderlík et al. 2012). It is due
to the fact that the smoothed surface gradients are not high enough in areas of local
extrema, but opposite, they are close to zero.

3.1.1 Behaviour of the regularized surface Perona–Malik model

To show behaviour and advantages of the nonlinear diffusion model (32) we use the
same experiment as we used in Sect. 2.2. This experiment aims to demonstrate how
diffusion filtering controlled by the edge detector can successfully remove an additive
noise. We use the same space discretization of the unit sphere and the same initial
condition, see Fig. 6. In case of the nonlinear surface diffusion, the linear system of
equations is given by the semi-implicit scheme (36). To get this system, first we have to
apply the linear diffusion filtering to the solution from the previous time step. Then we
evaluate the corresponding surface gradients that indicate values of the edge detector.
After that we are able to compute coefficients of the system matrix. This process is
repeated in every filtering step. Therefore, the nonlinear surface diffusion filtering is
more time consuming and usually requires more iterations than the linear one.

A significant part of data filtering is finding the optimal values for the edge detector
function parameters K and σ and the time step τ and number of iterative (filtering)
time steps. Since in this experiment the true (un-noisy) solution is known, we are able
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Fig. 9 Gradients of the data after the linear diffusion (σ = 7 · 10−5)

to tune the parameters considering the residuals between the true and filtered solutions.
In general, the parameters for the edge detector depend on gradients of processed data.
In Fig. 9, the gradients of solution obtained after one step of surface linear diffusion
are plotted, σ = τ = 7 · 10−5 in Eq. (31).

If we want to preserve the high gradients along the continents edges, we need to
estimate the sensitivity parameter K in Eq. (33) according to them. We set the value
of K with respect to the maximum value ∇suσ

max of all gradients of the processed
data. We want the edge detector function to have a small value S in the nodes with the
highest gradient. Then, considering |∇suσ

max | > 0, we can set

K = 1 − S

S|∇suσ
max |2

. (37)

For this experiment, we use S = 10−5 and the estimated K = 48.26. The time step
τ = 7 · 10−5 is chosen according to Eq. (31).

Figure 11 depicts the solution of filtering after 250, 500 and 1000 iterations of
the nonlinear diffusion. Figure 10 shows the corresponding profiles along the equator
across South America. From the result it is evident that the signal corresponding to the
additive noise is step by step vanishing while high gradients and their positions remain
preserved. Here we remind that the edge detector always depends on surface gradients
computed from the solution in the previous iterative step, thus it is adapted to thefiltered
solution evolving in time. Such an adaptive smoothing effect is amain advantage of the
nonlinear filtering. Comparing results of the linear and nonlinear diffusion filtering,
Figs. 8 and 11, it is evident that both approaches reduce the additive noise, however,
the linear filtering also smooths out themain structures, i.e. the high gradients on edges
of continents. On the contrary, the nonlinear diffusion model preserves them almost
unaltered, see Fig. 10.
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Fig. 10 Profiles across SouthAmerica from the solution of filtering of the additive noise using the nonlinear
surface diffusion after 250, 500 and 1000 time steps

3.2 The nonlinear diffusion influenced by the surface Laplacian

As mentioned earlier, the regularized Perona–Malik nonlinear diffusion filtering can
slightly smooth the local extrema when processing data. Such drawback can be over-
come by a suitable modification of diffusivity function g. We extend the edge detector
function of the Perona–Malik model by another argument which will slow down dif-
fusion process in areas of local extrema, i.e. in regions with large values of surface
Laplacian—the Laplace–Beltrami operator. The diffusion coefficient which represents
the edge and local extrema detector is defined by

g(|∇suσ 1 |, |Δsuσ 2 |) = 1

1 + K1|∇suσ 1 |2 + K2|Δsuσ 2 |2 , K1, K2 ≥ 0. (38)

The function g depends on the surface gradient of solution u smoothed by the linear
diffusion equation for a short time interval σ 1 as well as on the Laplace–Beltrami
operator applied to solution u smoothed by the linear diffusion equation for a short
time interval σ 2. The parameter K1 has the same meaning as in the edge detector in
the regularized Perona–Malik model and the parameter K2 affects sensitivity to high
values of the surface Laplacian of the function u.

To approximate the Laplace–Beltrami operator on a co-volumewe use similar steps
as we have used in Sect. 2. We denote its approximate mean value on the co-volume
Vi in time step j by C j

i and using derivations yielding Eq. (25) we obtain

C j
i = 1

m(Vi )

Qi∑
q=1

[
m(e1iq)η1iq · P j

Tiq
+ m(e2iq)η

2,
iq · P j

Tiq

]
. (39)
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Fig. 11 Solutions of filtering of the additive noise using the nonlinear surface diffusion after a 250, b 500
and c 1000 time steps
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Since we need a value of diffusion coefficient on the edges of co-volume, i.e. on the
triangles meeting in the center of co-volume, we compute the average value of the
Laplace–Beltrami operator on the triangle Tiq by

C j
Tiq

= 1

3

(
C j

i + C j
q1 + C j

q2

)
, (40)

where C j
i , C j

q1 and C j
q2 represent the values in triangle vertices. Using the same

approach as we have used in the Sect. 3.1, we obtain a semi-implicit numerical scheme
for the nonlinear diffusion filtering method influenced by the surface Laplacian on the
closed surface Ω

u j
i − τ

m(Vi )

Qi∑
q=1

[
m(e1iq)η1

iq · P j
Tiq

g
(∣∣Pσ 1, j−1

Tiq

∣∣, ∣∣Cσ 2, j−1
Tiq

∣∣)

×m(e2iq)η
2,
iq · P j

Tiq
g

(∣∣Pσ 1, j−1
Tiq

∣∣, ∣∣Cσ 2, j−1
Tiq

∣∣)
]

= u j−1
i , (41)

i = 1, . . . , N , where Pσ 1, j−1
Tiq

is an approximation of the smoothed gradient of the

solution from the previous time step j − 1, and analogously, Cσ 2, j−1
Tiq

is an approxi-
mation of the smoothed surface Laplacian of the solution from the previous time step
j − 1.

3.2.1 Comparison of behaviour of linear and nonlinear diffusion filters

In this testing experiment, we study a different behavior of three different filtering
methods introduced above, namely, the linear diffusion model, the nonlinear diffusion
depending on the surface gradient and the nonlinear model influenced by the surface
Laplacian. We use the same icosahedron grid as in Sect. 2.2 and create an artificial
initial data u0 as a function with compact support defined by

u0(x) = v · e
−σ

(r2−|x−s|2)
+ σ

r2 (42)

if |x − s| < r and u(x) = 0 if |x − s| ≥ r , where s = (s1, s2, s3) ∈ Ω and x =
(x1, x2, x3) ∈ Ω . We set v = 0.4, σ = 5r2, r = 0.2 and s = (0,−0.52573, 0.85065).
The function u0 is plotted in Fig. 12.

Figure 13 depicts an intersection through chosen nodes of the initial data u0 and
the results obtained after 50 and 100 time steps of each diffusion filter. In case of the
nonlinear surface Perona–Malikmodel we use the edge sensitivity coefficient K = 10.
In case of the surface Laplacian influence, we use the sensitivity coefficients K1 =
10, K2 = 0.01 for the edge and local extrema detector. In the plots corresponding
to the surface Perona–Malik model and model influenced by the surface Laplacian,
the initial values of the edge and local extrema detector before the first time step are
visualized. The scale for detector values on the right hand side of both plots is reversed.
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Fig. 12 The initial artificial function u0

The profiles of results of the linear diffusion filter confirms a uniform smoothing
effect, see in Fig. 13a. In Fig. 13b, we can see that the surface Perona–Malik model
preserves edges of initial data. The red line in Fig. 13b represents values of the edge
detector in corresponding nodes. On the edges, the values of the detector are almost
zero and for this reason the diffusion process is remarkably slowed down. The values
of the edge detector grow towards a top of the data, and, as we can see by the results
after 50 and 100 time step, the local extremum of the data is pulled down. Figure
13c shows the profile of results of the nonlinear diffusion influenced by the surface
Laplacian. As we can see, the values of the edge and local extrema detector are zero
almost over whole testing data which causes that the original data are barely changed
over the time steps.

4 Numerical experiments

In this section,we present twonumerical experimentswhereweuse all developed types
of diffusion filtering, namely the linear diffusion, nonlinear Perona–Malik diffusion
and nonlinear diffusion influenced by the surface Laplacian. The first experiment aims
to demonstrate filtering of noise from the GOCE data, while showing advantages and
disadvantages of each filtering model. The second experiment presents filtering of
a satellite-only mean dynamic topography (MDT), where we try to reduce a typical
stripping noise due to omission errors of the spherical harmonic approach. In this case
we use the modified nonlinear diffusion influenced by the surface Laplacian to pre-
filter local extrema of initial data and then we use the linear diffusion and nonlinear
Perona–Malik diffusion to obtain improved MDT model.

4.1 Filtering of the GOCE data

In this experiment, we use our developed filters to reduce the noise frommeasurements
of the GOCE satellite mission (ESA 1999), namely from the radial components Trr of
the gravity disturbing tensor available from the EGG_TRF_2 product. Our processed
dataset represent data observed during June–July 2013.Due to the fact that the altitudes
of observations vary considerably reaching differences more than 10 km between

123

Author's personal copy



258 Int J Geomath (2016) 7:239–274

Fig. 13 Profiles of the solution of a the linear diffusion filtering, b the surface Perona–Malik diffusion
filtering and c the nonlinear diffusion filtering influenced by the surface Laplacian. Subfigures b, c include
also the plots of detector functions
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“neighboring” points of observations (e.g. for distant observing time),we have reduced
observed values from the observing altitudes into the reference altitude 245 km, for
more details, see (Čunderlík 2015). It means that our computational domain represents
a closed surface given by the constant altitude 245 km above a reference ellipsoid.
For its discretization we use a very refined triangulation in order to capture a dense
coverage of the processed GOCE data. Namely, an octahedral grid with the resolution
of 0.05◦ is constructed to generate 3D positions of 12,960,002 nodes of the regular
triangulation. In these nodes the values of the radial components Trr reduced to the
reference altitude are interpolated. The missing values in polar gaps (0.54% of all
nodes) are generated from the GOCO03S satellite-only model up to 250◦ (Mayer-Grr
2012). Such input data (see Fig. 14) are then subsequently filtered by the linear and
nonlinear diffusion filtering method.

At first we use the linear diffusion to filter data. We use the time step τ according
to Eq. (31). In this case τ = 4 · 107. The time step τ is so high because areas of co-
volumes are quantify in meters. The linear diffusion successfully has removed most of
the noise, however, looking closely on the character of differences between the initial
and filtered data after 1 and 10 time steps, we can see that the linear diffusion smooths
out main structures of processed data. This drawback can be seen already since the
first time step. A detail of differences over South America is depicted in Fig. 15.

To obtain a better solution we have used the regularized surface Perona–Malik
model (see Sect. 3.1). At the beginning we need to set initial values of model parame-
ters. The optimal parameter of the edge detector were tuned experimentally. The time
interval for pre-smoothing by the linear diffusion was chosen as σ = 2τ , so we use
two steps of the linear diffusion with τ = 4 · 107. The reason for such an appropriate
selection of the linear diffusion time interval is thatwe need to smooth themost of noise
before we quantify the surface gradients. Before pre-filtering by the linear diffusion,
high values of the surface gradients are almost everywhere. After applying the linear
diffusion, the noise is removed (according to the previous part of the experiment) and
values of the gradient preserves better structures of the Earth’s gravity field. Tuning

Fig. 14 Original GOCE measurement—Trr component
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Fig. 15 Differences between initial data and solution after a 1 and b 10 time steps

Fig. 16 Evolution of the edge detector function after a 1 and b 30 time steps

of the sensitivity coefficient K for the edge detector function, see Eq. (33), was based
on values of the surface gradient from the solution uσ . Experimentally (considering
different sensitivity parameters) we estimate K = 1012. The evolution of the edge
detector function during filering is depicted in Fig. 16.

To demonstrate advantages of the nonlinear Perona–Malik model, Fig. 17 shows
differences between initial data and filtered data obtained after 30 time steps of the
nonlinear Perona–Malik diffusion and differences between filtered data obtained by
the linear diffusion after 10 time steps and filtered data obtained after 30 time steps by
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Fig. 17 Differences between a
filtered data obtained by the
linear diffusion and filtered data
obtained by the nonlinear
Perona–Malik diffusion, b initial
data and filtered data obtained
by the nonlinear Perona–Malik
model after 30 time steps
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Fig. 18 The surface Laplacian of data a before the linear diffusion and b after pre-filtering by 20 time
steps of the linear diffusion (values on the scale are 10−9)

the nonlinear Perona–Malik diffusion. We can see how the linear diffusion smooths
also main structures, especially in areas where the gravity field is changing sharply,
while the nonlinear diffusion preserves them and effectively reduce the noise (Fig.
17a). The only problem is in areas of the local extrema of processed data. In Fig.
17b, we can see that maxima of differences are along the main range of Andes and
along its western and eastern edges. This area represents local extrema of initial data.
Such a behaviour can be seen also in other regions indicating that the Perona–Malik
model slightly smooths also local extrema, which represent important structures in the
filtered data.

To void such smoothing we use the nonlinear diffusion influenced by the surface
Laplacian. As input parameters σ 1 and K1 for the edge and local extrema detector
function (see Eq. 38) we use the same parameters as we use in the previous part. The
tuning of the time interval σ 2 for pre-filtering by the linear diffusion is in this case very
important. Figure 18 depicts surface Laplacians before the linear diffusion and after
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Fig. 19 Solution of the nonlinear diffusion influenced by the surface Laplacian after 30 time steps

20 τ time steps of the linear diffusion (values on the scale are 10−9). We can see that
before pre-filtering the surface Laplacian of processed data is high everywhere, even
in noisy areas. After the significant pre-filtering by the linear diffusion, the surface
Laplacian reflect structures of the gravity field. To obtain an appropriate solution we
need to be sure that most of the noise is smoothed and then we can compute the surface
Laplacian. From the initial surface Laplacian we estimate the sensitivity coefficient
K2 = 1022.

Figure 19 presents final filtered data after 30 time steps using the nonlinear diffusion
influenced by the surface Laplacian.

A remarkable advantage of the nonlinear approach can be seen in the Fig. 20. It
shows differences between the filtered data obtained by the nonlinear Perona–Malik
diffusion and those obtained by the nonlinear diffusion influenced by the surface
Laplacian. Both solutions are obtained after 30 time steps.

Figure 20a depicts differences between the initial and filtered data obtained by
the nonlinear diffusion influenced by the surface Laplacian. Comparing them the
differences depicted in Figs. 15 and 17b, we can see that new differences (Fig. 20a)
resembles white noise more closely, so we can assume that the nonlinear diffusion
filtering influenced by the surface Laplacian preserves all the important structures
including local extrema of the initial GOCE data.

4.2 Filtering of the satellite-only MDT

In this experiment, we present filtering of the GOCE-based satellite-only MDT. The
satellite-only MDT as our initial data are given as a combination of the DTU13 mean
sea surface model (Andersen et al. 2013) and the geoid model evaluated from the
GO_CONS_GCF_2_DIR_R5 up to 300◦ (Bruinsma et al. 2003). Such a MDT model
is significantly affected by the stripping noise due to omission errors of the spherical
harmonics approach used for the geoid modelling (Fig. 21). Our aim is to reduce this
stripping noisewhile to preserve important gradients that correspond to themain ocean

123

Author's personal copy



264 Int J Geomath (2016) 7:239–274

Fig. 20 Differences between a filtered data obtained by the nonlinear diffusion influenced by the surface
Laplacian and filtered data obtained by the nonlinear Perona–Malik diffusion, b initial data and filtered data
obtained by the nonlinear diffusion influenced by the surface Laplacian model after 30 time steps
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Fig. 21 Intitial satellite-only MDT model

Fig. 22 Values of the detector function for the nonlinear diffusion influenced by the surface Laplacian: a
for inital values, and b for values after 10 time steps

geostrophic surface currents. In this experiment we use the same octahedral grid with
the resolution of 0.05◦, but in this case generated 3D positions of 12,960,002 nodes
of the regular triangulation are on the surface of the reference ellipsoid.

Taking into account the nature of noise, at first we have reduced the highest peaks
of this noise. To achieve this we have used a modification of the nonlinear diffusion
influenced by the surface Laplacian (see Sect. 3.2). This modification is based on the
detector function in the form

g(|Δsuσ 2 |) = 1

1 + 1
K2|Δs uσ2 |2

, K2 ≥ 0. (43)
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Fig. 23 Differences between
initial data and pre-filtered data
by the modification of the
nonlinear diffusion equation
influenced by the surface
Laplacian obtained after 50 time
steps

Fig. 24 Pre-filtered satellite-only MDT model

The detector function in this form speed up diffusion process in nodes with the
highest surface Laplacian. Those nodes represent highest values of striping noise (Fig.
21). Pre-filtering by the nonlinear diffusion reduces local extrema of noise but at the
same time preserves original structures from initial data. In the pre-filtering process,
we use the model parameters σ 2 = τ = 4 · 107 and K2 = 1019. Figure 22 shows
evolution of values of the detector function after 1 and 10 time steps. Figure 23 depicts
differences between the initial and pre-filter data in detailed area after 50 time steps.
If we look closely on Figs. 22 and 23 we can see that detector function successfully
detects high values of the surface Laplacian an reduce only those values.
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Fig. 25 Differences between
initial data and a filtered data
obtained by the linear diffusion,
b filtered data obtained by the
nonlinear Peron–Malik diffusion
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Fig. 26 Filtered MDT data obtained by the nonlinear Perona–Malik diffusion after a 10, b 50 and c 100
time steps
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Fig. 27 Derived ocean geostrophic surface currents (zonal velocity components) obtained from data fil-
trated by the nonlinear Perona–Malik filering after a 10, b 50 and c 100 time steps
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Fig. 28 Derived ocean geostrophic surface currents (sea water speed) obtained from data filtered by the
nonlinear Perona–Malik model after a 10, b 50 and c 100 time steps
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Fig. 29 Sea water speed from filtered data obtained by the linear diffusion and filtered data obtained by
the nonlinear diffusion in regions of a, b Kuroshio, c, d Gulf Stream, e, f Aghulas

Figure 24 depicts the pre-filtered data after 50 time steps. This data have been used
for a final filering. To remove the remaining noise we have used the linear diffusion
(see Sect. 2) and the nonlinear Perona–Malik diffusion (see Sect. 3.1). In case of the
linear diffusion we use similar time step τ = 4 · 107 as we have used in pre-filtering.
This time step is also used for the nonlinear Perona–Malik diffusion. The estimated
sensitivity coefficient K1 = 1010 for the edge detector function (Eq. 33) is in relation
to the surface gradients of processed data.

To compare the linear diffusion and the nonlinear diffusion, differences between
the initial and filtered data after 100 time steps in the area of the Kuroshio current are
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Fig. 30 Sea water speed from DTU13MDT_5MIN and from filtered data obtained by the nonlinear diffu-
sion in regions of a, b Kuroshio, c, d Gulf Stream, e, f Aghulas

depicted in Fig. 25. We can see how the detector function of the nonlinear diffusion
preserve the signal from original data, while the linear diffusion distorted it.

Figure 26 depicts filtered data after 10, 50 and 100 time steps. In these iterative
steps we also have derived the ocean geostrophic surface currents, using GUT, namely
their zonal velocity components (Fig. 27) as well as their sea water speed (Fig. 28).

Figure 29 shows filtered data obtained by the nonlinear diffusion together with
those obtained by the linear diffusion. Figure 30 similarly, with DTU13MDT_5MIN
model. Both Figures depict sea water speed in details in regions of the main currents
like the Gulf Stream, Kuroshio or Aghulas current. We can see that currents generated
from data filtered by the linear diffusion represent weaker signal, on the contrary those
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generated from the nonlinear diffusion capture signal better. Stronger signal indicate
that the nonlinear diffusion preserve gradient from the initial data.

Consequently, the nonlinear diffusion filtering on a closed surface using the reg-
ularized surface Perona–Malik model, prefiltered by nonlinear diffusion influenced
by the surface Laplacian, seems to be an efficient tool for filtering the satellite-only
MDT. The pre-filering by the modification of the nonlinear diffusion influenced by
the surface Laplacian have reduced the highest values of the noise. Then the opportu-
nity for adaptive smoothing according to the main gradients in the filtered data allows
us to reduce the stripping noise efficiently while preserving important gradients that
correspond to the main ocean geostrophic surface currents. Derived velocities of the
ocean geostrophic surface currents have clearly shown that preserving the important
gradients by the nonlinear filtering have resulted in much stronger signal than in case
of the linear filtering whose uniform smoothing effect also smoothes these structures.
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